YOUNG - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
311500.9926Characterisation of the gut microbiome and surveillance of antibiotic resistance genes in green sea turtles (Chelonia mydas). Green sea turtles (Chelonia mydas) are globally endangered marine herbivores that maintain the health of seagrass and coastal ecosystems. Their populations are declining due to human activities, including environmental pollution, which can disrupt gut microbial communities and compromise nutrition, immunity, and overall health. In this study, cloacal swabs from 139 green sea turtles categorised as captive juveniles, captive adults and wild stranded animals in the Gulf of Thailand, were analysed via shotgun metagenomic sequencing to elucidate bacterial taxonomic diversity and ARG profiles. In captive juveniles, Pseudomonadota was the most abundant phylum, followed by Ascomycota and Basidiomycota. In captive adults, Pseudomonadota exhibited an even greater predominance, with only minor contributions from unclassified bacteria and other taxa. In wild stranded green sea turtles, Pseudomonadota was dominant in their gut microbiome, but this was accompanied by notable levels of Actinomycetota, Bacteroidota, and Bacillota. Stranded turtles exhibited highest microbial diversity and variability, while captive adult turtles showed the lowest. Resistome profiling also revealed significant differences in the relative abundance of antibiotic resistance genes across all three groups. MacB (macrolide resistance) was the most abundant gene overall, with the highest abundance observed in juveniles (4.8 %). Stranded turtles exhibited elevated levels of TetA(58) (tetracycline resistance, 2.6 %) and msbA (nitroimidazole resistance, 2.2 %), while adults showed the greatest enrichment of Ecol_fabG_TRC (triclosan resistance, 3.8 %) and TxR (tetracycline resistance, 3.6 %). These data demonstrate that marked variability existed in the gut microbiome and resistome of green sea turtles across different life stages in captive or wild environments. This offers critical insights for the development of targeted conservation strategies and health management practices for both wild and captive green sea turtles. Strategies to mitigate the spread of antibiotic resistance should be developed.202541075532
322110.9925Age influences the temporal dynamics of microbiome and antimicrobial resistance genes among fecal bacteria in a cohort of production pigs. BACKGROUND: The pig gastrointestinal tract hosts a diverse microbiome, which can serve to select and maintain a reservoir of antimicrobial resistance genes (ARG). Studies suggest that the types and quantities of antimicrobial resistance (AMR) in fecal bacteria change as the animal host ages, yet the temporal dynamics of AMR within communities of bacteria in pigs during a full production cycle remains largely unstudied. RESULTS: A longitudinal study was performed to evaluate the dynamics of fecal microbiome and AMR in a cohort of pigs during a production cycle; from birth to market age. Our data showed that piglet fecal microbial communities assemble rapidly after birth and become more diverse with age. Individual piglet fecal microbiomes progressed along similar trajectories with age-specific community types/enterotypes and showed a clear shift from E. coli/Shigella-, Fusobacteria-, Bacteroides-dominant enterotypes to Prevotella-, Megaspheara-, and Lactobacillus-dominated enterotypes with aging. Even when the fecal microbiome was the least diverse, the richness of ARGs, quantities of AMR gene copies, and counts of AMR fecal bacteria were highest in piglets at 2 days of age; subsequently, these declined over time, likely due to age-related competitive changes in the underlying microbiome. ARGs conferring resistance to metals and multi-compound/biocides were detected predominately at the earliest sampled ages. CONCLUSIONS: The fecal microbiome and resistome-along with evaluated descriptors of phenotypic antimicrobial susceptibility of fecal bacteria-among a cohort of pigs, demonstrated opposing trajectories in diversity primarily driven by the aging of pigs.202336624546
312020.9924Bacterial communities and prevalence of antibiotic resistance genes carried within house flies (Diptera: Muscidae) associated with beef and dairy cattle farms. House flies (Musca domestica Linnaeus) are vectors of human and animal pathogens at livestock operations. Microbial communities in flies are acquired from, and correlate with, their local environment. However, variation among microbial communities carried by flies from farms in different geographical areas is not well understood. We characterized bacterial communities of female house flies collected from beef and dairy farms in Oklahoma, Kansas, and Nebraska using 16S rDNA amplicon sequencing and PCR. Bacterial community composition in house flies was affected by farm type and location. While the shared number of taxa between flies from beef or dairy farms was low, those taxa accounted >97% of the total bacterial community abundance. Bacterial species richness was 4% greater in flies collected from beef than in those collected from dairy farms and varied by farm type within states. Several potential pathogenic taxa were highly prevalent, comprising a core bacterial community in house flies from cattle farms. Prevalence of the pathogens Moraxella bovis and Moraxella bovoculi was greater in flies from beef farms relative to those collected on dairy cattle farms. House flies also carried bacteria with multiple tetracycline and florfenicol resistance genes. This study suggests that the house flies are significant reservoirs and disseminators of microbial threats to human and cattle health.202337612042
332330.9923Minimal Impact on the Resistome of Children in Botswana After Azithromycin Treatment for Acute Severe Diarrheal Disease. BACKGROUND: Macrolide antibiotics, including azithromycin, can reduce under 5 years of age mortality rates and treat various infections in children in sub-Saharan Africa. These exposures, however, can select for antibiotic-resistant bacteria in the gut microbiota. METHODS: Our previous randomized controlled trial (RCT) of a rapid-test-and-treat strategy for severe acute diarrheal disease in children in Botswana included an intervention (3-day azithromycin dose) group and a control group that received supportive treatment. In this prospective matched cohort study using stools collected at baseline and 60 days after treatment from RCT participants, the collection of antibiotic resistance genes or resistome was compared between groups. RESULTS: Certain macrolide resistance genes increased in prevalence by 13%-55% at 60 days, without differences in gene presence between the intervention and control groups. These genes were linked to tetracycline resistance genes and mobile genetic elements. CONCLUSIONS: Azithromycin treatment for bacterial diarrhea for young children in Botswana resulted in similar effects on the gut resistome as the supportive treatment and did not provide additional selective pressure for macrolide resistance gene maintenance. The gut microbiota of these children contains diverse macrolide resistance genes that may be transferred within the gut upon repeated exposures to azithromycin or coselected by other antibiotics. CLINICAL TRIALS REGISTRATION: NCT02803827.202439052715
353640.9923Initial diet shapes resistance-gene composition and fecal microbiome dynamics in young ruminants during nursing. This study was conducted to examine how colostrum pasteurization affects resistance genes and microbial communities in calf feces. Forty female Holstein calves were randomly assigned to either the control (CON) group, which received unheated colostrum, or the pasteurized colostrum (PAT) group. The calves body weight was measured weekly before morning feeding. Calf starter intake were measured and recorded daily before morning feeding. Samples of colostrum were collected before feeding. Blood was collected on d 1 and 70 before morning feeding. Ten calves were randomly selected from each group (n = 20 calves total) for fecal sampling on d 3, 28, 56 and 70 for subsequent DNA extraction and metagenomic sequencing. Total bacterial counts in the colostrum were markedly higher in the CON group than in the PAT group. Pasteurized colostrum administration substantially reduced the ARO diversity and diminishes the abundance of Enterobacteriaceae, thereby decreasing their contribution to resistance genes. Pasteurization also reduced glucoside hydrolase-66 activity in 3-day-old calves which led to an increase in the activity of aminoglycoside antibiotics, resulting in 52.63 % of PAT-enriched bacteria acquiring aminoglycoside resistance genes. However, from the perspective of overall microbial community, the proportion of aminoglycoside, beta-lactam and tetracycline resistance genes carried by microbial community in PAT group was lower than CON group (P < 0.05). Fecal samples from the PAT group contained greater abundances of Subdoligranulum (P < 0.05) and Lachnospiraceae_NK4A136_group (P < 0.05) on days 28 and 70 compared to CON. Network analysis and abundance variations of the different bacteria obtained by linear discriminant analysis effect size analysis showed that pasteurized colostrum feeding reduced the interactions among related bacteria and maintained stability of the hind-gut microbiome. In conclusion, these findings underscore the intricate interactions between early diet, calf resistance-gene transmission and microbial dynamics, which should be carefully considered in calf-rearing practices.202438556024
311250.9922Farm-to-fork changes in poultry microbiomes and resistomes in Maputo City, Mozambique. Increasing demand for poultry has spurred poultry production in low- and middle-income countries like Mozambique. Poultry may be an important source of foodborne, antimicrobial-resistant bacteria to consumers in settings with limited water, sanitation, and hygiene infrastructure. The Chicken Exposures and Enteric Pathogens in Children Exposed through Environmental Pathways (ChEEP ChEEP) study was conducted in Maputo City, Mozambique from 2019 to 2021 to quantify enteric pathogen exposures along the supply chain for commercial and local (i.e., scavenger) chicken breeds. Here, we performed metagenomic sequencing of total DNA from banked ChEEP ChEEP samples to characterize fecal and carcass microbiomes and resistome diversity between chicken breeds and along the supply chain. Fecal samples (n = 26) were collected from commercial and local chickens at production sites and markets and carcass (n = 49) and rinse bucket samples (n = 26) from markets. We conducted taxonomic profiling and identified antimicrobial resistance genes (ARGs) from metagenomic sequence data, focusing especially on potential human pathogens and "high-risk" ARGs. We estimated alpha diversity for each sample and compared by site and breed. We estimated Bray-Curtis dissimilarity between samples and examined clustering. We found that commercial and local chickens harbored distinct fecal potential pathogens and resistomes at production and market sites. Many potentially pathogenic bacteria and ARGs present in chicken fecal samples are also present on carcasses sold to consumers. Finally, commercial chicken carcasses contain high-risk ARGs that are not necessarily introduced from chicken feces. These results indicate markets are an important site of exposure to potentially pathogenic bacteria and high-risk ARGs. IMPORTANCE: While chicken eggs and meat are a critical protein source in low-income settings, antibiotics are routinely fed to chickens with consequences for selection of antimicrobial resistance. Evaluating how poultry gut bacterial communities, including potential human pathogens and high-risk antimicrobial resistance genes, differ from farm to market could help identify where to target interventions to minimize transmission risks to human populations. In this study in Maputo City, Mozambique, we found compositional differences between commercial and local chicken breeds at production and market sites. We also found that while all potentially pathogenic bacteria and many high-risk antimicrobial resistance genes persisted from production and market through processing, some resistance genes were detected on carcass samples only after processing, suggesting human or environmental contamination is occurring within markets. Overall, our findings indicate that open-air markets may represent a critical juncture for human exposures to pathogens and antimicrobial resistance genes from poultry and poultry products.202539699181
310560.9922Organic Houttuynia cordata Thunb harbors higher abundance and diversity of antibiotic resistance genes than non-organic origin, suggesting a potential food safe risk. The organic agricultural products has been growing rapidly in recent years. However, a potential food safe risk, resulted by introduction more antibiotic resistant genes (ARGs) accompanied with animal manure using to organic farming, has long been overlooked. In current study, the bacterial community, 22 tetracycline, 3 aminoglycoside and 4 β-lactams ARGs were respectively investigated in the organic, chemical and wild Houttuynia cordata Thunb (HCT). A total of 9 tetracycline, 3 aminoglycoside and 2 β-lactam ARG subtypes were detected, and the organic HCT harbored more ARG subtypes. The absolute and relative abundance of total ARGs in organic HCT was strikingly higher than that in chemical and wild HCT. The Enterobacteriaceae, Aeromonadaceae, Pseudomonadceae, Moraxellaceae and Oxalobacteraceae were the dominant taxa in the chemical and wild HCT, but in the organic HCT, only Enterobacteriaceae posed 83.23% - 87.40% of bacterial community. Fourteen bacterial families might be the possible hosts of ARG subtypes in the HCT. Enterobacteriaceae was a possible host of most ARG subtypes, including tetA, tetB, tetC, tetE and aadA, and it was the main bacteria affecting the behavior of ARGs in the HCT. Additionally, the tetracycline ARG subtypes had more possible hosts. These results help to better understand the ARG potential food safe risk and develop effective measures to prevent the ARG dissemination in organic agricultural product.201931000292
310970.9921Metagenomic characterization of bacterial community and antibiotic resistance genes in representative ready-to-eat food in southern China. Ready-to-eat (RTE) foods have been considered to be reservoirs of antibiotic resistance bacteria, which constitute direct threat to human health, but the potential microbiological risks of RTE foods remain largely unexplored. In this study, the metagenomic approach was employed to characterize the comprehensive profiles of bacterial community and antibiotic resistance gene (ARG) in 18 RTE food samples (8 RTE meat, 7 RTE vegetables and 3 RTE fruit) in southern China. In total, the most abundant phyla in RTE foods were Proteobacteria, Firmicutes, Cyanobacteria, Bacteroidetes and Actinobacteria. 204 ARG subtypes belonging to 18 ARG types were detected with an abundance range between 2.81 × 10(-5) and 7.7 × 10(-1) copy of ARG per copy of 16S rRNA gene. Multidrug-resistant genes were the most predominant ARG type in the RTE foods. Chloramphenicol, macrolide-lincosamide-streptogramin, multidrug resistance, aminoglycoside, bacitracin, tetracycline and β-lactam resistance genes were dominant, which were also associated with antibiotics used extensively in human medicine or veterinary medicine/promoters. Variation partitioning analysis indicated that the join effect of bacterial community and mobile genetic elements (MGEs) played an important role in the resistome alteration. This study further deepens the comprehensive understanding of antibiotic resistome and the correlations among the antibiotic resistome, microbiota, and MGEs in the RTE foods.202033093543
373480.9921Changes in the prevalence of resistant Escherichia coil in cattle receiving subcutaneously injectable oxytetracycline in addition to in-feed chlortetracycline compared with cattle receiving only in-feed chlortetracycline. Information about the prevalence of antibiotic resistance in commensal enteric bacteria is of interest because these bacteria are potential indicators of selection pressure on enteric bacteria and represent a reservoir of resistance genes in potentially pathogenic bacteria. This study reports changes in the prevalence of resistance to antibiotics in commensal Escherichia coli from cattle receiving either subcutaneously injectable oxytetracycline in addition to in-feed chlortetracycline or only in-feed chlortetracycline. Resistance to 19 antibiotics was examined. The use of injectable oxytetracycline in addition to in-feed chlortetracycline was significantly associated (P < 0.05) with an increase in the prevalence of resistance only to chloramphenicol and sulfisoxazole.200212146885
294290.9921Longitudinal Shedding Patterns and Characterization of Antibiotic Resistant E. coli in Pastured Goats using a Cohort Study. There is a scarcity of information on antibiotic resistance in goats. To understand shedding of resistant Escherichia coli in pastured goats, we collected fecal samples from a mixed age cohort over a one-year period. No antibiotic had been used on the study animals one year prior to and during the study period. Resistant isolates were detected in all age groups and prevalence in goat kids was significantly higher than adults; 43-48% vs 8-25% respectively. The proportion of resistant isolates was higher when animals were congregated near handling facility than on pasture. Most isolates were resistant to tetracycline (51%) and streptomycin (30%), but also to antibiotics that had never been used on the farm; ampicillin (19%). TetB, bla(-TEM), (aadA and strpA/strpB) genes were detected in 70%, 43%, (44% and 24%) of tetracycline, ampicillin, and streptomycin resistant isolates respectively. Resistant isolates also harbored virulent genes and some belonged to D and B2 phylogenetic groups. Thus, pastured goats, despite minimal exposure to antibiotics, are reservoirs of resistant E. coli that may contaminate the environment and food chain and spread resistant genes to pathogenic bacteria and some that are potential animal and human pathogens. Environmental sources may play a role in acquisition of resistant bacteria in pastured goats.201931480769
3158100.9921Microbiological risk assessment and resistome analysis from shotgun metagenomics of bovine colostrum microbiome. Colostrum is known for its nutraceutical qualities, probiotic attributes, and health benefits. The aim of this study was to profile colostrum microbiome from bovine in rural sites of a developing country. The focus was on microbiological safety assessments and antimicrobial resistance, taking into account the risks linked with the consumption of raw colostrum. Shotgun sequencing was employed to analyze microbiome in raw buffalo and cow colostrum. Alpha and beta diversity analyses revealed increased inter and intra-variability within colostrum samples' microbiome from both livestock species. The colostrum microbiome was mainly comprised of bacteria, with over 90% abundance, whereas fungi and viruses were found in minor abundance. Known probiotic species, such as Leuconostoc mesenteroides, Lactococcus lactis, Streptococcus thermophilus, and Lactobacillus paracasei, were found in the colostrum samples. A relatively higher number of pathogenic and opportunistic pathogenic bacteria were identified in colostrum from both animals, including clinically significant bacteria like Clostridium botulinum, Pseudomonas aeruginosa, Escherichia coli, and Listeria monocytogenes. Binning retrieved 11 high-quality metagenome-assembled genomes (MAGs), with three MAGs potentially representing novel species from the genera Psychrobacter and Pantoea. Notably, 175 antimicrobial resistance genes (ARGs) and variants were detected, with 55 of them common to both buffalo and cow colostrum metagenomes. These ARGs confer resistance against aminoglycoside, fluoroquinolone, tetracycline, sulfonamide, and peptide antibiotics. In conclusion, this study describes a thorough overview of microbial communities in buffalo and cow colostrum samples. It emphasizes the importance of hygienic processing and pasteurization in minimizing the potential transmission of harmful microorganisms linked to the consumption of colostrum.202438404539
3144110.9921Impact of florfenicol dosing regimen on the phenotypic and genotypic resistance of enteric bacteria in steers. The food animal sector's use of antimicrobials is heavily critiqued for its role in allowing resistance to develop against critically important antimicrobials in human health. The WHO recommends using lower tier antimicrobials such as florfenicol for disease treatment. The primary objective of this study was to assess the differences in resistance profiles of enteric microbes following administration of florfenicol to steers using both FDA-approved dosing regimens and two different detection methods. Our hypothesis was that we would identify an increased prevalence of resistance in the steers administered the repeated, lower dose of florfenicol; additionally, we hypothesized resistance profiles would be similar between both detection methods. Twelve steers were administered either two intramuscular (20 mg/kg q 48 h; n = 6) or a single subcutaneous dose (40 mg/kg, n = 6). Fecal samples were collected for 38 days, and E. coli and Enterococcus were isolated and tested for resistance. Fecal samples were submitted for metagenomic sequencing analysis. Metagenomics revealed genes conferring resistance to aminoglycosides as the most abundant drug class. Most multidrug resistance genes contained phenicols. The genotypic and phenotypic patterns of resistance were not similar between drug classes. Observed increases in resistant isolates and relative abundance of resistance genes peaked after drug administration and returned to baseline by the end of the sampling period. The use of a "lower tier" antimicrobial, such as florfenicol, may cause an increased amount of resistance to critically important antimicrobials for a brief period, but these changes largely resolve by the end of the drug withdrawal period.202438418677
7366120.9921Unraveling the mystery of antibiotic resistance genes in green and red Antarctic snow. Antarctic snow is a thriving habitat for a diverse array of complex microorganisms, and can present in different colors due to algae blooms. However, the potential role of Antarctic snow as reservoirs for antibiotic resistance genes (ARGs) has not been studied. Using metagenomic sequencing, we studied ARGs in green-snow and red-snow on the Fildes Peninsula, Antarctica. Alpha and beta diversities of ARGs, as well as co-occurrence between ARGs and bacteria were assessed. The results showed that a total of 525 ARGs conferring resistance to 30 antibiotic classes were detected across the samples, with half of the ARGs presented in all samples. Green-snow exhibited a higher number of ARGs compared to red-snow. The most abundant ARGs conferring resistance to commonly used antibiotics, including disinfecting agents and antiseptics, peptide, isoniazid, MLS, fluoroquinolone, aminocoumarin, etc. Multidrug resistance genes stood out as the most diverse and abundant, with antibiotic efflux emerging as the dominant resistance mechanism. Interestingly, the composition of ARGs in green-snow markedly differed from that in red-snow, highlighting distinct ARG profiles. Beta-diversity partitioning showed a higher contribution of nestedness for ARG's variation in green-snow, while higher contribution of turnover in red-snow. Furthermore, the co-occurrence analysis between ARGs and bacteria unveiled intricate relationships, indicating that certain ARGs may have multiple potential hosts. The observed differences in co-occurrence networks between green-snow and red-snow suggested distinct host relationships between ARGs and bacteria in these colored snows. Given the increasing appearance of the colored snow around the world due to the climate change, the results shed light on the mystery and potential implication of ARGs in green and red Antarctic snow.202438246373
4567130.9920Changes in multidrug resistance of enteric bacteria following an intervention to reduce antimicrobial resistance in dairy calves. An intervention study was conducted to determine whether discontinuing the feeding of milk replacer medicated with oxytetracycline and neomycin to preweaned calves reduced antimicrobial resistance in Salmonella, Campylobacter, and Escherichia coli bacteria. Results demonstrated that the intervention did reduce multidrug resistance in these bacteria but that other factors also influenced multidrug resistance.200919846639
2809140.9920Antibiotic resistance of native and faecal bacteria isolated from rivers, reservoirs and sewage treatment facilities in Victoria, south-eastern Australia. The incidence of resistance to ampicillin, chloramphenicol, kanamycin, nalidixic acid, neomycin and streptomycin was significantly greater (P < 0.001) in native heterotrophic bacteria than in Escherichia coli isolated from a range of sites along the Yarra River in south-eastern Australia. There was no significant difference in the incidence of resistance between native and faecal bacteria to tetracycline. Both groups were almost totally resistant to penicillin. Multivariate analyses indicated little clear spatial pattern in the incidence of resistance in native bacteria from upstream vs downstream sites along the Yarra River. In contrast, E. coli isolated from upstream (rural) sites tended to have a lower incidence of resistance than isolates from downstream (urban) sites. These findings have implications for the use of antibiotic resistance as a bacteriological water quality parameter.199910196762
2878150.9920Risk factors for antimicrobial resistance among fecal Escherichia coli from residents on forty-three swine farms. Fecal Escherichia coli (n = 555) were isolated from 115 residents on 43 farrow-to-finish swine farms to determine the prevalence of antimicrobial resistance and associated risk factors. Susceptibility to 21 antimicrobials was determined and the overall prevalence of antimicrobial resistance was 25.8%. Pair-wise difference in prevalences of resistance to individual antimicrobials was significant between isolates from residents on farms that fed medicated swine rations compared to those that did not (p = 0.013). Cross-resistance among antimicrobials of same class and multidrug-resistance were observed. Logistic regression models revealed the following risk factors positively associated with antimicrobial resistance: use of antimicrobials in pigs on farms; number of hours per week that farmers spent in their pig barns; handling of sick pigs; and intake of antimicrobials by farm residents. This study indicates that occupational exposure of farmers to resistant bacteria and use of antimicrobials in pig farming may constitute a source of resistance in humans, although the human health impacts of such resistance is unknown. The consumption of antimicrobials by farmers appeared to constitute a significant risk for resistance development. Fecal E. coli from farm residents may act as a reservoir of resistance genes for animal and/or human pathogens.200717536936
7658160.9920Metagenomic and Antibiotic Resistance Analysis of the Gut Microbiota in Larus relictus and Anatidae Species Inhabiting the Honghaizi Wetland of Ordos, Inner Mongolia, from 2021 to 2023. Gut microbes thrive by utilising host energy and, in return, provide valuable benefits, akin to a symbiotic relationship. Here, metagenomic sequencing was performed to characterise and compare the community composition, diversity and antibiotic resistance of the gut microbiota of Relict gull (Larus relictus) and Anatidae species. Alpha diversity analysis revealed that the intestinal microbial richness of L. relictus was significantly lower than that of Anatidae, with distinct differences observed in microbial composition. Notably, the intestines of L. relictus harboured more pathogenic bacteria such as clostridium, which may contribute to the decline in their population and endangered status. A total of 117 strains of Escherichia coli were isolated, with 90.60% exhibiting full susceptibility to 21 antibiotics, while 25.3% exhibited significant biofilm formation. Comprehensive Antibiotic Resistance Database data indicated that glycopeptide resistance genes were the most prevalent type carried by migratory birds, alongside quinolone, tetracycline and lincosamide resistance genes. The abundance of resistance genes carried by migratory birds decreased over time. This metagenomic analysis provides valuable insights into the intestinal microbial composition of these wild bird species, offering important guidance for their conservation efforts, particularly for L. relictus, and contributing to our understanding of pathogen spread and antibiotic-resistant bacteria.202438792807
3271170.9920Metagenomic characterization of bacterial community and antibiotic resistance genes found in the mass transit system in Seoul, South Korea. Mass transit systems, including subways and buses, are useful environments for studying the urban microbiome, as the vast majority of populations in urban areas use public transportation. Microbial communities in urban environments include both human- and environment-associated bacteria that play roles in health and pathogen transmission. In this study, we used shotgun metagenomic sequencing to profile microbial communities sampled from various surfaces found in subway stations and bus stops within the Seoul mass transit system. The metagenomic approach and network analysis were used to investigate broad-spectrum antibiotic resistance genes (ARGs) and their co-occurrence patterns. We uncovered 598 bacterial species in 76 samples collected from various surfaces within the Seoul mass transit system. All samples were dominated by the potential human pathogen Salmonella enterica (40 %) and the human skin bacterium Cutibacterium acnes (19 %). Significantly abundant biomarkers detected in subway station samples were associated with bacteria typically found in the human oral cavity and respiratory tract, whereas biomarkers detected in bus stop samples were associated with bacteria commonly found in soil, water, and plants. Temperature and location had significant effects on microbial community structure and diversity. In total, 41 unique ARG subtypes were identified, associated with single-drug or multidrug resistance to clinically important and extensively used antibiotics, including aminoglycosides, carbapenem, glycopeptide, and sulfonamides. We revealed that Seoul subway stations and bus stops possess unique microbiomes containing potential human pathogens and ARGs. These findings provide insights for refining location-specific responses to reduce exposure to potentially causative agents of infectious diseases, improving public health.202236257123
3133180.9920A Study of Resistome in Mexican Chili Powder as a Public Health Risk Factor. Chili powder is an important condiment around the world. However, according to various reports, the presence of pathogenic microorganisms could present a public health risk factor during its consumption. Therefore, microbiological quality assessment is required to understand key microbial functional traits, such as antibiotic resistance genes (ARGs). In this study, metagenomic next-generation sequencing (mNGS) and bioinformatics analysis were used to characterize the comprehensive profiles of the bacterial community and antibiotic resistance genes (ARGs) in 15 chili powder samples from different regions of Mexico. The initial bacterial load showed aerobic mesophilic bacteria (AMB) ranging between 6 × 10(3) and 7 × 10(8) CFU/g, sporulated mesophilic bacteria (SMB) from 4.3 × 10(3) to 2 × 10(9) CFU/g, and enterobacteria (En) from <100 to 2.3 × 10(6) CFU/g. The most representative families in the samples were Bacillaceae and Enterobacteriaceae, in which 18 potential pathogen-associated species were detected. In total, the resistome profile in the chili powder contained 68 unique genes, which conferred antibiotic resistance distributed in 13 different classes. Among the main classes of antibiotic resistance genes with a high abundance in almost all the samples were those related to multidrug, tetracycline, beta-lactam, aminoglycoside, and phenicol resistance. Our findings reveal the utility of mNGS in elucidating microbiological quality in chili powder to reduce the public health risks and the spread of potential pathogens with antibiotic resistance mechanisms.202438391568
2541190.9920Increased antibiotic resistance in preterm neonates under early antibiotic use. The standard use of antibiotics in newborns to empirically treat early-onset sepsis can adversely affect the neonatal gut microbiome, with potential long-term health impacts. Research into the escalating issue of antimicrobial resistance in preterm infants and antibiotic practices in neonatal intensive care units is limited. A deeper understanding of the effects of early antibiotic intervention on antibiotic resistance in preterm infants is crucial. This retrospective study employed metagenomic sequencing to evaluate antibiotic resistance genes (ARGs) in the meconium and subsequent stool samples of preterm infants enrolled in the Routine Early Antibiotic Use in Symptomatic Preterm Neonates study. Microbial metagenomics was conducted using a subset of fecal samples from 30 preterm infants for taxonomic profiling and ARG identification. All preterm infants exhibited ARGs, with 175 unique ARGs identified, predominantly associated with beta-lactam, tetracycline, and aminoglycoside resistance. Notably, 23% of ARGs was found in preterm infants without direct or intrapartum antibiotic exposure. Post-natal antibiotic exposure increases beta-lactam/tetracycline resistance while altering mechanisms that aid bacteria in withstanding antibiotic pressure. Microbial profiling revealed 774 bacterial species, with antibiotic-naive infants showing higher alpha diversity (P = 0.005) in their microbiota and resistome compared with treated infants, suggesting a more complex ecosystem. High ARG prevalence in preterm infants was observed irrespective of direct antibiotic exposure and intensifies with age. Prolonged membrane ruptures and maternal antibiotic use during gestation and delivery are linked to alterations in the preterm infant resistome and microbiome, which are pivotal in shaping the ARG profiles in the neonatal gut.This study is registered with ClinicalTrials.gov as NCT02784821. IMPORTANCE: A high burden of antibiotic resistance in preterm infants poses significant challenges to neonatal health. The presence of antibiotic resistance genes, along with alterations in signaling, energy production, and metabolic mechanisms, complicates treatment strategies for preterm infants, heightening the risk of ineffective therapy and exacerbating outcomes for these vulnerable neonates. Despite not receiving direct antibiotic treatment, preterm infants exhibit a concerning prevalence of antibiotic-resistant bacteria. This underscores the complex interplay of broader influences, including maternal antibiotic exposure during and beyond pregnancy and gestational complications like prolonged membrane ruptures. Urgent action, including cautious antibiotic practices and enhanced antenatal care, is imperative to protect neonatal health and counter the escalating threat of antimicrobial resistance in this vulnerable population.202439373498