# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3084 | 0 | 0.9947 | Antibiotic resistance profile of facultative deep-sea psychro-piezophile bacteria from the Arabian Sea and their relation with physicochemical factors. Antibiotic resistance (ABR) is a significant global challenge, with antibiotics from various sources ending up in the ocean and affecting marine life. Profiling ABR in deep-sea bacteria is crucial for understanding the spread of ABR from environmental microbes to clinical pathogen and vice-versa. We evaluated facultative psychro-piezophile deep-sea bacteria from different depths of the Arabian Sea for their resistance to 20 commercial antibiotics. Bacteria from Zone 5 (2000-3000 m) exhibited the highest multiple antibiotic resistance (MAR) index (0.90), identifying it as a significant reservoir of ABR. Zone 1 (5-100 m) isolates (average 20 %) showed the highest resistance to synthetic antibiotics. Zone 3 (500-1000 m) isolates were highly resistant to diverse classes of antibiotics, separating upper (zone 1 and 2 (100-500 m) and deeper sea zones (zone 4 (1000-2000 m) and 5). The identified isolates belong to Bacillus, Niallia, Escherichia, Cytobacillus, and Pseudomonas genera. Additionally, antibiotic resistance genes (ARGs) such as StrB (2 isolates) and SXT integrase (1 isolate) were detected only in Zone 5 isolates. The SulII gene (19 isolates) was present across all zones. PCA analysis revealed a negative correlation between resistance and physicochemical factors (macronutrients like phosphate (PO(4)(3-)), nitrate (NO(3)(-)), nitrite (NO(2)(-)), and ammonia (NH(3)); micronutrient and heavy metals like (iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), nickel (Ni)), aluminium (Al), cadmium (Cd), and chromium (Cr)), except for Phosphate (0.65). Overall, this study is the first to provide valuable insights into the prevalence of ABR using culture-dependent methods and its correlation with physicochemical factors in the deep-sea environments of the Arabian Sea. | 2025 | 40088632 |
| 8724 | 1 | 0.9947 | Effects of different salinity on the transcriptome and antibiotic resistance of two Vibrio parahaemolyticus strains isolated from Penaeus vannamei cultured in seawater and freshwater ponds. The transcriptome and antibiotic resistance of Vibrio parahaemolyticus isolated from Penaeus vannamei cultured in seawater (strain HN1)and freshwater (strain SH1) ponds were studied at different salinity (2‰ and 20‰). At different salinity, 623 differentially expressed genes (DEGs) significantly upregulated and 1,559 DEGs significantly downregulated in SH1. In HN1, 466 DEGs significantly upregulated and 1,930 DEGs significantly downregulated, indicating high salinity can lead to the downregulation of most genes. In KEGG analysis, the expression of DEGs annotated to starch and sucrose metabolism pathway was higher at 2‰ salinity than at 20‰ salinity in HN1 and SH1, implying salinity affected bacterial growth mainly through this pathway. In the enrichment analysis of upregulated DEGs, two pathways (Valine, leucine, and isoleucine degradation, and Butanoate metabolism) were significantly enriched at different salinity. Antibiotic-susceptibility test discovered that SH1 isolated from P. vannamei cultured in freshwater was resistant to multiple drugs, including kanamycin, gentamicin, medemycin, and azithromycin, at a salinity of 2‰, whereas at 20‰ salinity, SH1 was not resistant to the drugs. The HN1 strain isolated from P. vannamei cultured in mariculture was resistant to polymyxin B and clindamycin at 20‰ salinity. Whereas, HN1 was intermediately susceptible to these two antibiotics at 2‰ salinity. These results indicate that the drug resistance of bacteria was affected by salinity. Furthermore, beta-lactam resistance was significantly enriched in SH1 at different salinity, and the inhibition zone of penicillin G was consistent with the results of a beta-lactam resistance pathway. | 2021 | 34496040 |
| 3526 | 2 | 0.9946 | The impact of antibiotic residues on resistance patterns in leek at harvest. When crops are cultivated on fields fertilized with animal manure, the risk exists that plants may take up antibiotic residues and may be exposed to antibiotic resistance genes and antibiotic resistant bacteria. During cultivation in a greenhouse pot experiment, leek (Allium porrum) was fertilized with either pig slurry or mineral fertilizer and exposed to either no antibiotics, doxycycline (10,000 μg/kg manure), sulfadiazine (1000 μg/kg manure), or lincomycin (1000 μg/kg manure). At harvest, 4.5 months later, lincomycin, sulfadiazine or doxycycline were not detected in any of the leek samples nor in their corresponding soil samples. Further, antimicrobial susceptibility testing was performed on 181 Bacillus cereus group isolates and 52 Pseudomonas aeruginosa isolates from the grown leek. For the B. cereus group isolates, only a small shift in MIC50 for lincomycin was observed among isolates from the lincomycin and control treatment. For P. aeruginosa, only in the setup with doxycycline treatment a higher MIC50 for doxycycline was observed compared to the control, specifically the isolates selected from growth media supplemented with 8 mg/L doxycycline. Nine antibiotic resistance genes (tet(B), tet(L), tet(M), tet(O), tet(Q), tet(W), erm(B), erm(F) and sul2) were investigated at harvest in the leek and soil samples. In the leek samples, none of the antibiotic resistance genes were detected. In the soil samples fertilized with pig slurry, the genes erm(B), erm(F), tet(M), sul2, tet(W) and tet(O) were detected in significantly higher copy numbers in the lincomycin treatment as compared to the other antibiotic treatments. This could be due to a shift in soil microbiota induced by the addition of lincomycin. The results of this study indicate that consumption of leek carries a low risk of exposure to antibiotic residues or antibiotic resistance to doxycycline, sulfadiazine or lincomycin. | 2023 | 37215782 |
| 3525 | 3 | 0.9946 | Characterization of tetracycline effects on microbial community, antibiotic resistance genes and antibiotic resistance of Aeromonas spp. in gut of goldfish Carassius auratus Linnaeus. The gut of aquatic animals was a significant niche for dissemination of antibiotic resistance genes (ARGs) and direct response of living conditions. In this study, the gut microbiota of goldfish Carassius auratus Linnaeus was sampled at 7 days and 21 days after treatment with tetracycline at 0.285 and 2.85 μg L(-1) to investigate the influences on the microbial structure and antibiotic resistance. The proportion of tetracycline resistance bacteria was 1.02% in the control group, while increased to 23.00%, 38.43%, 62.05% in groups of high concentration for 7 days (H7), low concentration for 21 days (L21) and high concentration for 21 days (H21), respectively. Compared to the control group, the diversity of isolated Aeromonas spp. was decreased in the treatment groups and the minimal inhibitory concentration (MIC) of resistant isolates was enhanced from 32 to 256 μg mL(-1) with the treatment of tetracycline in time- and dose-dependent manners. Furthermore, the abundance of most genes was increased in treatment groups and efflux genes mainly responded to the stress of tetracycline with an average level of 1.0 × 10(-2). After treatment with tetracycline, the predominant species were changed both at phylum and genus levels. The present study explored the impact of tetracycline on gut microbiota of goldfish at environmentally realistic concentrations for the first time and our findings will provide a reference for characterizing the microbiome of fish in the natural environment. | 2020 | 31958628 |
| 6085 | 4 | 0.9945 | Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Forty-six bacterial cultures, including one culture collection strain, thirty from the rhizosphere of Alyssum murale and fifteen from Ni-rich soil, were tested for their ability to tolerate arsenate, cadmium, chromium, zinc, mercury, lead, cobalt, copper, and nickel in their growth medium. The resistance patterns, expressed as minimum inhibitory concentrations, for all cultures to the nine different metal ions were surveyed by using the agar dilution method. A large number of the cultures were resistant to Ni (100%), Pb (100%), Zn (100%), Cu (98%), and Co (93%). However, 82, 71, 58 and 47% were sensitive to As, Hg, Cd and Cr(VI), respectively. All cultures had multiple metal-resistant, with heptametal resistance as the major pattern (28.8%). Five of the cultures (about of 11.2% of the total), specifically Arthrobacter rhombi AY509239, Clavibacter xyli AY509235, Microbacterium arabinogalactanolyticum AY509226, Rhizobium mongolense AY509209 and Variovorax paradoxus AY512828 were tolerant to nine different metals. The polymerase chain reaction in combination with DNA sequence analysis was used to investigate the genetic mechanism responsible for the metal resistance in some of these gram-positive and gram-negative bacteria that were, highly resistant to Hg, Zn, Cr and Ni. The czc, chr, ncc and mer genes that are responsible for resistance to Zn, Cr, Ni and Hg, respectively, were shown to be present in these bacteria by using PCR. In the case of, M. arabinogalactanolyticum AY509226 these genes were shown to have high homology to the czcD, chrB, nccA, and mer genes of Ralstonia metallidurans CH34. Therefore, Hg, Zn, Cr and Ni resistance genes are widely distributed in both gram-positive and gram-negative isolates obtained from A. murale rhizosphere and Ni-rich soils. | 2007 | 17276484 |
| 5276 | 5 | 0.9945 | Bacteriological quality, heavy metal and antibiotic resistance in Sapanca Lake, Turkey. Sapanca Lake is important as a source of drinking water. In this study, we aimed to detect the bacterial quality, the frequency of bacterial antibiotic and heavy metal resistance, and bioindicator bacteria in the water samples taken from Sapanca Lake in the period between 2008 and 2010. The resistance of bacterial isolates to certain antibiotics and heavy metal salts was investigated using disc diffusion and minimum inhibitory concentration techniques. Bacterial metabolic reactions were tested using the VITEK 2 Compact 30 micro identification system for identification of cultivable bacteria. Twenty-seven bacteria species belonging to three classes-Gammaproteobacteria, Bacilli, Flavobacteria-were recorded for the first time in Sapanca Lake. The highest indicator bacteria were recorded as 71 ± 3.1 × 10(4) CFU/100 ml in the summer season. The highest bacterial resistance was recorded as 90.47% against vancomycin in a total of 84 strains. Ampicillin (88.10%) and amoxicillin-clavulanate (64.29%) followed them. The resistance varied between 10.71 and 59.52% against cefuroxime, kanamycin, aztreonam, ceftazidime, cefotaxime, and oxacillin. The highest frequency against heavy metal salts was recorded as 74.19% against NiCl(2). The heavy metal resistance against Cu, Zn, Hg, and Cd detected as 52.38%, 46.42%, 33.33%, and 26.19%, respectively. The results showed that the occurrence of heavy metals and antibiotic sources in Sapanca Lake induced a tolerance in bacteria for the metal salts and antibiotic derivatives tested. The fluctuations in the indicator bacteria and the occurrence of pathogenic bacteria also showed the possibility that the coastal areas of Sapanca Lake had been exposed to contamination due to inadequate sewage treatment. | 2019 | 31243556 |
| 5249 | 6 | 0.9944 | Characteristics of heterotrophic endophytic bacteria in four kinds of edible raw vegetables: species distribution, antibiotic resistance, and related genes. This study aimed to explore antibiotic resistance characteristics and species of heterotrophic endophytic bacteria (HEB) in four kinds of edible raw vegetables, including radishes, lettuces, onions, and tomatoes. A total of 144 HEB were isolated and tested for resistance to sulfamethoxazole (SMZ), tetracycline (TET), cefotaxime (CTX), and ciprofloxacin (CIP), and their species were identified by 16S rRNA gene sequencing. Antibiotic resistance genes (ARGs) and class I integron in antibiotic-resistant isolates were analyzed by polymerase chain reaction. The results showed radishes had the highest, while tomatoes had the lowest concentration of antibiotic-resistant HEB. SMZ and CTX were predominant antibiotic-resistant phenotypes in HEB. The multi-resistant phenotypes, the combinations SMZ-TET-CTX and SMZ-TET-CIP, accounted for 9.34% of all antibiotic-resistant phenotypes, mainly in radishes and lettuces. Bacillus, Pseudomonas, Staphylococcus, and Stenotrophomonas showed resistance to two antibiotics and existed in more than one kind of vegetable, and were the main carriers of sul1, sul2, blaTEM, and intI1 genes. Therefore, these four genera were considered potential hosts of ARGs in edible raw vegetables. The study provides an early warning regarding health risks associated with ingesting antibiotic-resistant bacteria through raw vegetable consumption. | 2024 | 39611313 |
| 3626 | 7 | 0.9944 | Multiple antibiotic resistance and herbicide catabolic profiles of bacteria isolated from Lake Villarrica surface sediments (Chile). Antibiotics and herbicides are contaminants of emerging concern in aquatic environments. Lake Villarrica is a relevant freshwater body in Chile and was recently designated a 'saturated nutrient zone'. Here, we investigated the occurrence of multiple antibiotic resistance (MAR) and herbicide catabolic profiles among bacteria present in the surface sediments of Lake Villarrica. The occurrence of antibiotic-resistant genes (ARGs; blaTEM, catA and tetM) and herbicide-catabolic genes (HCGs; phnJ and atzA) was investigated by qPCR. Subsequently, the presence of culturable bacteria with multiple resistance to amoxicillin (AMX), chloramphenicol (CHL) and oxytetracycline (OXT) was studied. Forty-six culturable MAR (AMX + CHL + OXT) strains were isolated and characterized with respect to their resistance to 11 antibiotics by using a disc diffusion assay and testing their ability to use herbicides as a nutrient source. qPCR analyses revealed that ARGs and HCGs were present in all sediment samples (10(1) to 10(3) gene copies g(-1)), with significant (P ≤ 0.05) higher values in sites near Villarrica city and cattle pastures. The plate method was used to recover MAR isolates from sediment (10(3)-10(6) CFU g(-1)), and most of the 46 isolates also showed resistance to oxacillin (100%), cefotaxime (83%), erythromycin (96%) and vancomycin (93%). Additionally, 54 and 57% of the MAR isolates were able to grow on agar supplemented (50 mg L(-1)) with atrazine and glyphosate as nutrient sources, respectively. Most of the MAR isolates were taxonomically close to Pseudomonas (76.1%) and Pantoea (17.4%), particularly those isolated from urbanized sites (Pucón city). This study shows the presence of MAR bacteria with herbicide catabolic activity in sediments, which is valuable for conservation strategies and risk assessments of Lake Villarrica. However, major integrative studies on sediments as reservoirs or on the fate of MAR strains and traces of antibiotics and herbicides as a result of anthropic pressure are still needed. | 2024 | 39002747 |
| 5277 | 8 | 0.9944 | Antibiotic resistance of bacteria isolated from shrimp hatcheries and cultural ponds on Donghai Island, China. The resistance of bacteria to 12 different antibiotics was investigated in shrimp farms on Donghai Island, China. Antibiotic-resistant bacteria were found to be widespread in shrimp farms, indicating a high environmental risk. Further, significant differences were found in bacterial strains among farms (ANOVA, p<0.05), showing resistance to antibiotics such as ampicillin, trimethoprim, compound sinomi, tetracycline, chloramphenicol and cefazolin. No significant differences in antibiotic resistance were found among 6 hatcheries evaluated in this study (ANOVA, p>0.05), between exalted and traditional shrimp ponds (ANOVA, p>0.05), and between cultural ponds and corresponding control water source sites (T-test, p>0.05). In cultural ponds, no significant difference in bacterial resistance to antibiotics was found between water and sediment (T-test, p>0.05), and antibiotic resistance of bacteria from water showed a significant positive correlation with that from sediment (p<0.05). Therefore, our study indicates that bacterial multiple antibiotic resistance (MAR) is more widespread in shrimp hatcheries than ponds. | 2011 | 21945557 |
| 3527 | 9 | 0.9943 | Nutrient-induced antibiotic resistance in Enterococcus faecalis in the eutrophic environment. Nutrient deposition and extensive use of antibiotics are increasing worldwide, especially in freshwater ecosystems. Bacteria display resistance to certain antibiotics and thus survive for extended periods in eutrophic environments. In this study, model ecosystems were established to investigate the effect of nitrate and phosphate nutrient salts on antibiotic resistance in strains of Enterococcus faecalis. Mesocosms were replicated to evaluate the ecological effects of nutrient influx. The mesocosms were divided into four different nitrogen (N) and phosphorus (P) regimens. Enterococcus faecalis strains were isolated on Days 0, 1, 7, 14, 21, 28, 40, 60 and 95 to evaluate their sensitivity to ampicillin, oxytetracycline (OXY), ciprofloxacin (CIP), chloramphenicol (CHL), vancomycin and erythromycin (ERY). Resistance genes for ERY (ermB, msrC and mefA), OXY [tet(M), tet(L) and tet(S)] and CHL (cat) as well as the enterococcal surface protein gene (esp) were investigated by PCR. The total nitrogen, total phosphorus, chemical oxygen demand permanganate index (COD(Mn)), chlorophyll-a, Secchi depth and trophic level index were observed. In conclusion, addition of N and P had a significant influence on the resistance phenotypes of E. faecalis to OXY, CHL and ERY. Only high dosage led to CIP resistance. Higher total N concentrations resulted in the development of relatively higher resistance to OXY and CIP. The resistance genes tet(L) and tet(S) for OXY, msrC for ERY and cat for CHL were found to be associated with resistance in E. faecalis. | 2016 | 27685672 |
| 3089 | 10 | 0.9943 | Distribution characteristics of antibiotic resistance bacteria and related genes in urban recreational lakes replenished by different supplementary water source. The distribution characteristics of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in urban recreational water from different water-supply sources might be different. In this study, water samples were collected to detect the antibiotic resistance of heterotrophic bacteria to five antibiotics, and the content, phenotype, gene type and species distribution of resistant bacteria were analyzed. The results showed that the changes of bacteria resistance rate in two lakes to five kinds of antibiotics were synchronous with time, and it would reach its maximum in autumn. The detection of ARGs and int I in 80 resistance strains showed that the detection rate of tetG, tetA and int I was high. Here, 51.25% of the bacteria were doubly resistant to AMP-CTX. The 80 isolate strains were of nine genera and 19 species, among which Bacillus cereus, Escherichia coli, Aeromonas veronii, Aeromonas caviae and Raoultella ornithinolytica were the common ARB species in two lakes. Correlation analysis showed that the water temperature was significantly correlated with the content of ARB in sulfamethoxazole (SMZ) and cefotaxime (CTX) (p < 0.05), and the total phosphorus (TP) in FQ lake was significantly correlated with the content of AMP-resistant bacteria (p < 0.05), while there were no other correlations between the changes of other water quality indexes and the content of ARB (p > 0.05). | 2022 | 35228362 |
| 7775 | 11 | 0.9943 | Accumulation of pharmaceuticals, Enterococcus, and resistance genes in soils irrigated with wastewater for zero to 100 years in central Mexico. Irrigation with wastewater releases pharmaceuticals, pathogenic bacteria, and resistance genes, but little is known about the accumulation of these contaminants in the environment when wastewater is applied for decades. We sampled a chronosequence of soils that were variously irrigated with wastewater from zero up to 100 years in the Mezquital Valley, Mexico, and investigated the accumulation of ciprofloxacin, enrofloxacin, sulfamethoxazole, trimethoprim, clarithromycin, carbamazepine, bezafibrate, naproxen, diclofenac, as well as the occurrence of Enterococcus spp., and sul and qnr resistance genes. Total concentrations of ciprofloxacin, sulfamethoxazole, and carbamazepine increased with irrigation duration reaching 95% of their upper limit of 1.4 µg/kg (ciprofloxacin), 4.3 µg/kg (sulfamethoxazole), and 5.4 µg/kg (carbamazepine) in soils irrigated for 19-28 years. Accumulation was soil-type-specific, with largest accumulation rates in Leptosols and no time-trend in Vertisols. Acidic pharmaceuticals (diclofenac, naproxen, bezafibrate) were not retained and thus did not accumulate in soils. We did not detect qnrA genes, but qnrS and qnrB genes were found in two of the irrigated soils. Relative concentrations of sul1 genes in irrigated soils were two orders of magnitude larger (3.15 × 10(-3) ± 0.22 × 10(-3) copies/16S rDNA) than in non-irrigated soils (4.35 × 10(-5)± 1.00 × 10(-5) copies/16S rDNA), while those of sul2 exceeded the ones in non-irrigated soils still by a factor of 22 (6.61 × 10(-4) ± 0.59 × 10(-4) versus 2.99 × 10(-5) ± 0.26 × 10(-5) copies/16S rDNA). Absolute numbers of sul genes continued to increase with prolonging irrigation together with Enterococcus spp. 23S rDNA and total 16S rDNA contents. Increasing total concentrations of antibiotics in soil are not accompanied by increasing relative abundances of resistance genes. Nevertheless, wastewater irrigation enlarges the absolute concentration of resistance genes in soils due to a long-term increase in total microbial biomass. | 2012 | 23049795 |
| 2888 | 12 | 0.9943 | AMR Threat Perception Assessment of Heterotrophic Bacteria From Shrimp Aquaculture Through Epidemiological Cut off Values. BACKGROUND: Emergence and dissemination of antibiotic resistance is one of the major risks associated with the rampant usage of antibiotics in food-producing animals including aquaculture. OBJECTIVE: To determine Epidemiological Cut-OFF (ECOFF) values of heterotrophic bacterial populations from shrimp culture environments against five different antibiotics. METHODS: In this present study, bacterial samples were isolated from Penaeus vannamei culture environment in different locations of Andhra Pradesh, which is the aquaculture hub of India. The bacterial isolates were assessed for antibiotic resistance towards five antibiotics belonging to different classes (oxytetracycline, chloramphenicol, erythromycin, ciprofloxacin, and co-trimoxazole) by the disc diffusion method. Determination of Epidemiological Cut-OFF (ECOFF) values and analysis by employing normalized resistance interpretation (NRI) was carried out. RESULTS: The most dominant bacterial populations from shrimp culture were Vibrio spp. (pathogenic bacteria) followed by Bacillus spp. (probiotic bacteria). The bacterial isolates showed highest resistance towards oxytetracycline (overall 23.38%) and in location L6 (59.4%) followed by co-trimoxazole (31.1%). ECOFF values calculated by employing NRI showed that the disc diffusion data were distributed in a normalized manner. The maximum ECOFF value was obtained for ciprofloxacin (23.32 mm), while the minimum value was observed for oxytetracycline (9.05 mm). The antibiotic resistant phenotypes showed that the majority of the heterotrophic bacterial isolates (>60%) belonged to the non-wild type phenotype and primarily towards oxytetracycline (90%). CONCLUSION: The presence of non-wild antibiotic-resistant phenotypes of heterotrophic bacterial populations (which include not only pathogenic bacteria but also probiotic bacteria) indicates that shrimp culture ponds may be a reservoir for drug-resistant bacteria and there is a greater risk associated with transmission of resistant genes across bacterial flora. HIGHLIGHTS: NRI analysis of antibiotic disc diffusion data of heterotrophic bacterial populations in shrimp aquaculture environments revealed that majority of them belonged to non-wild type (90%) paticularly to oxytetracycline in comparison to other studied antibiotics (chloramphenicol, erythromycin, ciprofloxacin and co-trimoxazole). | 2024 | 38366611 |
| 7771 | 13 | 0.9943 | Can chlorination co-select antibiotic-resistance genes? Selective pressures, such as chemical or heavy metal pollution, may co-select for bacterial antibiotic resistance in the environment. However, whether chlorination in water treatment can co-select antibiotic-resistant bacteria is controversial. In this study, high capacity quantitative polymerase chain reaction (qPCR) analysis was applied to target almost all known antibiotic-resistance genes (ARGs) (282 types) and 13 mobile genetic elements (MGEs) in bacteria detected in secondary effluents from a municipal wastewater treatment plant after chlorination. The results revealed that 125 unique ARGs were detected in non-chlorinated samples, and the number decreased (79-91 types) as the chlorine concentration was increased. Moreover, 7.49 × 10(4)-3.92 × 10(7) copies/100 ml water reduction of ARGs occurred with 4 mg Cl2/l. Considering the relative abundance of ARGs (i.e., ARG copies normalized to 16S rRNA gene copies), 119 ARGs decreased in response to chlorination, whereas only six ARGs, such as dfrA1, tetPB-03, tetPA, ampC-04, tetA-02, and erm(36), were potentially enriched by 10.90-, 10.06-, 8.63-, 6.86-, 3.77-, and 1.09-fold, respectively. Furthermore, the relative abundance of 12 detected MGEs was lower after chlorination. Therefore, chlorination was effective in reducing ARGs and MGEs rather than co-selecting them. | 2016 | 27192478 |
| 5318 | 14 | 0.9943 | Further Evidence of Anthropogenic Impact: High Levels of Multiple-Antimicrobial-Resistant Bacteria Found in Neritic-Stage Sea Turtles. BACKGROUND/OBJECTIVES: Marine turtles are globally threatened and face daily anthropogenic threats, including pollution. Water pollution from emerging contaminants such as antimicrobials is a major and current environmental concern. METHODS: This study investigated the phenotypic antimicrobial resistance and heavy metal resistance genes of 47 Vibrio isolates from different stages of sea turtles (oceanic stage vs neritic stage) from the Taiwanese coast. RESULTS: The results show that a high proportion (48.9%; 23/47) of the Vibrio species isolated from sea turtles in our study had a multiple antimicrobial resistance (MAR) pattern. It was found that Vibrio spp. isolates with a MAR pattern and those with a MAR index value greater than 0.2 were both more likely to be observed in neritic-stage sea turtles. Furthermore, isolates from neritic-stage sea turtles exhibited greater resistance to the majority of antimicrobials tested (with the exception of beta-lactams and macrolides) than isolates from the oceanic-stage groups. Isolates from neritic sea turtles were found to be more resistant to nitrofurans and aminoglycosides than isolates from oceanic sea turtles. Furthermore, isolates with a MAR pattern (p = 0.010) and those with a MAR index value greater than 0.2 (p = 0.027) were both found to be significantly positively associated with the mercury reductase (merA) gene. CONCLUSIONS: The findings of our study indicate that co-selection of heavy metals and antimicrobial resistance may occur in aquatic bacteria in the coastal foraging habitats of sea turtles in Taiwan. | 2024 | 39596693 |
| 7177 | 15 | 0.9943 | Concentration and reduction efficiency of vancomycin-resistant heterotrophic bacteria and vanA and vanB genes in wastewater treatment unit processes. OBJECTIVES: This study elucidated the distribution and fate of vancomycin (VCM)-resistant heterotrophic bacteria (HTB) and resistance genes, vanA and vanB, during each treatment unit process of a wastewater treatment plant (WWTP). METHODS: Several bacterial counts as well as copy numbers of vanA and vanB genes were determined in each wastewater and sludge sample. In addition, HTB strains isolated from wastewater and sludge were analyzed for VCM susceptibility. Then, the fate and reduction ratios of each bacterial count, copy number of vanA and vanB genes, and the existence ratio of VCM-resistant HTB strains in the wastewater treatment unit process were evaluated. RESULTS: VCM-resistant HTB were detected in all wastewater and sludge samples, and their existence ratio decreased along the treatment process (92.9% in influent wastewater to 39.4% in chlorinated water). Notably, most of the HTB isolated from the influent wastewater were resistant to 8.0 µg/mL of VCM, strongly suggesting that a significant number of antibiotic-resistant bacteria are flowing into the WWTP from urban areas through the sewage system. The vanA and vanB genes were also detected in all wastewater and sludge, with high copy numbers (10(2)-10(4) copies/mL) even in chlorinated water samples. CONCLUSIONS: Results revealed that residual VCM-resistant HTB, and resistance genes, which could not be completely removed, were ubiquitously released into the aquatic environment. Furthermore, a high existence ratio of VCM-resistant HTB and high copy numbers of resistance genes were also detected in the sludge, indicating that they are constantly circulating in the WWTP via the returned sludge. | 2022 | 35830952 |
| 8033 | 16 | 0.9943 | Fate of pirlimycin and antibiotic resistance genes in dairy manure slurries in response to temperature and pH adjustment. Quantifying the fate of antibiotics and antibiotic resistance genes (ARGs) in response to physicochemical factors during storage of manure slurries will aid in efforts to reduce the spread of resistance when manure is land-applied. The objectives of this study were to determine the effects of temperature (10, 35, and 55 °C) and initial pH (5, 7, 9, and 12) on the removal of pirlimycin and prevalence of ARGs during storage of dairy manure slurries. We collected and homogenized feces and urine from five lactating dairy cows treated with pirlimycin and prepared slurries by mixing manure and sterile water. Aliquots (200 mL) of slurry were transferred and incubated in 400 mL glass beakers under different temperatures (10, 35, and 55 °C) or initial pH (5, 7, 9, and 12). Pirlimycin concentration and abundances of 16S rRNA, mefA, tet(W), and cfxA as indicators of total bacteria and ARGs corresponding to macrolide, tetracycline, and β-lactam resistance, respectively, were analyzed during manure incubation. The thermophilic environment (55 °C) increased the deconjugation and removal of pirlimycin, while the acidic shock at pH 5 increased deconjugation but inhibited removal of pirlimycin, suggesting that the chemical stability of pirlimycin could be affected by temperature and pH. The thermophilic environment decreased mefA relative abundance on day 7 and 28 (P = 0.02 and 0.04), which indicates that the bacteria that encoded mefA gene were not thermotolerant. Although mefA relative abundance was greater at the pH 9 shock than the rest of pH treatments on day 7 (P = 0.04), no significant pH effect was observed on day 28. The tet(W) abundance under initial pH 12 shock was less than other pH shocks on day 28 (P = 0.01), while no temperature effect was observed on day 28. There was no significant temperature and initial pH effect on cfxA abundance at any time point during incubation, implying that the bacteria that carrying cfxA gene are relatively insensitive to these environmental factors. Overall, directly raising temperature and pH can facilitate pirlimycin removal and decrease mefA and tet(W) relative abundances during storage of manure slurries. | 2020 | 32050366 |
| 5298 | 17 | 0.9943 | Investigation of the antimicrobial susceptibility patterns of marine cyanobacteria in Bohai Bay: Cyanobacteria may be important hosts of antibiotic resistance genes in marine environment. Marine cyanobacteria, as widely distributed and photosynthetically autotrophic bacteria in the ocean, may contribute to the global dissemination of antibiotic resistance genes (ARGs) and develop a different antimicrobial susceptibility pattern from heterotrophic bacteria and cyanobacteria from freshwater environments. However, studies on antimicrobial susceptibility and the carriage of ARGs in marine cyanobacteria are still very limited. In this study, the antibiotic resistance characteristics of cyanobacteria in nearshore waters were examined through field monitoring and laboratory investigations, which included PCR detection and ARG transformation. The results showed a positive correlation between marine cyanobacteria and some ARGs in the nearshore waters of Bohai Bay. Moreover, most screened cyanobacteria showed high minimum inhibitory concentration (MIC) values for polymyxins, tetracyclines, kanamycin, and sulfonamides, moderate MIC values for streptomycin, chloramphenicol, rifampicin, and norfloxacin, and low MIC values for roxithromycin and cephalosporins. The bla(TEM), bla(KPC), sul1, sul2, strA, tetA, tetB, tetC, tetM, mdfA, and intI1 genes were detected in the screened marine cyanobacteria. The highest detection rates were observed for bla(TEM) (93.3 %), sul1 (56.6 %), sul2 (90 %), and strA (73.3 %). The detection rate of tetA (33.3 %) was the highest among the tetracycline resistance genes, and mdfA, a multidrug-resistant pump gene with resistance to tetracycline, also showed a high detection level (23.3 %). Overall, most of the screened marine cyanobacteria were found to tolerate multiple antibiotics in seawater, and the condition of the ARGs carriage was serious. Furthermore, the screened marine Synechocystis sp. C12-2 demonstrated the ability to accept ARGs on the RP4 plasmid through natural transformation and showed reduced sensitivity to ampicillin, suggesting the possibility that some marine cyanobacteria could acquire ARGs from the environment through horizontal gene transfer. Thus, marine cyanobacteria may play an important role in the propagation of marine ARGs. | 2024 | 37972772 |
| 7196 | 18 | 0.9943 | The drinking water treatment process as a potential source of affecting the bacterial antibiotic resistance. Two waterworks, with source water derived from the Huangpu or Yangtze River in Shanghai, were investigated, and the effluents were plate-screened for antibiotic-resistant bacteria (ARB) using five antibiotics: ampicillin (AMP), kanamycin (KAN), rifampicin (RFP), chloramphenicol (CM) and streptomycin (STR). The influence of water treatment procedures on the bacterial antibiotic resistance rate and the changes that bacteria underwent when exposed to the five antibiotics at concentration levels ranging from 1 to 100 μg/mL were studied. Multi-drug resistance was also analyzed using drug sensitivity tests. The results indicated that bacteria derived from water treatment plant effluent that used the Huangpu River rather than the Yangtze River as source water exhibited higher antibiotic resistance rates against AMP, STR, RFP and CM but lower antibiotic resistance rates against KAN. When the antibiotic concentration levels ranged from 1 to 10 μg/mL, the antibiotic resistance rates of the bacteria in the water increased as water treatment progressed. Biological activated carbon (BAC) filtration played a key role in increasing the antibiotic resistance rate of bacteria. Chloramine disinfection can enhance antibiotic resistance. Among the isolated ARB, 75% were resistant to multiple antibiotics. Ozone oxidation, BAC filtration and chloramine disinfection can greatly affect the relative abundance of bacteria in the community. | 2015 | 26150304 |
| 7212 | 19 | 0.9943 | Simulated Winter Incubation of Soil With Swine Manure Differentially Affects Multiple Antimicrobial Resistance Elements. Gastrointestinal bacteria that harbor antibiotic resistance genes (ARG) become enriched with antibiotic use. Livestock manure application to cropland for soil fertility presents a concern that ARG and bacteria may proliferate and be transported in the environment. In the United States, manure applications typically occur during autumn with slow mineralization until spring planting season. A laboratory soil incubation study was conducted mimicking autumn swine manure application to soils with concentrations of selected ARG monitored during simulated 120-day winter incubation with multiple freeze-thaw events. Additionally, the effects of two soil moistures [10 and 30% water holding capacity (WHC)] and two manure treatments [raw versus hydrated lime alkaline stabilization (HLAS)] were assessed. Fourteen tetracycline resistance genes were evaluated; tet(D), tet(G), and tet(L) were detected in background soil while swine manure contained tet(A), tet(B), tet(C), tet(G), tet(M), tet(O), tet(Q), and tet(X). By day 120, the manure-borne tet(M) and tet(O) were still detected while tet(C), tet(D), tet(L), and tet(X) genes were detected less frequently. Other tet resistance genes were detected rarely, if at all. The sum of unique tet resistance genes among all treatments decreased during the incubation from an average of 8.9 to 3.8 unique tet resistance genes. Four resistance elements, intI1, bla (ctx-m-32), sul(I), erm(B), and 16s rRNA genes were measured using quantitative PCR. ARG abundances relative to 16S abundance were initially greater in the raw manure compared to background soil (-1.53 to -3.92 log abundance in manure; -4.02 to <-6.7 log abundance in soil). In the mixed manure/soil, relative abundance of the four resistance elements decreased (0.87 to 1.94 log abundance) during the incubation largely because 16S rRNA genes increased by 1.21 log abundance. Throughout the incubation, the abundance of intI1, bla (ctx-m-32), sul(I), and erm(B) per gram in soil amended with HLAS-treated manure was lower than in soil amended with raw manure. Under low initial soil moisture conditions, HLAS treatment reduced the abundance of intI1 and resulted in loss of bla (ctx-m-32), sul(I), and erm(B)] compared to other treatment-moisture combinations. Although one might expect antibiotic resistance to be relatively unchanged after simulated winter manure application to soil, a variety of changes in diversity and relative abundance can be expected. | 2020 | 33391241 |