# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7081 | 0 | 0.9981 | Seasonal variations in export of antibiotic resistance genes and bacteria in runoff from an agricultural watershed in Iowa. Seasonal variations of antimicrobial resistance (AMR) indicators in runoff water can help improve our understanding of AMR sources and transport within an agricultural watershed. This study aimed to monitor multiple areas throughout the Black Hawk Lake (BHL) watershed (5324 ha) in central Iowa during 2017 and 2018 that consists of both swine and cattle feeding operations as well as known areas with manure application. The measured indicators included plate counts for fecal indicator bacteria (FIB) E. coli, Enterococcus, antibiotic resistant fecal indicator bacteria (ARBs) tylosin resistant Enterococcus, tetracycline resistant Enterococcus, and antibiotic resistance genes (ARGs): ermB, ermF (macrolide), tetA, tetM, tetO, tetW (tetracycline), sul1, sul2 (sulfonamide), aadA2 (aminoglycoside), vgaA, and vgaB (pleuromutilin). Both the plate count and the ARG analyses showed seasonal trends. Plate counts were significantly greater during the growing season, while the ARGs were greater in the pre-planting and post-harvest seasons (Wilcoxon Rank-Sum Test p < 0.05). The ermB gene concentration was significantly correlated (p < 0.05) with E. coli and Enterococcus concentrations in 2017, suggesting a potential use of this ARG as an indicator of environmental AMR and human health risk. Flow rate was not a significant contributor to annual variations in bacteria and AMR indicators. Based on observed seasonal patterns, we concluded that manure application was the likely contributor to elevated ARG indicators observed in the BHL watershed, while the driver of elevated ARB indictors in the growing season can only be speculated. Understanding AMR export patterns in agricultural watersheds provides public health officials knowledge of seasonal periods of higher AMR load to recreational waters. | 2020 | 32806354 |
| 3113 | 1 | 0.9980 | Resistome in the indoor dust samples from workplaces and households: a pilot study. The antibiotic resistance genes (ARGs) limit the susceptibility of bacteria to antimicrobials, representing a problem of high importance. Current research on the presence of ARGs in microorganisms focuses mainly on humans, livestock, hospitals, or wastewater. However, the spectrum of ARGs in the dust resistome in workplaces and households has gone relatively unexplored. This pilot study aimed to analyze resistome in indoor dust samples from participants' workplaces (a pediatric hospital, a maternity hospital, and a research center) and households and compare two different approaches to the ARGs analysis; high-throughput quantitative PCR (HT-qPCR) and whole metagenome shotgun sequencing (WMGS). In total, 143 ARGs were detected using HT-qPCR, with ARGs associated with the macrolides, lincosamides, and streptogramin B (MLSB) phenotype being the most abundant, followed by MDR (multi-drug resistance) genes, and genes conferring resistance to aminoglycosides. A higher overall relative quantity of ARGs was observed in indoor dust samples from workplaces than from households, with the pediatric hospital being associated with the highest relative quantity of ARGs. WMGS analysis revealed 36 ARGs, of which five were detected by both HT-qPCR and WMGS techniques. Accordingly, the efficacy of the WMGS approach to detect ARGs was lower than that of HT-qPCR. In summary, our pilot data revealed that indoor dust in buildings where people spend most of their time (workplaces, households) can be a significant source of antimicrobial-resistant microorganisms, which may potentially pose a health risk to both humans and animals. | 2024 | 39691696 |
| 3545 | 2 | 0.9980 | Fecal indicators and antibiotic resistance genes exhibit diurnal trends in the Chattahoochee River: Implications for water quality monitoring. Water bodies that serve as sources of drinking or recreational water are routinely monitored for fecal indicator bacteria (FIB) by state and local agencies. Exceedances of monitoring thresholds set by those agencies signal likely elevated human health risk from exposure, but FIB give little information about the potential source of contamination. To improve our understanding of how within-day variation could impact monitoring data interpretation, we conducted a study at two sites along the Chattahoochee River that varied in their recreational usage and adjacent land-use (natural versus urban), collecting samples every 30 min over one 24-h period. We assayed for three types of microbial indicators: FIB (total coliforms and Escherichia coli); human fecal-associated microbial source tracking (MST) markers (crAssphage and HF183/BacR287); and a suite of clinically relevant antibiotic resistance genes (ARGs; blaCTX-M, blaCMY, MCR, KPC, VIM, NDM) and a gene associated with antibiotic resistance (intl1). Mean levels of FIB and clinically relevant ARGs (blaCMY and KPC) were similar across sites, while MST markers and intI1 occurred at higher mean levels at the natural site. The human-associated MST markers positively correlated with antibiotic resistant-associated genes at both sites, but no consistent associations were detected between culturable FIB and any molecular markers. For all microbial indicators, generalized additive mixed models were used to examine diurnal variability and whether this variability was associated with environmental factors (water temperature, turbidity, pH, and sunlight). We found that FIB peaked during morning and early afternoon hours and were not associated with environmental factors. With the exception of HF183/BacR287 at the urban site, molecular MST markers and intI1 exhibited diurnal variability, and water temperature, pH, and turbidity were significantly associated with this variability. For blaCMY and KPC, diurnal variability was present but was not correlated with environmental factors. These results suggest that differences in land use (natural or urban) both adjacent and upstream may impact overall levels of microbial contamination. Monitoring agencies should consider matching sample collection times with peak levels of target microbial indicators, which would be in the morning or early afternoon for the fecal associated indicators. Measuring multiple microbial indicators can lead to clearer interpretations of human health risk associated with exposure to contaminated water. | 2022 | 36439800 |
| 3301 | 3 | 0.9979 | Hospital Wastewater Releases of Carbapenem-Resistance Pathogens and Genes in Urban India. Increasing antibiotic resistant hospital-acquired infections and limited new antibiotic discovery are jeopardizing human health at global scales, although how hospitals themselves fuel antimicrobial resistance (AMR) in the wider environment is largely unknown. Antibiotic resistance (AR) in hospitals in countries such as India is potentially problematic because of high antibiotic use, overcrowding, and inadequate wastewater containment. Here we quantified fecal coliforms (FC), carbapenem-resistant Enterobacteriaceae (CRE), bla(NDM-1), and selected extended-spectrum β-lactam (ESBL) resistant bacteria and genes in 12 hospital wastewater outfalls and five background sewer drains across New Delhi over two seasons. Hospital wastewaters had up to 9 orders of magnitude greater concentrations of CRE bacteria and bla(NDM-1) than local sewers (depending on the hospital), implying hospitals contribute high concentrations of AR relative to community sources in Delhi, especially during the winter. Significant correlations were found between FC levels (a fecal indictor), and CRE (r = 0.924; p = 0.005), bla(NDM-1) (r = 0.934, p = 0.009), and ESBL-resistant bacteria (r = 0.913, p = 0.010) levels across hospital wastewaters, respectively, implying that elevated CRE and bla(NDM-1) are of patient origin. However, of greater importance to global health, microbial culturing found 18 to 41% of wastewater CRE isolates (n = 1447) were on the WHO "critical pathogen" list in urgent need of new antibiotics, and 55% of CRE isolates from larger hospitals carried at least one bla(NDM-1) gene. Wastewater releases from New Delhi hospitals may pose a greater AR exposure risk to residents than believed, implying in-hospital antibiotic use must be better controlled and more effective waste treatment is needed for hospital wastewaters. | 2017 | 28949542 |
| 3543 | 4 | 0.9979 | Precipitation influences pathogenic bacteria and antibiotic resistance gene abundance in storm drain outfalls in coastal sub-tropical waters. Stormwater contamination can threaten the health of aquatic ecosystems and human exposed to runoff via nutrient and pathogen influxes. In this study, the concentrations of 11 bacterial pathogens and 47 antibiotic resistance genes (ARGs) were determined by using high-throughput microfluidic qPCR (MFQPCR) in several storm drain outfalls (SDOs) during dry and wet weather in Tampa Bay, Florida, USA. Data generated in this study were also compared with the levels of fecal indicator bacteria (FIB) and sewage-associated molecular markers (i.e., Bacteroides HF183 and crAssphage markers) in same SDOs collected in a recent study (Ahmed et al., 2018). Concentration of FIB, sewage-associated markers, bacterial pathogens and many ARGs in water samples were relatively high and SDOs may be potentially hotspots for microbial contamination in Tampa Bay. Mean concentrations of culturable E. coli and Enterococcus spp. were tenfold higher in wet compared to dry weather. The majority of microbiological contaminants followed this trend. E. coli eaeA, encoding the virulence factor intimin, was correlated with levels of 20 ARGs, and was more frequently detected in wet weather than dry weather samples. The bla(KPC) gene associated with carbapenem resistant Enterobacteriaceae and the beta-lactam resistant gene (bla(NPS)) were only detected in wet weather samples. Frequency of integron genes Intl2 and Intl3 detection increased by 42% in wet weather samples. Culturable E. coli and Enterococcus spp. significantly correlated with 19 of 47 (40%) ARG tested. Sewage-associated markers crAssphage and HF183 significantly correlated (p < 0.05) with the following ARGs: intl1, sul1, tet(M), ampC, mexB, and tet(W). The presence of sewage-associated marker genes along with ARGs associated with sewage suggested that aging sewage infrastructure contributed to contaminant loading in the Bay. Further research should focus on collecting spatial and temporal data on the microbiological contaminants especially viruses in SDOs. | 2018 | 29754026 |
| 5340 | 5 | 0.9979 | Hospital wastewaters: A reservoir and source of clinically relevant bacteria and antibiotic resistant genes dissemination in urban river under tropical conditions. The occurrence and dissemination of antibiotic resistant genes (ARGs) that are associated with clinical pathogens and the evaluation of associated risks are still under-investigated in developing countries under tropical conditions. In this context, cultivable and molecular approaches were performed to assess the dissemination of bacteria and the antibiotic resistance genes in aquatic environment in Kinshasa, Democratic Republic of the Congo. Cultivable approach quantified β-lactam, carbapenem resistant, and total Escherichia coli and Enterobacteriaceae in river sediments and surface waters that receive raw hospital effluents. The molecular approach utilized Quantitative Polymerase Chain Reaction (qPCR) to quantify the total bacteria and the richness of relevant bacteria (Escherichia coli, Enterococcus, and Pseudomonas), and antibiotic resistance genes (ARGs: bla(OXA-48), bla(CTX-M), bla(IMP), bla(TEM)) in sediment samples. Statistical analysis were employed to highlight the significance of hospital contribution and seasonal variation of bacteria and ARGs into aquatic ecosystems in suburban municipalities of Kinshasa, Democratic Republic of the Congo. The contribution of hospitals to antibiotic resistance proliferation is higher in the dry season than during the wet season (p < 0.05). Hospital similarly contributed Escherichia coli, Enterococcus, and Pseudomonas and ARGs significantly to the sediments in both seasons (p < 0.05). The organic matter content correlated positively with E. coli (r = 0.50, p < 0.05). The total bacterial load correlated with Enterococcus, and Pseudomonas (0.49 < r < 0.69, p < 0.05). Each ARG correlated with the total bacterial load or at least one relevant bacteria (0.41 < r < 0.81, p < 0.05). Our findings confirm that hospital wastewaters contributed significantly to antibiotic resistance profile and the significance of this contribution increased in the dry season. Moreover, our analysis highlights this risk from untreated hospital wastewaters in developing countries, which presents a great threat to public health. | 2020 | 32470679 |
| 3491 | 6 | 0.9979 | Assessment of seasonal variations in antibiotic resistance genes and microbial communities in sewage treatment plants for public health monitoring. The spread of antimicrobial resistance (AMR) around the globe, especially in the urban cities with high population, is a major concern. Therefore, the current study aims at identifying antibiotic resistant bacteria, microbial community compositions and the quantification of antimicrobial resistant genes from six sewage treatment plants (STPs) across Pune city in Maharashtra, India. A total of 106 isolates obtained were tested against six antibiotics in which the highest resistance was observed against trimethoprim (24.53 %). The qPCR assays of seven antibiotic resistance genes revealed abundance of bla(imp-1) and mecA genes in the summer and monsoon seasons followed by bla(NDM-1) gene in the summer and winter seasons. The alpha diversity indices depicted highest microbial diversity of inlet samples during winter, followed by inlet samples during the summer and monsoon seasons. Comparative analysis revealed Bifidobacterium (51 %), Pseudomonas (28.7 %) and Zoogloea (17.6 %) as the most abundant genera in the inlet samples during the summer, monsoon and winter seasons respectively while Acinetobacter (31 %) and Flavobacterium (23 % in winter and 18.2 % in summer) dominated the outlet samples. The co-network analysis revealed positive and negative interactions in the winter and monsoon but only positive interactions in the summer season. Venn diagrams showed higher abundance of ASVs in the outlet samples than the inlet. The top genera correlated exactly opposite with the pH compared to BOD and COD. PICRUSt2-based functional prediction revealed a higher abundance of methicillin resistance, β-lactamase resistance and multidrug resistance genes in inlet samples while chloramphenicol resistance was found higher in outlet samples. Further, we observed that potential pathogens causing infectious disease such as pertussis, shigellosis and tuberculosis were present in all three seasons. | 2025 | 40320120 |
| 3544 | 7 | 0.9979 | Monitoring Urban Beach Quality on a Summer Day: Determination of the Origin of Fecal Indicator Bacteria and Antimicrobial Resistance at Prophète Beach, Marseille (France). A highly frequented beach in Marseille, France, was monitored on an hourly basis during a summer day in July 2018, to determine possible water and sand fecal pollution, in parallel with influx of beach users from 8 a.m. to 8 p.m. Fecal indicator bacteria were enumerated, together with four host-associated fecal molecular markers selected to discriminate human, dog, horse, or gull/seagull origins of the contamination. The antimicrobial resistance of bacteria in water and sand was evaluated by quantifying (i) the class 1, 2, and 3 integron integrase genes intI, and (ii) bla (TEM), bla (CTX-M), and bla (SHV) genes encoding endemic beta-lactamase enzymes. The number of beach users entering and leaving per hour during the observation period was manually counted. Photographs of the beach and the bathing area were taken every hour and used to count the number of persons in the water and on the sand, using a photo-interpretation method. The number of beach users increased from early morning to a peak by mid-afternoon, totaling more than 1,800, a very large number of users for such a small beach (less than 1 ha). An increase in fecal contamination in the water corresponded to the increase in beach attendance and number of bathers, with maximum numbers observed in the mid-afternoon. The human-specific fecal molecular marker HF183 indicated the contamination was of human origin. In the water, the load of Intl2 and 3 genes was lower than Intl1 but these genes were detected only during peak attendance and highest fecal contamination. The dynamics of the genes encoding B-lactamases involved in B-lactams resistance notably was linked to beach attendance and human fecal contamination. Fecal indicator bacteria, integron integrase genes intI, and genes encoding B-lactamases were detected in the sand. This study shows that bathers and beach users can be significant contributors to contamination of seawater and beach sand with bacteria of fecal origin and with bacteria carrying integron-integrase genes and beta lactamase encoding genes. High influx of users to beaches is a significant factor to be considered in order to reduce contamination and manage public health risk. | 2021 | 34512587 |
| 3494 | 8 | 0.9979 | Pathogenic bacteria and antibiotic resistance genes in hospital indoor bioaerosols: pollution characteristics, interrelation analysis, and inhalation risk assessment. Hospitals are high risk areas for the spread of diseases, with indoor bioaerosols containing a variety of pathogens. Inhalation of these pathogens may cause severe nosocomial infections in patients and medical staff. A comprehensive investigation was conducted during the influenza A outbreak to explore the distribution and pathogenic risk of airborne pathogens and antibiotic resistance genes (ARGs) across different hospital departments. It was revealed that airborne bacterial concentrations ranged from 118 to 259 CFU/m(3), and the main aerosol particle size was 4.7-5.8 μm (27.7 %). The proportion of bioaerosols smaller than 2.5 μm was highest in the respiratory waiting area (59.3 %). The dominant pathogens detected in hospital air were Bacillus, Staphylococcus, Pseudomonas and Micrococcus. The absolute abundance of ARGs/mobile genetic elements (MGEs) ranged from 0.55 to 479.44 copies/m(3), peaking in the respiratory ward air. TetL-02, lnuA-01, intI1, ermB, and qacEdelta1-02 were the top five ARGs/MGEs in hospital air. Moreover, doctors inhaled higher doses of ARGs/MGEs in inpatient wards than outpatient waiting areas. Network analysis identified Pseudomonas, Micrococcus, Microbacterium, and Enterobacter as potential ARGs reservoirs. The Bugbase result showed the presence of potentially pathogenic pathogens in the bioaerosols at all sampling sites. The quantitative microbiological risk assessment results further showed that airborne Staphylococcus could pose an infection risk to medical staff. It was determined that the use of masks was effective in reducing this risk to an acceptable level. This study will provide a scientific basis for comprehensively understanding the characteristics and potential risks of hospital bioaerosols during the outbreak of respiratory infectious diseases. | 2025 | 40222613 |
| 5342 | 9 | 0.9979 | Prevalence of antibiotic resistance genes in drinking and environmental water sources of the Kathmandu Valley, Nepal. Antibiotic-resistant bacteria-associated infections are responsible for more than 1.2 million annual deaths worldwide. In low- and middle-income countries (LMICs), the consumption of antibiotics for human and veterinary uses is not regulated effectively. Overused and misused antibiotics can end up in aquatic environments, which may act as a conduit for antibiotic resistance dissemination. However, data on the prevalence of antibiotic resistance determinants in aquatic environments are still limited for LMICs. In this study, we evaluated the prevalence and concentration of antibiotic resistance genes (ARGs) in different drinking and environmental water sources collected from the Kathmandu Valley, Nepal, using droplet digital polymerase chain reaction to understand the current situation of ARG contamination. River water and shallow dug well water sources were the most contaminated with ARGs. Almost all samples contained sul1 (94%), and intI1 and tet(A) were detected in 83 and 60% of the samples, respectively. Maximum ARG concentration varied between 4.2 log(10) copies/100 ml for mecA and 9.3 log(10) copies/100 ml for sul1. Significant positive correlations were found between ARGs (r > 0.5, p < 0.01), except for mecA, qnrS, and vanA. As sul1 and intI1 were detected in almost all samples, the presence of these genes in a given sample may need to be considered as background antibiotic resistance in LMICs. Therefore, monitoring of ARGs, such as β-lactam ARGs, quinolone resistance genes, and vancomycin resistance genes, may provide a better picture of the antibiotic resistance determinants in aquatic environments of LMICs. | 2022 | 36071971 |
| 2584 | 10 | 0.9979 | Resistance to medically important antimicrobials in broiler and layer farms in Cameroon and its relation with biosecurity and antimicrobial use. INTRODUCTION: Poultry production accounts for 42% of Cameroonian meat production. However, infectious diseases represent the main hindrance in this sector, resulting in overuse and misuse of antimicrobials that can contribute to the emergence and dissemination of antimicrobial resistance (AMR). This study aimed to evaluate the prevalence of antimicrobial resistance genes (ARGs) conferring resistance to carbapenems (bla(VIM-2) and bla(NDM) ), (fluoro) quinolones (qnrS, qnrA, and qnrB), polymyxins (mcr1 to mcr5), and macrolides (ermA and ermB) in the poultry farm environment. Additionally, the study examined the relationship between these ARGs and biosecurity implementation, as well as farmers' knowledge, attitudes, and practices toward antimicrobial use (AMU) and AMR, including their perception of AMR risk. MATERIALS AND METHODS: Fecal, drinking water, and biofilm samples from drinking water pipelines were collected from 15 poultry farms and subsequently analyzed by real-time PCR and 16S rRNA NGS. RESULTS: All samples tested positive for genes conferring resistance to (fluoro) quinolones, 97.8% to macrolides, 64.4% to polymyxins, and 11.1% to carbapenems. Of concern, more than half of the samples (64.4%) showed a multi-drug resistance (MDR) pattern (i.e., resistance to ≥3 antimicrobial classes). Drinking water and biofilm microbial communities significantly differed from the one of the fecal samples, both in term of diversity (α-diversity) and composition (β-diversity). Furthermore, opportunistic pathogens (i.e., Comamonadaceae and Sphingomonadaceae) were among the most abundant bacteria in drinking water and biofilm. The level of biosecurity implementation was intermediate, while the knowledge and attitude of poultry farmers toward AMU were insufficient and unsuitable, respectively. Good practices toward AMU were found to be correlated with a reduction in polymyxins and MDR. DISCUSSION: This study provides valuable information on resistance to medically important antimicrobials in poultry production in Cameroon and highlights their potential impact on human and environmental health. | 2024 | 39881983 |
| 3204 | 11 | 0.9979 | Spread of airborne antibiotic resistance from animal farms to the environment: Dispersal pattern and exposure risk. Animal farms have been considered as the critical reservoir of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB). Spread of antibiotic resistance from animal farms to the surrounding environments via aerosols has become a growing concern. Here we investigated the dispersal pattern and exposure risk of airborne ARGs (especially in zoonotic pathogens) in the environment of chicken and dairy farms. Aerosol, dust and animal feces samples were collected from the livestock houses and surrounding environments (upwind and downwind areas) for assessing ARG profiles. Antibiotic resistance phenotype and genotype of airborne Staphylococcus spp. was especially analyzed to reveal the exposure risk of airborne ARGs. Results showed that airborne ARGs were detected from upwind (50 m/100 m) and downwind (50 m/100 m/150 m) air environment, wherein at least 30% of bacterial taxa dispersed from the animal houses. Moreover, atmospheric dispersion modeling showed that airborne ARGs can disperse from the animal houses to a distance of 10 km along the wind direction. Clinically important pathogens were identified in airborne culturable bacteria. Genus of Staphylococcus, Sphingomonas and Acinetobacter were potential bacterial host of airborne ARGs. Airborne Staphylococcus spp. were isolated from the environment of chicken farm (n = 148) and dairy farm (n = 87). It is notable that all isolates from chicken-related environment were multidrug-resistance (>3 clinical-relevant antibiotics), with more than 80% of them carrying methicillin resistance gene (mecA) and associated ARGs and MGEs. Presence of numerous ARGs and diverse pathogens in dust from animal houses and the downwind residential areas indicated the accumulation of animal feces origin ARGs in bioaerosols. Employees and local residents in the chick farming environment are exposed to chicken originated ARGs and multidrug resistant Staphylococcus spp. via inhalation. This study highlights the potential exposure risks of airborne ARGs and antibiotic resistant pathogens to human health. | 2022 | 34673316 |
| 5264 | 12 | 0.9979 | Comparison of Culture- and Quantitative PCR-Based Indicators of Antibiotic Resistance in Wastewater, Recycled Water, and Tap Water. Standardized methods are needed to support monitoring of antibiotic resistance in environmental samples. Culture-based methods target species of human-health relevance, while the direct quantification of antibiotic resistance genes (ARGs) measures the antibiotic resistance potential in the microbial community. This study compared measurements of tetracycline-, sulphonamide-, and cefotaxime-resistant presumptive total and fecal coliforms and presumptive enterococci versus a suite of ARGs quantified by quantitative polymerase chain reaction (qPCR) across waste-, recycled-, tap-, and freshwater. Cross-laboratory comparison of results involved measurements on samples collected and analysed in the US and Portugal. The same DNA extracts analysed in the US and Portugal produced comparable qPCR results (variation <28%), except for bla(OXA-1) gene (0%-57%). Presumptive total and fecal coliforms and cefotaxime-resistant total coliforms strongly correlated with bla(CTX-M) and intI1 (0.725 ≤ R(2) ≤ 0.762; p < 0.0001). Further, presumptive total and fecal coliforms correlated with the Escherichia coli-specific biomarkers, gadAB, and uidA, suggesting that both methods captured fecal-sourced bacteria. The genes encoding resistance to sulphonamides (sul1 and sul2) were the most abundant, followed by genes encoding resistance to tetracyclines (tet(A) and tet(O)) and β-lactams (bla(OXA-1) and(,)bla(CTX-M)), which was in agreement with the culture-based enumerations. The findings can help inform future application of methods being considered for international antibiotic resistance surveillance in the environment. | 2019 | 31671709 |
| 2876 | 13 | 0.9978 | High prevalence of multiple-antibiotic-resistant (MAR) Escherichia coli in river bed sediments of the Apies River, South Africa. This study aimed at investigating the presence of antibiotic-resistant Escherichia coli in river bed sediments of the Apies River, Gauteng, South Africa, in order to better inform health management decisions designed to protect users of the river. Overall, 180 water and sediment samples were collected at 10 sites along the Apies River from January to February 2014. E. coli was enumerated using the Colilert® 18/Quanti-Tray® 2000 (IDEXX). Isolates were purified by streaking on eosin methylene blue agar followed by the indole test. Pure E. coli isolates were tested for resistance to nine antibiotics by the Kirby-Bauer disc diffusion method. Over 98% of the isolates were resistant to at least one of the antibiotics tested. The highest resistance was observed against nitrofurantoin (sediments) and ampicillin (water). Over 80% of all resistant isolates showed multiple antibiotic resistance (resistance to ≥3 antibiotics). The abundance of E. coli in the sediments not only adds to the evidence that sediments are a reservoir for bacteria and possibly other pathogens including antibiotic-resistant bacteria but also suggests that antibiotic-resistant genes could be transferred to pathogens due to the high prevalence of multiple-antibiotic-resistant (MAR) strains of E. coli observed in the sediment. Using untreated water from the Apies River following resuspension for drinking and other household purposes could pose serious health risks for users. Our results suggest that river bed sediments could serve as reservoirs for MAR bacteria including pathogens under different climatic conditions and their analysis could provide information of public health concerns. | 2015 | 26419380 |
| 5263 | 14 | 0.9978 | Seasonal Variations in Water-Quality, Antibiotic Residues, Resistant Bacteria and Antibiotic Resistance Genes of Escherichia coli Isolates from Water and Sediments of the Kshipra River in Central India. OBJECTIVES: To characterize the seasonal variation, over one year, in water-quality, antibiotic residue levels, antibiotic resistance genes and antibiotic resistance in Escherichia coli isolates from water and sediment of the Kshipra River in Central India. METHODS: Water and sediment samples were collected from seven selected points from the Kshipra River in the Indian city of Ujjain in the summer, rainy season, autumn and winter seasons in 2014. Water quality parameters (physical, chemical and microbiological) were analyzed using standard methods. High-performance liquid chromatography⁻tandem mass spectrometry was used to determine the concentrations of antibiotic residues. In river water and sediment samples, antibiotic resistance and multidrug resistance patterns of isolated E. coli to 17 antibiotics were tested and genes coding for resistance and phylogenetic groups were detected using multiplex polymerase chain reaction. One-way analysis of variance (ANOVA) and Fisher tests were applied to determine seasonal variation. RESULTS: In river water, seasonal variation was significantly associated with various water quality parameters, presence of sulfamethoxazole residues, bacteria resistant to ampicillin, cefepime, meropenem, amikacin, gentamicin, tigecycline, multidrug resistance and CTX-M-1 gene. The majority of the Extended Spectrum Beta-Lactamase (ESBL)-producing E. coli isolates from river water and sediment in all different seasons belonged to phylogenetic group A or B1. CONCLUSIONS: Antibiotic pollution, resistance and resistance genes in the Kshipra River showed significant seasonal variation. Guidelines and regulatory standards are needed to control environmental dissemination of these “pollutants” in this holy river. | 2018 | 29914198 |
| 5338 | 15 | 0.9978 | Characterisation of microbial communities and quantification of antibiotic resistance genes in Italian wastewater treatment plants using 16S rRNA sequencing and digital PCR. The spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in humans, animals and environment is a growing threat to public health. Wastewater treatment plants (WWTPs) are crucial in mitigating the risk of environmental contamination by effectively removing contaminants before discharge. However, the persistence of ARB and ARGs even after treatment is a challenge for the management of water system. To comprehensively assess antimicrobial resistance dynamics, we conducted a one-year monitoring study in three WWTPs in central Italy, both influents and effluents. We used seasonal sampling to analyze microbial communities by 16S rRNA, as well as to determine the prevalence and behaviour of major ARGs (sul1, tetA, bla(TEM), bla(OXA-48), bla(CTX-M-1 group), bla(KPC)) and the class 1 Integron (int1). Predominant genera included in order: Arcobacter, Acinetobacter, Flavobacterium, Pseudarcobacter, Bacteroides, Aeromonas, Trichococcus, Cloacibacterium, Pseudomonas and Streptococcus. A higher diversity of bacterial communities was observed in the effluents compared to the influents. Within these communities, we also identified bacteria that may be associated with antibiotic resistance and pose a significant threat to human health. The mean concentrations (in gene copies per liter, gc/L) of ARGs and int1 in untreated wastewater (absolute abundance) were as follows: sul1 (4.1 × 10(9)), tetA (5.2 × 10(8)), bla(TEM) (1.1 × 10(8)), bla(OXA-48) (2.1 × 10(7)), bla(CTX-M-1 group) (1.1 × 10(7)), bla(KPC) (9.4 × 10(5)), and int1 (5.5 × 10(9)). The mean values in treated effluents showed reductions ranging from one to three log. However, after normalizing to the 16S rRNA gene (relative abundance), it was observed that in 37.5 % (42/112) of measurements, the relative abundance of ARGs increased in effluents compared to influents. Furthermore, correlations were identified between ARGs and bacterial genera including priority pathogens. This study improves our understanding of the dynamics of ARGs and provides insights to develop more effective strategies to reduce their spread, protecting public health and preserving the future efficacy of antibiotics. | 2024 | 38750766 |
| 5282 | 16 | 0.9978 | Occupational Exposure and Carriage of Antimicrobial Resistance Genes (tetW, ermB) in Pig Slaughterhouse Workers. OBJECTIVES: Slaughterhouse staff is occupationally exposed to antimicrobial resistant bacteria. Studies reported high antimicrobial resistance gene (ARG) abundances in slaughter pigs. This cross-sectional study investigated occupational exposure to tetracycline (tetW) and macrolide (ermB) resistance genes and assessed determinants for faecal tetW and ermB carriage among pig slaughterhouse workers. METHODS: During 2015-2016, 483 faecal samples and personal questionnaires were collected from workers in a Dutch pig abattoir, together with 60 pig faecal samples. Human dermal and respiratory exposure was assessed by examining 198 carcass, 326 gloves, and 33 air samples along the line, next to 198 packed pork chops to indicate potential consumer exposure. Samples were analyzed by qPCR (tetW, ermB). A job exposure matrix was created by calculating the percentage of tetW and ermB positive carcasses or gloves for each job position. Multiple linear regression models were used to link exposure to tetW and ermB carriage. RESULTS: Workers are exposed to tetracycline and macrolide resistance genes along the slaughter line. Tetw and ermB gradients were found for carcasses, gloves, and air filters. One packed pork chop contained tetW, ermB was non-detectable. Human faecal tetW and ermB concentrations were lower than in pig faeces. Associations were found between occupational tetW exposure and human faecal tetW carriage, yet, not after model adjustments. Sampling round, nationality, and smoking were determinants for ARG carriage. CONCLUSION: We demonstrated clear environmental tetracycline and macrolide resistance gene exposure gradients along the slaughter line. No robust link was found between ARG exposure and human faecal ARG carriage. | 2020 | 31883001 |
| 2877 | 17 | 0.9978 | Metagenomic insights into isolable bacterial communities and antimicrobial resistance in airborne dust from pig farms. This study aims to investigate bacterial communities and antimicrobial resistance (AMR) in airborne dust from pig farms. Airborne dust, pig feces and feed were collected from nine pig farms in Thailand. Airborne dust samples were collected from upwind and downwind (25 meters from pig house), and inside (in the middle of the pig house) of the selected pig house. Pig feces and feed samples were individually collected from the pen floor and feed trough from the same pig house where airborne dust was collected. A direct total bacteria count on each sampling plate was conducted and averaged. The ESKAPE pathogens together with Escherichia coli, Salmonella, and Streptococcus were examined. A total of 163 bacterial isolates were collected and tested for MICs. Pooled bacteria from the inside airborne dust samples were analyzed using Metagenomic Sequencing. The highest bacterial concentration (1.9-11.2 × 10(3) CFU/m(3)) was found inside pig houses. Staphylococcus (n = 37) and Enterococcus (n = 36) were most frequent bacterial species. Salmonella (n = 3) were exclusively isolated from feed and feces. Target bacteria showed a variety of resistance phenotypes, and the same bacterial species with the same resistance phenotype were found in airborne dust, feed and fecal from each farm. Metagenomic Sequencing analysis revealed 1,652 bacterial species across all pig farms, of which the predominant bacterial phylum was Bacillota. One hundred fifty-nine AMR genes of 12 different antibiotic classes were identified, with aminoglycoside resistance genes (24%) being the most prevalent. A total of 251 different plasmids were discovered, and the same plasmid was detected in multiple farms. In conclusion, the phenotypic and metagenomic results demonstrated that airborne dust from pig farms contained a diverse array of bacterial species and genes encoding resistance to a range of clinically important antimicrobial agents, indicating the significant role in the spread of AMR bacterial pathogens with potential hazards to human health. Policy measurements to address AMR in airborne dust from livestock farms are mandatory. | 2024 | 38872793 |
| 5307 | 18 | 0.9978 | Increased Antimicrobial and Multidrug Resistance Downstream of Wastewater Treatment Plants in an Urban Watershed. Development and spread of antimicrobial resistance (AMR) and multidrug resistance (MDR) through propagation of antibiotic resistance genes (ARG) in various environments is a global emerging public health concern. The role of wastewater treatment plants (WWTPs) as hot spots for the dissemination of AMR and MDR has been widely pointed out by the scientific community. In this study, we collected surface water samples from sites upstream and downstream of two WWTP discharge points in an urban watershed in the Bryan-College Station (BCS), Texas area, over a period of nine months. E. coli isolates were tested for resistance to ampicillin, tetracycline, sulfamethoxazole, ciprofloxacin, cephalothin, cefoperazone, gentamycin, and imipenem using the Kirby-Bauer disc diffusion method. Antimicrobial resistant heterotrophic bacteria were cultured on R2A media amended with ampicillin, ciprofloxacin, tetracycline, and sulfamethoxazole for analyzing heterotrophic bacteria capable of growth on antibiotic-containing media. In addition, quantitative real-time polymerase chain reaction (qPCR) method was used to measure eight ARG - tetA, tetW, aacA, ampC, mecA, ermA, blaTEM, and intI1 in the surface water collected at each time point. Significant associations (p < 0.05) were observed between the locations of sampling sites relative to WWTP discharge points and the rate of E. coli isolate resistance to tetracycline, ampicillin, cefoperazone, ciprofloxacin, and sulfamethoxazole together with an increased rate of isolate MDR. The abundance of antibiotic-resistant heterotrophs was significantly greater (p < 0.05) downstream of WWTPs compared to upstream locations for all tested antibiotics. Consistent with the results from the culture-based methods, the concentrations of all ARG were substantially higher in the downstream sites compared to the upstream sites, particularly in the site immediately downstream of the WWTP effluent discharges (except mecA). In addition, the Class I integron (intI1) genes were detected in high amounts at all sites and all sampling points, and were about ∼20 times higher in the downstream sites (2.5 × 10(7) copies/100 mL surface water) compared to the upstream sites (1.2 × 10(6) copies/100 mL surface water). Results suggest that the treated WWTP effluent discharges into surface waters can potentially contribute to the occurrence and prevalence of AMR in urban watersheds. In addition to detecting increased ARG in the downstream sites by qPCR, findings from this study also report an increase in viable AMR (HPC) and MDR (E. coli) in these sites. This data will benefit establishment of improved environmental regulations and practices to help manage AMR/MDR and ARG discharges into the environment, and to develop mitigation strategies and effective treatment of wastewater. | 2021 | 34108949 |
| 3281 | 19 | 0.9978 | Antibiotic resistance genes prevalence prediction and interpretation in beaches affected by urban wastewater discharge. BACKGROUND: The annual death toll of over 1.2 million worldwide is attributed to infections caused by resistant bacteria, driven by the significant impact of antibiotic misuse and overuse in spreading these bacteria and their associated antibiotic resistance genes (ARGs). While limited data suggest the presence of ARGs in beach environments, efficient prediction tools are needed for monitoring and detecting ARGs to ensure public health safety. This study aims to develop interpretable machine learning methods for predicting ARGs in beach waters, addressing the challenge of black-box models and enhancing our understanding of their internal mechanisms. METHODS: In this study, we systematically collected beach water samples and subsequently isolated bacteria from these samples using various differential and selective media supplemented with different antibiotics. Resistance profiles of bacteria were determined by using Kirby-Bauer disk diffusion method. Further, ARGs were enumerated by using the quantitative polymerase chain reaction (qPCR) to detect and quantify ARGs. The obtained qPCR data and hydro-meteorological were used to create an ML model with high prediction performance and we further used two explainable artificial intelligence (xAI) model-agnostic interpretation methods to describe the internal behavior of ML model. RESULTS: Using qPCR, we detected bla(CTX-M), bla(NDM), bla(CMY), bla(OXA), bla(tetX), bla(sul1), and bla(aac(6'-Ib-cr)) in the beach waters. Further, we developed ML prediction models for bla(aac(6'-Ib-cr)), bla(sul1), and bla(tetX) using the hydro-metrological and qPCR-derived data and the models demonstrated strong performance, with R2 values of 0.957, 0.997, and 0.976, respectively. CONCLUSIONS: Our findings show that environmental factors, such as water temperature, precipitation, and tide, are among the important predictors of the abundance of resistance genes at beaches. | 2023 | 38024281 |