
# COMUNICAÇÃO INTERCELULAR NO CÓRTEX PRÉ-FRONTAL DORSOLATERAL (DLPFC) NA NEURODEGENERAÇÃO

Discente: Loren dos Santos

Orientadora: Dra Katia de Paiva Lopes Co-orientador: Dr Roberto T. Raittz



# **Envelhecimento**





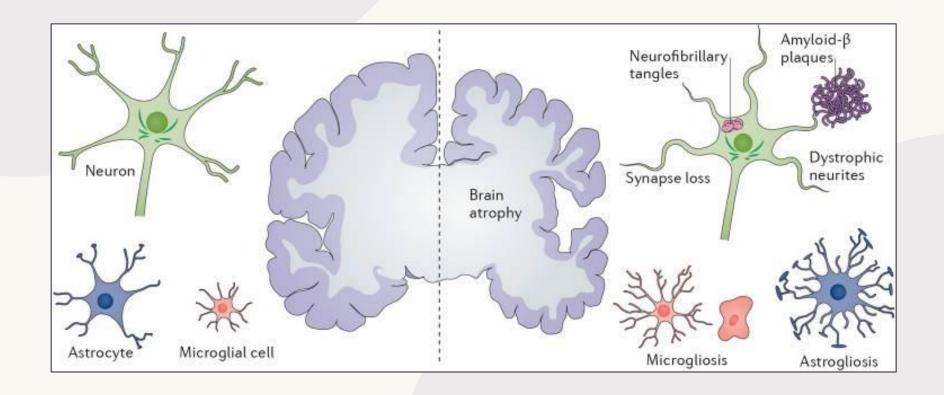
## Doença de Alzheimer (DA)

A doença de Alzheimer é a principal causa de **demência**, responsável por 60 a 70% dos casos.



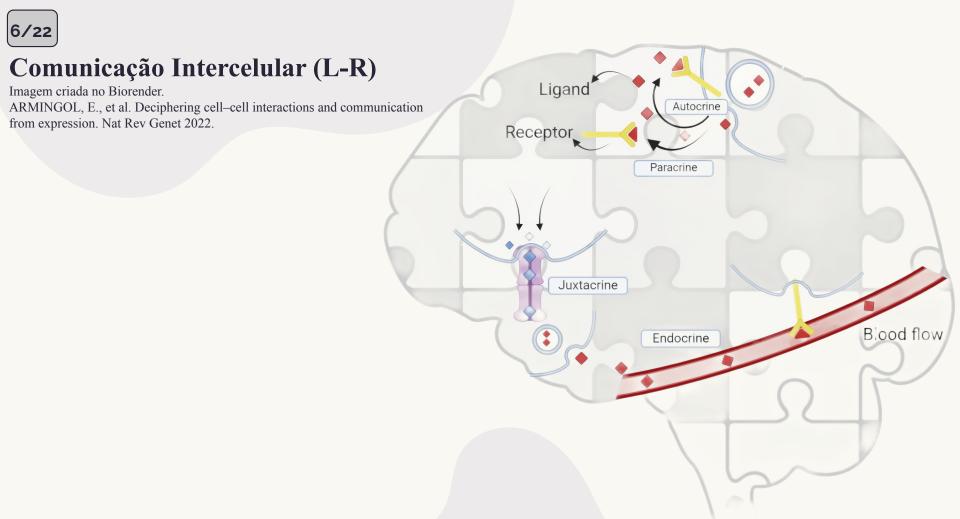
# Placas beta-amilóide

Acúmulo de fragmentos de proteína beta-amilóide formadas durante a clivagem da proteína precursora amilóide (APP).




# **Emaranhados** neurofibrilares

Diferentes isoformas da proteína Tau possuem a tendência de acumular de forma hiperfosforilada no interior dos neurônios.




# Doença de Alzheimer (DA)



# **GAP**

Como a comunicação intercelular a nível de ligante receptor é alterada no cérebro de pessoas com Doença de Alzheimer?



# **Objetivo Geral:**

. Encontrar pares Ligante-Receptor (L-R) no córtex cerebral humano utilizando o pipeline de comunicação celular CellChat.

# **Objetivos Específicos:**

- . Inferir, visualizar e analisar as interações ligante-receptor em células específicas;
- . Encontrar pares ligante-receptor diferencialmente expressos em 16 subpopulações de Micróglia de casos DA;
- . Visualizar a expressão de genes envolvidos na DA em células específicas.



## Materiais e métodos



#### ROSMAP.

. Início em 1994 | . Início em 1997

. Freiras, padres e irmãos católicos (65+) de mais de . Comunidades de aposentados e casas de repouso de

. Avaliações físicas e cognitivas anuais

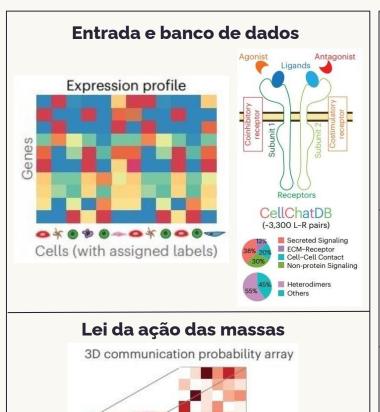
. Doação do cérebro

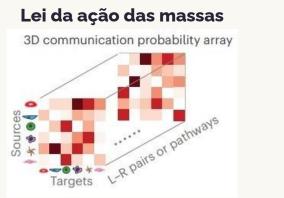
Religious Order Study (ROS) Rush Memory and Aging Project (MAP)

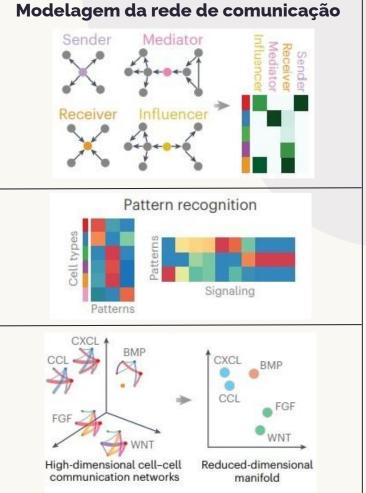
40 grupos dos EUA | Chicago (EUA)

. Avaliações físicas e cognitivas anuais

. Doação de órgãos

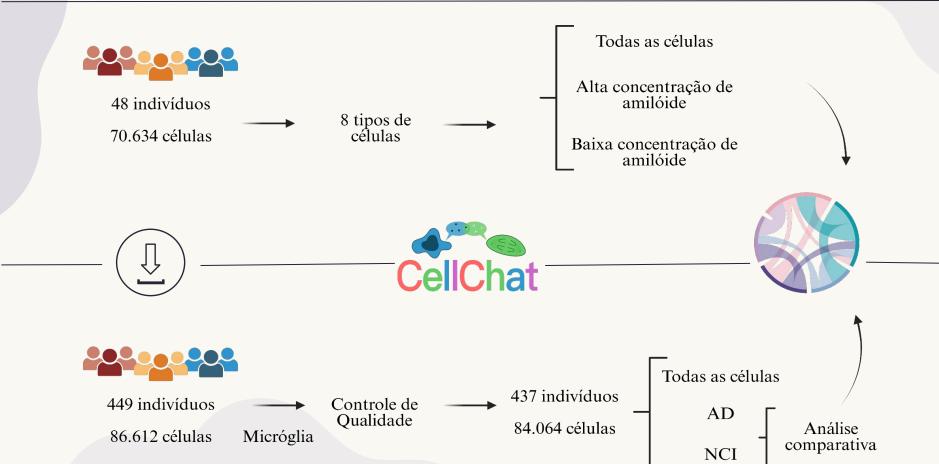

. Coleta de sangue anual


BENNETT, D. A. et al. Religious orders study and rush memory and aging project. Journal of Alzheimer's disease: JAD, v. 64, n. s1, p. S161-S189, 2018.


9/22

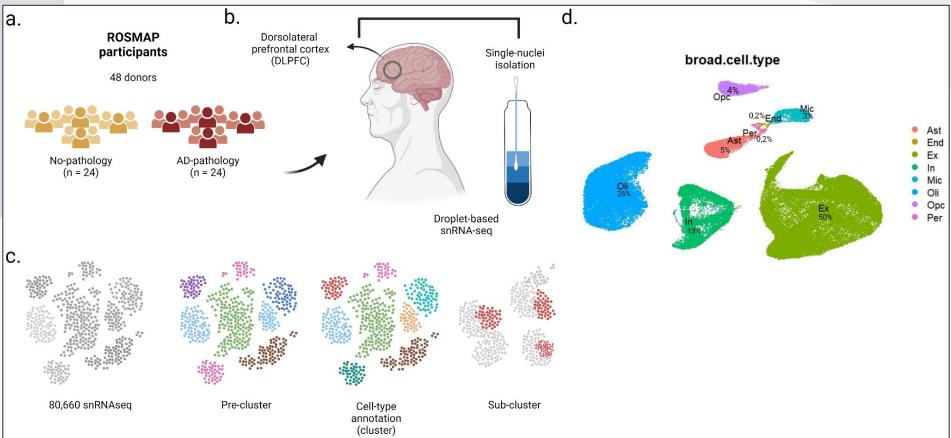
# Pipeline CELLCHAT

#### Jin, S., et al. CellChat for systematic analysis of cell–cell communication from single-cell transcriptomics. Nature Protocols 2024








# Metodologia





### Preparação dos dados dos 48 indivíduos



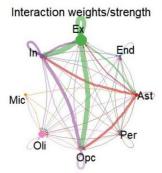


### Resultados - 48 indivíduos

a.

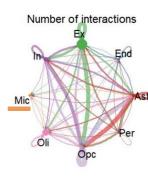
Number of interactions

Ex


Mic

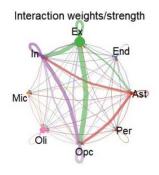
Oli

Opc


|     | Ast | End | Ex | In | Mic | Oli | Орс | Per |
|-----|-----|-----|----|----|-----|-----|-----|-----|
| Ast | 11  | 2   | 13 | 7  | 0   | 2   | 18  | 2   |
| End | 4   | 3   | 1  | 2  | 0   | 2   | 3   | 3   |
| Ex  | 13  | 0   | 31 | 18 | 0   | 8   | 21  | 1   |
| In  | 9   | 2   | 22 | 11 | 0   | 2   | 19  | 1   |
| Mic | 1   | 0   | 0  | 0  | 0   | 2   | 1   | 0   |
| Oli | 5   | 1   | 8  | 0  | 1   | 6   | 5   | 1   |
| Орс | 13  | 2   | 15 | 8  | 0   | 3   | 22  | 1   |
| Per | 6   | 1   | 5  | 4  | 0   | 1   | 9   | 2   |

#### Low amyloid

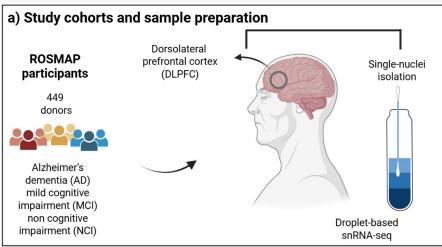


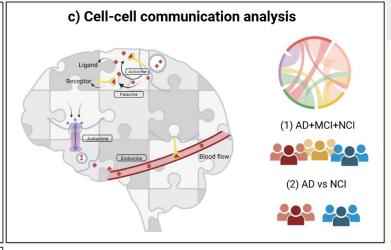

|     | Ast                   | End                   | Ex                    | In                    | Mic                   | Oli                   | Орс                   | Per                   |
|-----|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Ast | 2.55x10 <sup>-2</sup> | 2.31x10 <sup>-4</sup> | 2.76×10 <sup>-2</sup> | 5.85×10 <sup>-2</sup> | < 10 <sup>-308</sup>  | 1.84x10 <sup>-4</sup> | 5.86x10 <sup>-2</sup> | 9.24x10 <sup>-5</sup> |
| End | 4.50x10 <sup>-4</sup> | 9.70x10 <sup>-4</sup> | 1.85×10 <sup>-4</sup> | 1.29×10 <sup>-3</sup> | < 10 <sup>-308</sup>  | 2.31x10 <sup>-4</sup> | 4.15x10 <sup>-4</sup> | 4.04x10 <sup>-4</sup> |
| Ex  | 4.88x10 <sup>-2</sup> | < 10-308              | 1.25×10 <sup>-1</sup> | 1.58×10 <sup>-1</sup> | < 10 <sup>-308</sup>  | 8.80x10 <sup>-3</sup> | 1.50x10 <sup>-1</sup> | 4.62x10 <sup>-4</sup> |
| In  | 2.24x10 <sup>-2</sup> | 1.15x10 <sup>-3</sup> | 6.61×10 <sup>-2</sup> | 7.17×10 <sup>-2</sup> | < 10 <sup>-308</sup>  | 2.31x10 <sup>-4</sup> | 9.22x10 <sup>-2</sup> | 2.77x10 <sup>-4</sup> |
| Mic | 4.62x10 <sup>-5</sup> | < 10-308              | < 10-308              | < 10 <sup>-308</sup>  | < 10 <sup>-308</sup>  | 9.24x10 <sup>-5</sup> | 4.62x10 <sup>-5</sup> | < 10 <sup>-308</sup>  |
| Oli | 2.31x10 <sup>-4</sup> | 3.46x10 <sup>-5</sup> | 2.80×10 <sup>-3</sup> | < 10 <sup>-308</sup>  | 4.62x10 <sup>-5</sup> | 3.20x10 <sup>-3</sup> | 3.45x10 <sup>-2</sup> | 3.69x10 <sup>-4</sup> |
| Орс | 1.19x10 <sup>-2</sup> | 2.19x10 <sup>-4</sup> | 4.00×10 <sup>-2</sup> | 3.74×10 <sup>-2</sup> | < 10 <sup>-308</sup>  | 3.40x10 <sup>-3</sup> | 6.58x10 <sup>-2</sup> | 4.62x10 <sup>-5</sup> |
| Per | 1.10x10 <sup>-3</sup> | 1.84x10 <sup>-4</sup> | 1.12×10 <sup>-2</sup> | 4.15×10 <sup>-3</sup> | < 10 <sup>-308</sup>  | 3.69x10 <sup>-4</sup> | 5.16x10 <sup>-3</sup> | 9.24x10 <sup>-5</sup> |

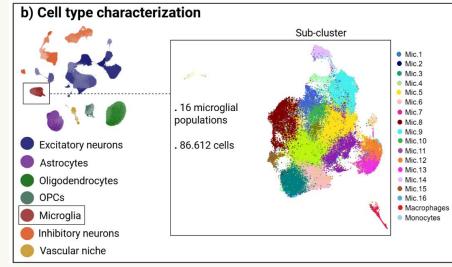
b.



|     | Ast | End | Ex | In | Mic | Oli | Орс | Per |
|-----|-----|-----|----|----|-----|-----|-----|-----|
| Ast | 11  | 2   | 6  | 7  | 1   | 5   | 18  | 2   |
| End | 5   | 4   | 4  | 3  | 1   | 3   | 4   | 2   |
| Ex  | 7   | 1   | 14 | 10 | 1   | 6   | 17  | 0   |
| In  | 6   | 1   | 8  | 8  | 1   | 4   | 15  | 1   |
| Mic | 1   | 0   | 0  | 0  | 0   | 1   | 1   | 0   |
| Oli | 6   | 1   | 5  | 2  | 1   | 7   | 8   | 1   |
| Орс | 16  | 2   | 9  | 8  | 1   | 4   | 20  | 1   |
| Per | 10  | 1   | 6  | 5  | 0   | 1   | 9   | 2   |


#### High amyloid



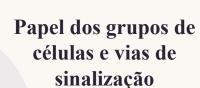


|     | Ast                   | End                   | Ex                    | In                    | Mic                   | Oli                   | Орс                   | Per                   |
|-----|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Ast | 1.72x10 <sup>-2</sup> | 8.89x10 <sup>-5</sup> | 1.21×10 <sup>-2</sup> | 3.81x10 <sup>-2</sup> | 4.44x10 <sup>-5</sup> | 7.05x10 <sup>-3</sup> | 4.53x10 <sup>-2</sup> | 8.89x10 <sup>-5</sup> |
| End | 2.22x10 <sup>-4</sup> | 1.77x10 <sup>-4</sup> | 4.45×10 <sup>-4</sup> | 3.11x10 <sup>-4</sup> | 6.67x10 <sup>-5</sup> | 1.33x10 <sup>-4</sup> | 1.77x10 <sup>-4</sup> | 8.89x10 <sup>-5</sup> |
| Ex  | 2.58x10 <sup>-2</sup> | 4.44x10 <sup>-5</sup> | 5.33×10 <sup>-2</sup> | 8.14x10 <sup>-2</sup> | 2.66x10 <sup>-4</sup> | 1.40x10 <sup>-2</sup> | 9.61x10 <sup>-2</sup> | < 10 <sup>-308</sup>  |
| In  | 1.40x10 <sup>-2</sup> | 2.22x10 <sup>-4</sup> | 2.45×10 <sup>-2</sup> | 4.66x10 <sup>-2</sup> | 1.77x10 <sup>-4</sup> | 1.06x10 <sup>-2</sup> | 6.70x10 <sup>-2</sup> | 2.22x10 <sup>-4</sup> |
| Mic | 4.44x10 <sup>-5</sup> | < 10 <sup>-308</sup>  | < 10 <sup>-308</sup>  | <10 <sup>-308</sup>   | < 10 <sup>-308</sup>  | 4.44x10 <sup>-5</sup> | 4.44x10 <sup>-5</sup> | < 10 <sup>-308</sup>  |
| Oli | 1.42x10 <sup>-3</sup> | 4.44x10 <sup>-5</sup> | 4.89×10 <sup>-4</sup> | 8.89x10 <sup>-5</sup> | 1.33x10 <sup>-4</sup> | 5.55x10 <sup>-3</sup> | 9.97x10 <sup>-3</sup> | 7.11x10 <sup>-4</sup> |
| Орс | 1.36x10 <sup>-2</sup> | 7.59x10 <sup>-5</sup> | 2.61×10 <sup>-2</sup> | 2.68x10 <sup>-2</sup> | 1.77x10 <sup>-4</sup> | 6.78x10 <sup>-3</sup> | 6.04x10 <sup>-2</sup> | 4.44x10 <sup>-5</sup> |
| Per | 1.51x10 <sup>-3</sup> | 4.44x10 <sup>-5</sup> | 6.75×10 <sup>-3</sup> | 1.15×10 <sup>-3</sup> | < 10 <sup>-308</sup>  | 7.11x10 <sup>-4</sup> | 3.20x10 <sup>-3</sup> | 2.22x10 <sup>-4</sup> |

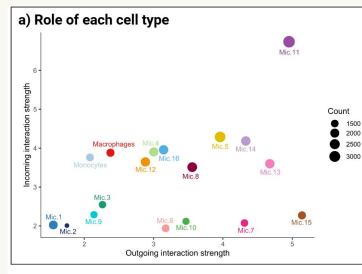
13/22

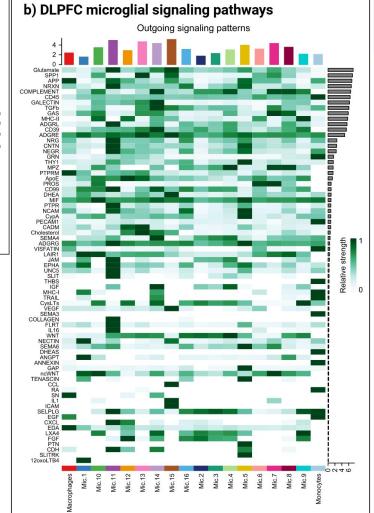
#### Resultados 437 indivíduos



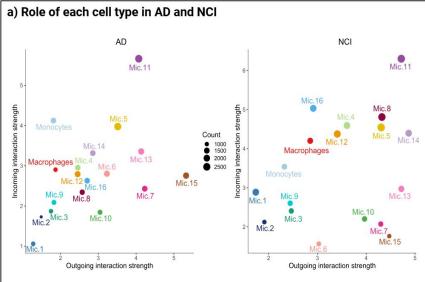






GILAD, S, G., et al. Cellular communities reveal trajectories of brain ageing and Alzheimer's disease. Nature 2024.

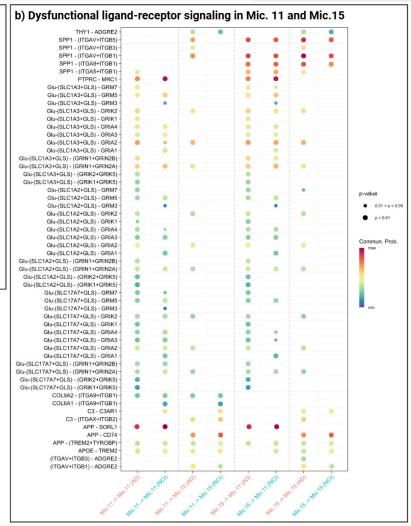



437 indivíduos


# Análise com todas as células

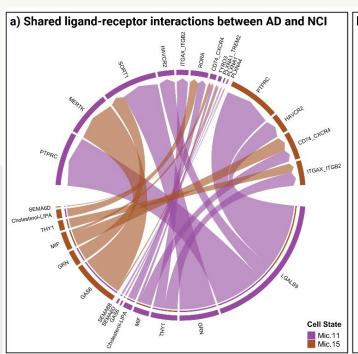


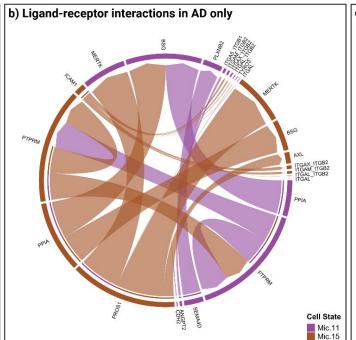










**Mic.11**: subgrupos de células caracterizado por células de **resposta ao estresse** (*HSPH1* †*DNAJB1* †*NLRP1* †)


Mic.15: subgrupo de células inflamatórias enriquecidas para resposta imune, quimiotaxia celular e fagocitose (CD83<sup>+</sup>CCL3/4<sup>+</sup>)



#### Interações L-R em Mic.11 e Mic.15 em AD e NCI, e número de interações

#### . Via ICAM ocorrendo somente AD





| CELLS       | AD   | NCI  |
|-------------|------|------|
| Mic.1       | 1042 | 2079 |
| Mic.2       | 859  | 1040 |
| Mic.3       | 1040 | 1292 |
| Mic.4       | 1404 | 2082 |
| Mic.5       | 2410 | 2747 |
| Mic.6       | 1601 | 1123 |
| Mic.7       | 1437 | 1271 |
| Mic.8       | 1303 | 2562 |
| Mic.9       | 1152 | 1317 |
| Mic.10      | 1154 | 1340 |
| Mic.11      | 2562 | 2700 |
| Mic.12      | 1581 | 2292 |
| Mic.13      | 1702 | 1668 |
| Mic.14      | 1425 | 2055 |
| Mic.15      | 1704 | 1028 |
| Mic.16      | 1418 | 2040 |
| Macrophages | 1031 | 1584 |
| Monocytes   | 1448 | 1471 |

# Discussão

- . Cada população e subpopulação de células possui interações LR se coordenando de forma diferente;
- . O maior número de interações de saída foi observado em Mic.15 (*CD83<sup>+</sup>CCL3/4<sup>+</sup>*). Enquanto Mic.11 (*HSPH1<sup>+</sup>DNAJB1<sup>+</sup>NLRP1<sup>+</sup>*) exibiu o maior número de comunicações de entrada;
- . A via de sinalização ICAM foi expressa somente em AD;
- . Foram identificados 218 pares L-R únicos diferencialmente expressos na DA, aumentados e diminuídos.

# Conclusão

. Pontos fortes: a análise de comunicação intercelular foi realizada em cérebros humanos, sem viés de inclusão de pessoas;

. Desafios: indivíduos com idade avançada; os participantes não refletem a população em geral.

# Apresentação dos resultados

- . Participação no X-Meeting 2023;
- . Apresentação de pôster no X-Meeting 2024;
- . Apresentação do pôster no X-Meeting 2025;
- . Co-autora do artigo "Cytokine expression profile in the human brain of older adults" painel de citocinas.



### Referências

ARMINGOL, E., et al. **Deciphering cell–cell interactions and communication from expression**. Nat Rev Genet 22, 71–88 (2021)

BENNET, D., et al. Religious Orders Study and Rush Memory and Aging Project. J Alzheimers Dis. 2018

GILAD, S, G., et al. Cellular communities reveal trajectories of brain ageing and Alzheimer's disease. Nature 2024.

JIN, S et al. CellChat for systematic analysis of cell–cell communication from single-cell transcriptomics. Nature protocols 2024.

MATHYS, H., et al. Single-cell atlas reveals correlates of high cognitive function, dementia, and resilience to Alzheimer's disease pathology. Nature 2019.

NICHOLS, E. et al. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. The lancet, 2022.



# Cronograma

|                                         | 2023     | 2024    | 2025     |          |
|-----------------------------------------|----------|---------|----------|----------|
| Revisão<br>bibliográfica                |          |         |          |          |
| Análise com 48 indivíduos               |          |         |          |          |
| Análise com<br>437 indivíduos           |          |         |          |          |
|                                         |          | 2025    |          |          |
|                                         |          |         |          |          |
|                                         | Setembro | Outubro | Novembro | Dezembro |
| Escrita do artigo                       | Setembro | Outubro | Novembro | Dezembro |
| Escrita do artigo  Replicação dos dados | Setembro | Outubro | Novembro | Dezembro |
| Replicação dos                          | Setembro | Outubro | Novembro | Dezembro |

# Agradecimentos

- . Programa de Pós-graduação em Bioinformática da Universidade Federal do Paraná (UFPR);
- . Aos meus orientadores;
- . Professores, coordenadores, secretaria e colegas do programa;
- . Namorado, família e amigos;
- . A CAPES pelo financiamento;
- . Aos participantes do ROSMAP, bem como investigadores e funcionários do Rush Alzheimer's Disease Center.