YEARS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
979300.9984Recent Review on Subclass B1 Metallo-β-lactamases Inhibitors: Sword for Antimicrobial Resistance. An emerging crisis of antibiotic resistance for microbial pathogens is alarming all the nations, posing a global threat to human health. The production of the metalloβ-lactamase enzyme is the most powerful strategy of bacteria to produce resistance. An efficient way to combat this global health threat is the development of broad/non-specific type of metalloβ-lactamase inhibitors, which can inhibit the different isoforms of the enzyme. Till date, there are no clinically active drugs against metallo- β-lactamase. The lack of efficient drug molecules against MBLs carrying bacteria requires continuous research efforts to overcome the problem of multidrug-resistance bacteria. The present review will discuss the clinically potent molecules against different variants of B1 metalloβ-lactamase.201930556502
660710.9983The Growing Threat of Antibiotic Resistance in Children. Antimicrobial resistance is a global public health threat and a danger that continues to escalate. These menacing bacteria are having an impact on all populations; however, until recently, the increasing trend in drug-resistant infections in infants and children has gone relatively unrecognized. This article highlights the current clinical and molecular data regarding infection with antibiotic-resistant bacteria in children, with an emphasis on transmissible resistance and spread via horizontal gene transfer.201829406971
667220.9983Antibiotic resistance in bacteria - an emerging public health problem. The discovery and eventual introduction of anti-microbial agents to clinical medicine was one of the greatest medical triumphs of the twentieth century that revolutionized the treatment of bacterial diseases. However, the gradual emergence of populations of antibiotic-resistant bacteria resulting from use, misuse and outright abuse of antibiotics has today become a major public health problem of global proportions. This review paper examines the origins and molecular epidemiology of resistance genes, global picture of antibacterial resistance, factors that favour its spread, strategies for its control, problems of control and the consequences of failure to contain antibiotic resistance in bacteria.200327528961
660830.9983Trends in antimicrobial resistance in Malaysia. INTRODUCTION: Antibiotic resistance is a burgeoning problem worldwide. The trend of bacterial resistance has increased over the past decade in which more common bacteria are becoming resistant to almost all the antibiotics currently in use, posing a threat to humans and even livestock. METHODS: The databases used to search for the relevant articles for this review include PubMed, Science Direct, and Scopus. The following keywords were used in the search: Antimicrobial resistance, Malaysian action plan, antibioticresistant bacteria, and Malaysian National Surveillance on Antimicrobial Resistance (NSAR). The relevant articles published in English were considered. RESULTS: The antibiotic-resistant bacteria highlighted in this review showed an increase in resistance patterns to the majority of the antibiotics tested. The Malaysian government has come up with an action plan to create public awareness and to educate them regarding the health implications of antibiotic resistance. CONCLUSION: Antimicrobial resistance in Malaysia continues to escalate and is attributed to the overuse and misuse of antibiotics in various fields. As this crisis impacts the health of both humans and animals, therefore a joined continuous effort from all sectors is warranted to reduce the spread and minimize its development.202134508377
667340.9983A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. The discovery and introduction of antimicrobial agents to clinical medicine was one of the greatest medical triumphs of the 20th century that revolutionized the treatment of bacterial infections. However, the gradual emergence of populations of antimicrobial-resistant pathogenic bacteria resulting from use, misuse, and abuse of antimicrobials has today become a major global health concern. Antimicrobial resistance (AMR) genes have been suggested to originate from environmental bacteria, as clinically relevant resistance genes have been detected on the chromosome of environmental bacteria. As only a few new antimicrobials have been developed in the last decade, the further evolution of resistance poses a serious threat to public health. Urgent measures are required not only to minimize the use of antimicrobials for prophylactic and therapeutic purposes but also to look for alternative strategies for the control of bacterial infections. This review examines the global picture of antimicrobial resistance, factors that favor its spread, strategies, and limitations for its control and the need for continuous training of all stake-holders i.e., medical, veterinary, public health, and other relevant professionals as well as human consumers, in the appropriate use of antimicrobial drugs.201323675371
489650.9983The changing ecology of bacterial infections in children. There is continued change in the organisms involved in commonly encountered infections. Although the major organisms have changed less in pediatric than in medical or surgical infections, the advances in neonatology and the chemotherapy of leukemia have resulted in cases in which infection with once uncommon organisms is now commonplace. Perhaps more disheartening has been the increasing resistance of bacteria to antibiotics. Since resistance patterns are so much a reflection of antibiotic usage patterns in an institution, each pediatrician must be aware of the species of bacteria and the resistance patterns of the bacteria isolated in his hospital, particularly in neonatal, intensive care, and burn areas where there is the highest use of antibiotics. Close interaction of pediatrician, diagnostic microbiology laboratory, and hospital epidemiologist can provide early clues to possible bacteria involved in infection, as well as suspected antibiotic resistance patterns.19761253540
661760.9983Mechanisms in colistin-resistant superbugs transmissible from veterinary, livestock and animal food products to humans. In the era of antibiotic resistance, where multidrug-resistant (MDR), extensively drug resistant (XDR), and pan-drug resistant (PDR) Gram-negative infections are prevalent, it is crucial to identify the primary sources of antibiotic resistance, understand resistant mechanisms, and develop strategies to combat these mechanisms. The emergence of resistance to last-resort antibiotics like colistin has sparked a war between humanity and resistant bacteria, leaving humanity struggling to find effective countermeasures. Although colistin is used as a highly toxic antibiotic in infections that are not treated with routine antibiotics, its widespread use in animal breeding and veterinary medicine has contributed to the spread of colistin-resistant bacteria, plasmid-borne colistin resistance genes (mcr), and antibiotic residues in livestock and animal-derived foods. These sources can potentially transmit colistin resistance to humans through various routes. Therefore, managing the use of colistin in livestock and animal foods, implementing strict monitoring, and establishing guidelines for its proper use are essential to prevent the escalation of colistin resistance. This review article discusses the latest mechanisms of colistin antibiotic resistance, particularly biofilm production as a public health threat, the livestock and animal food sources of this resistance, and the routes of transmission to humans.202540386099
418670.9983Antimicrobial use and antimicrobial resistance in food animals. Antimicrobials have been widely used in food animals for growth promotion since the 1950s. Antimicrobial resistance emerges in animal production settings and frequently spreads to humans through the food chain and direct contact. There have been international efforts to restrict or ban antimicrobials used for both humans and animals. Denmark has taken positive strides in the development of a comprehensive database DANMAP to track antimicrobial usage and resistance. Although food animals are sources of antimicrobial resistance, there is little evidence that antimicrobial resistance originates from food animals. This review comprehensively introduces the history and trends of antimicrobial use, the emergence and spread of antimicrobial resistance in food animals provides suggestions to tackle the problems of the spread of antimicrobial resistance.201829802609
667480.9983Pandemic Events Caused by Bacteria Throughout Human History and the Risks of Antimicrobial Resistance Today. During human history, many pandemic events have threatened and taken many human lives over the years. The deadliest outbreaks were caused by bacteria such as Yersinia pestis. Nowadays, antimicrobial resistance (AMR) in bacteria is a huge problem for the public worldwide, threatening and taking many lives each year. The present work aimed to gather current evidence published in scientific literature that addresses AMR risks. A literature review was conducted using the following descriptors: antimicrobial resistance, AMR, bacteria, and Boolean operators. The results showed that antimicrobial-resistant genes and antibiotic-resistant bacteria in organisms cause critical infectious diseases and are responsible for the infections caused by antibiotic-resistant bacteria (ARB). This review emphasizes the importance of this topic. It sheds light on the risk of reemerging infections and their relationship with AMR. In addition, it discusses the mechanisms and actions of antibiotics and the mechanisms behind the development of resistance by bacteria, focusing on demonstrating the importance of the search for new drugs, for which research involving peptides is fundamental.202540005822
979490.9983Antibiotic resistance in developing countries. During the past decade there have been major changes in the susceptibility of bacteria that cause various infections. Resistance to anti-infective agents, including antibiotics, is worldwide, both in developed and developing countries. Almost all bacterial species can develop resistance to anti-infective agents and resistance can readily be transferred among bacteria by transmissible elements (plasmids). Measures to prevent the emergence of resistance must be implemented urgently. A multiplicity of factors drive antibiotic resistance and solutions require the collaboration of governmental agencies, pharmaceutical companies, healthcare providers and consumers. Knowledge of resistance patterns and of the ways by which resistance is overcome is vital to the future of antimicrobial chemotherapy.200111434528
4895100.9983Drug resistance in leprosy: An update following 70years of chemotherapy. Leprosy is one of the oldest infectious diseases, reported for more than 2000years. Leprosy elimination goal as a public health problem set by the World Health Organization, aiming for a global prevalence rate<1 patient in a population of 10,000, was achieved in 2000 mainly thanks to the worldwide use of leprosy drugs starting in the 1980s and their access at no cost for patients since 1995. However, around 200,000 new cases are still reported each year, particularly in India, Brazil, and Indonesia. As with other bacteria of medical interest, antimicrobial resistance is observed in Mycobacterium leprae strains in several parts of the world, despite multidrug therapy being the recommended standard leprosy treatment to avoid resistance selection since 1982. Therefore, identifying and monitoring resistance is necessary. We provide an overview of the historical facts that led to the current drug resistance situation, the antibiotics effective against M. leprae, their mechanisms of action and resistance, and resistance detection methods. We also discuss therapeutic management of the resistant cases, new genes with potential roles in drug resistance and bacterial adaptation, new drugs under investigation, and the risk for resistance selection with the chemoprophylaxis measures.202235483633
6616110.9983The menace of colistin resistance across globe: Obstacles and opportunities in curbing its spread. Colistin-resistance in bacteria is a big concern for public health, since it is a last resort antibiotic to treat infectious diseases of multidrug resistant and carbapenem resistant Gram-negative pathogens in clinical settings. The emergence of colistin resistance in aquaculture and poultry settings has escalated the risks associated with colistin resistance in environment as well. The staggering number of reports pertaining to the rise of colistin resistance in bacteria from clinical and non-clinical settings is disconcerting. The co-existence of colistin resistant genes with other antibiotic resistant genes introduces new challenges in combatting antimicrobial resistance. Some countries have banned the manufacture, sale and distribution of colistin and its formulations for food producing animals. However, to tackle the issue of antimicrobial resistance, a one health approach initiative, inclusive of human, animal, and environmental health needs to be developed. Herein, we review the recent reports in colistin resistance in bacteria of clinical and non-clinical settings, deliberating on the new findings obtained regarding the development of colistin resistance. This review also discusses the initiatives implemented globally in mitigating colistin resistance, their strength and weakness.202336812837
4331120.9982Infectious drug resistance. The emergence of antibiotic-resistant bacteria is a serious threat to public health. Infectious drug resistance, the transmission of resistant determinants from antibiotic-resistant bacteria to antibiotic-sensitive bacterial populations, creates clinical problems that must be addressed. Adequate knowledge of the mechanisms responsible for bacteria resistance is important for ensuring the benefits of antimicrobial therapy.19853981648
6609130.9982Antimicrobial-resistant bacteria in international travelers. PURPOSE OF REVIEW: Antimicrobial resistance (AMR) in bacteria poses a major risk to global public health, with many factors contributing to the observed increase in AMR. International travel is one recognized contributor. The purpose of this review is to summarize current knowledge regarding the acquisition, carriage and spread of AMR bacteria by international travelers. RECENT FINDINGS: Recent studies have highlighted that travel is an important risk factor for the acquisition of AMR bacteria, with approximately 30% of studied travelers returning with an acquired AMR bacterium. Epidemiological studies have shown there are three major risk factors for acquisition: travel destination, antimicrobial usage and travelers' diarrhea (TD). Analyses have begun to illustrate the AMR genes that are acquired and spread by travelers, risk factors for acquisition and carriage of AMR bacteria, and local transmission of imported AMR organisms. SUMMARY: International travel is a contributor to the acquisition and dissemination of AMR organisms globally. Efforts to reduce the burden of AMR organisms should include a focus on international travelers. Routine genomic surveillance would further elucidate the role of international travel in the global spread of AMR bacteria.202134267046
9795140.9982Antibiotic resistance: how it arises, the current position and strategies for the future. After 70 years of antibiotic therapy, the threat of untreatable infections is again a reality with resistance to antibiotics increasing in both Gram positive and Gram negative bacteria. Antibiotic-resistant bacteria cause both community and healthcare associated infections, presenting challenges in treatment and management. The development of new and novel antibiotics, particularly for Gram negative bacteria, is worryingly lacking. This article reviews the current situation and examines future strategies to tackle the continued threat of bacterial resistance.200919835196
9806150.9982Resistance of Gram-Positive Bacteria to Current Antibacterial Agents and Overcoming Approaches. The discovery of antibiotics has created a turning point in medical interventions to pathogenic infections, but unfortunately, each discovery was consistently followed by the emergence of resistance. The rise of multidrug-resistant bacteria has generated a great challenge to treat infections caused by bacteria with the available antibiotics. Today, research is active in finding new treatments for multidrug-resistant pathogens. In a step to guide the efforts, the WHO has published a list of the most dangerous bacteria that are resistant to current treatments and requires the development of new antibiotics for combating the resistance. Among the list are various Gram-positive bacteria that are responsible for serious healthcare and community-associated infections. Methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and drug-resistant Streptococcus pneumoniae are of particular concern. The resistance of bacteria is an evolving phenomenon that arises from genetic mutations and/or acquired genomes. Thus, antimicrobial resistance demands continuous efforts to create strategies to combat this problem and optimize the use of antibiotics. This article aims to provide a review of the most critical resistant Gram-positive bacterial pathogens, their mechanisms of resistance, and the new treatments and approaches reported to circumvent this problem.202032586045
4332160.9982Development and transmission of antimicrobial resistance among Gram-negative bacteria in animals and their public health impact. Gram-negative bacteria are known to cause severe infections in both humans and animals. Antimicrobial resistance (AMR) in Gram-negative bacteria is a major challenge in the treatment of clinical infections globally due to the propensity of these organisms to rapidly develop resistance against antimicrobials in use. In addition, Gram-negative bacteria possess highly efficient mechanisms through which the AMR can be disseminated between pathogenic and commensal bacteria of the same or different species. These unique traits of Gram-negative bacteria have resulted in evolution of Gram-negative bacterial strains demonstrating resistance to multiple classes of antimicrobials. The evergrowing resistance issue has not only resulted in limitation of treatment options but also led to increased treatment costs and mortality rates in humans and animals. With few or no new antimicrobials in production to combat severe life-threatening infections, AMR has been described as the one of the most severe, long-term threats to human health. Aside from overuse and misuse of antimicrobials in humans, another factor that has exacerbated the emergence of AMR in Gram-negative bacteria is the veterinary use of antimicrobials that belong to the same classes considered to be critically important for treating serious life-threatening infections in humans. Despite the fact that development of AMR dates back to before the introduction of antimicrobials, the recent surge in the resistance towards all available critically important antimicrobials has emerged as a major public health issue. This review thus focuses on discussing the development, transmission and public health impact of AMR in Gram-negative bacteria in animals.201728258227
4081170.9982Factors promoting and limiting antimicrobial resistance in the environment - Existing knowledge gaps. The dissemination of multidrug-resistant bacteria strains and genes carrying antibiotic resistance is currently considered to be one of the most important global problem. The WHO calls for the need to contain the spread of Antimicrobial Resistance (AMR) from all possible sources. There have been many international actions grouping scientists studying this phenomenon, and quite a lot of scientific projects devoted to this problem have already been carried out. As well, so far several strategies have been developed that can inhibit the AMR spread. In this mini-review, we highlight overlooked aspects that seem to be crucial for creating a comprehensive picture of AMR, especially in the context of One Health approach.202236204635
4185180.9982Containment of antimicrobial resistance due to use of antimicrobial agents in animals intended for food: WHO perspective. The use of antimicrobial agents in humans and food-producing animals has important consequences for human and animal health, as it can lead to the development of resistant bacteria (pathogens and/or commensals with resistance genes). Moreover, resistant bacteria in animals can be transferred to people--usually through the consumption of food, but also through direct contact with food-producing animals or through environmental spread. Ultimately, this can result in human infections with bacteria that are resistant to antimicrobial agents and that can therefore be difficult or impossible to cure. Of special concern is resistance to antimicrobial agents classified by the World Health Organization (WHO) as critically important for human medicine, such as fluoroquinolones, third- and fourth-generation cephalosporins, and macrolides. WHO encourages the agricultural, food, veterinary and health sectors to work together to eliminate the burden of antimicrobial resistance arising from the use of antimicrobial agents in food-producing animals. Joint efforts should be made to reduce the inappropriate use of antimicrobial agents (e.g. the use of antimicrobials as growth promoters) and limit the spread of bacteria resistant to antimicrobial agents. WHO will continueto address this issue in conjunction with the Food and Agriculture Organization of the United Nations, the World Organisation for Animal Health, the animal health/production industry and other important stakeholders. It will also continue to enhance the capacity of its Member States (through training courses and sentinel studies), particularly developing countries, to conduct integrated surveillance of antimicrobial use and resistance, to carry out risk assessments to support the selection of risk management options and to implement strategies for the containment of antimicrobial resistance.201222849282
8182190.9982Antibiotics in Food Chain: The Consequences for Antibiotic Resistance. Antibiotics have been used as essential therapeutics for nearly 100 years and, increasingly, as a preventive agent in the agricultural and animal industry. Continuous use and misuse of antibiotics have provoked the development of antibiotic resistant bacteria that progressively increased mortality from multidrug-resistant bacterial infections, thereby posing a tremendous threat to public health. The goal of our review is to advance the understanding of mechanisms of dissemination and the development of antibiotic resistance genes in the context of nutrition and related clinical, agricultural, veterinary, and environmental settings. We conclude with an overview of alternative strategies, including probiotics, essential oils, vaccines, and antibodies, as primary or adjunct preventive antimicrobial measures or therapies against multidrug-resistant bacterial infections. The solution for antibiotic resistance will require comprehensive and incessant efforts of policymakers in agriculture along with the development of alternative therapeutics by experts in diverse fields of microbiology, biochemistry, clinical research, genetic, and computational engineering.202033066005