# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8360 | 0 | 0.9884 | Genome mining of Streptomyces scabrisporus NF3 reveals symbiotic features including genes related to plant interactions. Endophytic bacteria are wide-spread and associated with plant physiological benefits, yet their genomes and secondary metabolites remain largely unidentified. In this study, we explored the genome of the endophyte Streptomyces scabrisporus NF3 for discovery of potential novel molecules as well as genes and metabolites involved in host interactions. The complete genomes of seven Streptomyces and three other more distantly related bacteria were used to define the functional landscape of this unique microbe. The S. scabrisporus NF3 genome is larger than the average Streptomyces genome and not structured for an obligate endosymbiotic lifestyle; this and the fact that can grow in R2YE media implies that it could include a soil-living stage. The genome displays an enrichment of genes associated with amino acid production, protein secretion, secondary metabolite and antioxidants production and xenobiotic degradation, indicating that S. scabrisporus NF3 could contribute to the metabolic enrichment of soil microbial communities and of its hosts. Importantly, besides its metabolic advantages, the genome showed evidence for differential functional specificity and diversification of plant interaction molecules, including genes for the production of plant hormones, stress resistance molecules, chitinases, antibiotics and siderophores. Given the diversity of S. scabrisporus mechanisms for host upkeep, we propose that these strategies were necessary for its adaptation to plant hosts and to face changes in environmental conditions. | 2018 | 29447216 |
| 581 | 1 | 0.9880 | Inorganic polyphosphates and heavy metal resistance in microorganisms. The mechanisms of heavy metal resistance in microbial cells involve multiple pathways. They include the formation of complexes with specific proteins and other compounds, the excretion from the cells via plasma membrane transporters in case of procaryotes, and the compartmentalization of toxic ions in vacuoles, cell wall and other organelles in case of eukaryotes. The relationship between heavy metal tolerance and inorganic polyphosphate metabolism was demonstrated both in prokaryotic and eukaryotic microorganisms. Polyphosphates, being polyanions, are involved in detoxification of heavy metals through complex formation and compartmentalization. The bacteria and fungi cultivated in the presence of some heavy metal cations contain the enhanced levels of polyphosphate. In bacteria, polyphosphate sequesters heavy metals; some of metal cations stimulate an exopolyphosphatase activity, which releases phosphate from polyphosphates, and MeHPO(4)(-) ions are then transported out of the cells. In fungi, the overcoming of heavy metal stresses is associated with the accumulation of polyphosphates in cytoplasmic inclusions, vacuoles and cell wall and the formation of cation/polyphosphate complexes. The effects of knockout mutations and overexpression of the genes encoding polyphosphate-metabolizing enzymes on heavy metal resistance are discussed. | 2018 | 30151754 |
| 8619 | 2 | 0.9879 | Bioavailability of pollutants and chemotaxis. The exposure of bacteria to pollutants induces frequently chemoattraction or chemorepellent reactions. Recent research suggests that the capacity to degrade a toxic compound has co-evolved in some bacteria with the capacity to chemotactically react to it. There is an increasing amount of data which show that chemoattraction to biodegradable pollutants increases their bioavailability which translates into an enhancement of the biodegradation rate. Pollutant chemoreceptors so far identified are encoded on degradation or resistance plasmids. Genetic engineering of bacteria, such as the transfer of chemoreceptor genes, offers thus the possibility to optimize biodegradation processes. | 2013 | 22981870 |
| 8425 | 3 | 0.9878 | Carotenoid biosynthesis in extremophilic Deinococcus-Thermus bacteria. Bacteria from the phylum Deinococcus-Thermus are known for their resistance to extreme stresses including radiation, oxidation, desiccation and high temperature. Cultured Deinococcus-Thermus bacteria are usually red or yellow pigmented because of their ability to synthesize carotenoids. Unique carotenoids found in these bacteria include deinoxanthin from Deinococcus radiodurans and thermozeaxanthins from Thermus thermophilus. Investigations of carotenogenesis will help to understand cellular stress resistance of Deinococcus-Thermus bacteria. Here, we discuss the recent progress toward identifying carotenoids, carotenoid biosynthetic enzymes and pathways in some species of Deinococcus-Thermus extremophiles. In addition, we also discuss the roles of carotenoids in these extreme bacteria. | 2010 | 20832321 |
| 8134 | 4 | 0.9874 | Sweet scents from good bacteria: Case studies on bacterial volatile compounds for plant growth and immunity. Beneficial bacteria produce diverse chemical compounds that affect the behavior of other organisms including plants. Bacterial volatile compounds (BVCs) contribute to triggering plant immunity and promoting plant growth. Previous studies investigated changes in plant physiology caused by in vitro application of the identified volatile compounds or the BVC-emitting bacteria. This review collates new information on BVC-mediated plant-bacteria airborne interactions, addresses unresolved questions about the biological relevance of BVCs, and summarizes data on recently identified BVCs that improve plant growth or protection. Recent explorations of bacterial metabolic engineering to alter BVC production using heterologous or endogenous genes are introduced. Molecular genetic approaches can expand the BVC repertoire of beneficial bacteria to target additional beneficial effects, or simply boost the production level of naturally occurring BVCs. The effects of direct BVC application in soil are reviewed and evaluated for potential large-scale field and agricultural applications. Our review of recent BVC data indicates that BVCs have great potential to serve as effective biostimulants and bioprotectants even under open-field conditions. | 2016 | 26177913 |
| 8361 | 5 | 0.9873 | Functional potential and evolutionary response to long-term heat selection of bacterial associates of coral photosymbionts. Symbiotic microorganisms are crucial for the survival of corals and their resistance to coral bleaching in the face of climate change. However, the impact of microbe-microbe interactions on coral functioning is mostly unknown but could be essential factors for coral adaption to future climates. Here, we investigated interactions between cultured dinoflagellates of the Symbiodiniaceae family, essential photosymbionts of corals, and associated bacteria. By assessing the genomic potential of 49 bacteria, we found that they are likely beneficial for Symbiodiniaceae, through the production of B vitamins and antioxidants. Additionally, bacterial genes involved in host-symbiont interactions, such as secretion systems, accumulated mutations following long-term exposure to heat, suggesting symbiotic interactions may change under climate change. This highlights the importance of microbe-microbe interactions in coral functioning. | 2023 | 37909753 |
| 8363 | 6 | 0.9872 | Hundreds of antimicrobial peptides create a selective barrier for insect gut symbionts. The spatial organization of gut microbiota is crucial for the functioning of the gut ecosystem, although the mechanisms that organize gut bacterial communities in microhabitats are only partially understood. The gut of the insect Riptortus pedestris has a characteristic microbiota biogeography with a multispecies community in the anterior midgut and a monospecific bacterial population in the posterior midgut. We show that the posterior midgut region produces massively hundreds of specific antimicrobial peptides (AMPs), the Crypt-specific Cysteine-Rich peptides (CCRs) that have membrane-damaging antimicrobial activity against diverse bacteria but posterior midgut symbionts have elevated resistance. We determined by transposon-sequencing the genetic repertoire in the symbiont Caballeronia insecticola to manage CCR stress, identifying different independent pathways, including AMP-resistance pathways unrelated to known membrane homeostasis functions as well as cell envelope functions. Mutants in the corresponding genes have reduced capacity to colonize the posterior midgut, demonstrating that CCRs create a selective barrier and resistance is crucial in gut symbionts. Moreover, once established in the gut, the bacteria differentiate into a CCR-sensitive state, suggesting a second function of the CCR peptide arsenal in protecting the gut epithelia or mediating metabolic exchanges between the host and the gut symbionts. Our study highlights the evolution of an extreme diverse AMP family that likely contributes to establish and control the gut microbiota. | 2024 | 38865264 |
| 9583 | 7 | 0.9872 | Bacteriophages presence in nature and their role in the natural selection of bacterial populations. Phages are the obligate parasite of bacteria and have complex interactions with their hosts. Phages can live in, modify, and shape bacterial communities by bringing about changes in their abundance, diversity, physiology, and virulence. In addition, phages mediate lateral gene transfer, modify host metabolism and reallocate bacterially-derived biochemical compounds through cell lysis, thus playing an important role in ecosystem. Phages coexist and coevolve with bacteria and have developed several antidefense mechanisms in response to bacterial defense strategies against them. Phages owe their existence to their bacterial hosts, therefore they bring about alterations in their host genomes by transferring resistance genes and genes encoding toxins in order to improve the fitness of the hosts. Application of phages in biotechnology, environment, agriculture and medicines demands a deep insight into the myriad of phage-bacteria interactions. However, to understand their complex interactions, we need to know how unique phages are to their bacterial hosts and how they exert a selective pressure on the microbial communities in nature. Consequently, the present review focuses on phage biology with respect to natural selection of bacterial populations. | 2020 | 33170167 |
| 9727 | 8 | 0.9872 | Metal Toxicity and Resistance in Plants and Microorganisms in Terrestrial Ecosystems. Metals are major abiotic stressors of many organisms, but their toxicity in plants is not as studied as in microorganisms and animals. Likewise, research in plant responses to metal contamination is sketchy. Candidate genes associated with metal resistance in plants have been recently discovered and characterized. Some mechanisms of plant adaptation to metal stressors have been now decrypted. New knowledge on microbial reaction to metal contamination and the relationship between bacterial, archaeal, and fungal resistance to metals has broadened our understanding of metal homeostasis in living organisms. Recent reviews on metal toxicity and resistance mechanisms focused only on the role of transcriptomics, proteomics, metabolomics, and ionomics. This review is a critical analysis of key findings on physiological and genetic processes in plants and microorganisms in responses to soil metal contaminations. | 2020 | 30725190 |
| 8692 | 9 | 0.9872 | Genetic mechanisms of arsenic detoxification and metabolism in bacteria. Arsenic, distributed pervasively in the natural environment, is an extremely toxic substance which can severely impair the normal functions of living cells. Research on the genetic mechanisms of arsenic metabolism is of great importance for remediating arsenic-contaminated environments. Many organisms, including bacteria, have developed various strategies to tolerate arsenic, by either detoxifying this harmful element or utilizing it for energy generation. This review summarizes arsenic detoxification as well as arsenic respiratory metabolic pathways in bacteria and discusses novel arsenic resistance pathways in various bacterial strains. This knowledge provides insights into the mechanisms of arsenic biotransformation in bacteria. Multiple detoxification strategies among bacteria imply possible functional relationships among different arsenic detoxification/metabolism pathways. In addition, this review sheds light on the bioremediation of arsenic-contaminated environments and prevention of antibiotic resistance. | 2019 | 30349994 |
| 583 | 10 | 0.9872 | MarR family proteins sense sulfane sulfur in bacteria. Members of the multiple antibiotic resistance regulator (MarR) protein family are ubiquitous in bacteria and play critical roles in regulating cellular metabolism and antibiotic resistance. MarR family proteins function as repressors, and their interactions with modulators induce the expression of controlled genes. The previously characterized modulators are insufficient to explain the activities of certain MarR family proteins. However, recently, several MarR family proteins have been reported to sense sulfane sulfur, including zero-valent sulfur, persulfide (R-SSH), and polysulfide (R-SnH, nāā„ā2). Sulfane sulfur is a common cellular component in bacteria whose levels vary during bacterial growth. The changing levels of sulfane sulfur affect the expression of many MarR-controlled genes. Sulfane sulfur reacts with the cysteine thiols of MarR family proteins, causing the formation of protein thiol persulfide, disulfide bonds, and other modifications. Several MarR family proteins that respond to reactive oxygen species (ROS) also sense sulfane sulfur, as both sulfane sulfur and ROS induce the formation of disulfide bonds. This review focused on MarR family proteins that sense sulfane sulfur. However, the sensing mechanisms reviewed here may also apply to other proteins that detect sulfane sulfur, which is emerging as a modulator of gene regulation. | 2024 | 38948149 |
| 8347 | 11 | 0.9872 | Molecular mechanisms underlying glyphosate resistance in bacteria. Glyphosate is a nonselective herbicide that kills weeds and other plants competing with crops. Glyphosate specifically inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase, thereby depleting the cell of EPSP serving as a precursor for biosynthesis of aromatic amino acids. Glyphosate is considered to be toxicologically safe for animals and humans. Therefore, it became the most-important herbicide in agriculture. However, its intensive application in agriculture is a serious environmental issue because it may negatively affect the biodiversity. A few years after the discovery of the mode of action of glyphosate, it has been observed that bacteria evolve glyphosate resistance by acquiring mutations in the EPSP synthase gene, rendering the encoded enzyme less sensitive to the herbicide. The identification of glyphosate-resistant EPSP synthase variants paved the way for engineering crops tolerating increased amounts of the herbicide. This review intends to summarize the molecular mechanisms underlying glyphosate resistance in bacteria. Bacteria can evolve glyphosate resistance by (i) reducing glyphosate sensitivity or elevating production of the EPSP synthase, by (ii) degrading or (iii) detoxifying glyphosate and by (iv) decreasing the uptake or increasing the export of the herbicide. The variety of glyphosate resistance mechanisms illustrates the adaptability of bacteria to anthropogenic substances due to genomic alterations. | 2021 | 33876549 |
| 8631 | 12 | 0.9871 | Bacterial metal(loid) resistance genes (MRGs) and their variation and application in environment: A review. Toxic metal(loid)s are widespread and permanent in the biosphere, and bacteria have evolved a wide variety of metal(loid) resistance genes (MRGs) to resist the stress of excess metal(loid)s. Via active efflux, permeability barriers, extracellular/intracellular sequestration, enzymatic detoxification and reduction in metal(loid)s sensitivity of cellular targets, the key components of bacterial cells are protected from toxic metal(loid)s to maintain their normal physiological functions. Exploiting bacterial metal(loid) resistance mechanisms, MRGs have been applied in many environmental fields. Based on the specific binding ability of MRGs-encoded regulators to metal(loid)s, MRGs-dependent biosensors for monitoring environmental metal(loid)s are developed. MRGs-related biotechnologies have been applied to environmental remediation of metal(loid)s by using the metal(loid) tolerance, biotransformation, and biopassivation abilities of MRGs-carrying microorganisms. In this work, we review the historical evolution, resistance mechanisms, environmental variation, and environmental applications of bacterial MRGs. The potential hazards, unresolved problems, and future research directions are also discussed. | 2023 | 36758696 |
| 8633 | 13 | 0.9871 | Bacterial interactions with arsenic: Metabolic pathways, resistance mechanisms, and bioremediation approaches. Arsenic contamination in natural waters is one of the biggest threats to human health, mainly due to its carcinogenic potential. Given its toxicity, nearly all organisms have evolved to develop an arsenic resistance mechanism. Conventional techniques of arsenic remediation suffer from various limitations of their applicability, cost and/or chemical intensive nature. In past few decades, bioremediation has emerged as a potential alternative to the conventional techniques. Microbial bioremediation, bacteria in particular, offers an eco-friendly and sustainable alternative, owing to its inherent metabolic capabilities to transform, immobilize or volatilize arsenic. Diverse biochemical pathways involving oxidation of As(III) to As(V), reduction of As(V) under anaerobic respiration or detoxification, methylation and demethylation, bioleaching and biomineralization into insoluble forms are essential mechanisms for arsenic remediation. These transformations, detoxification and resistance are regulated by specific genetic systems, including the ars operon, aio, arr and arsM, accessory genes such as arsR, arsB, acr3, arsC and arsP. The metabolic regulation of arsenic detoxification involves complex cofactor-dependent enzyme systems and environmental signal-responsive transcriptional control. Integrated approaches such as immobilization of bacteria on biochar or their encapsulation have also been known to enhance stability, reusability and stress tolerance. However, bioremediation is a very complex process due to the interrelationship of various influences such as, presence of specific microorganisms, nutrients and environmental factors. Therefore, it is of utmost importance to understand the bacterial interactions with arsenic for the development of bioremediation technologies. This review article tries to discuss the current status of arsenic bioremediation using bacteria, its field applications, challenges and future perspectives. It also includes the strengths, weaknesses, opportunities, threats (SWOT) analysis to assess the merits and demerits of using bacteria for bioremediation of arsenic. | 2025 | 41043264 |
| 8636 | 14 | 0.9871 | Insights into the synthesis, engineering, and functions of microbial pigments in Deinococcus bacteria. The ability of Deinococcus bacteria to survive in harsh environments, such as high radiation, extreme temperature, and dryness, is mainly attributed to the generation of unique pigments, especially carotenoids. Although the limited number of natural pigments produced by these bacteria restricts their industrial potential, metabolic engineering and synthetic biology can significantly increase pigment yield and expand their application prospects. In this study, we review the properties, biosynthetic pathways, and functions of key enzymes and genes related to these pigments and explore strategies for improving pigment production through gene editing and optimization of culture conditions. Additionally, studies have highlighted the unique role of these pigments in antioxidant activity and radiation resistance, particularly emphasizing the critical functions of deinoxanthin in D. radiodurans. In the future, Deinococcus bacterial pigments will have broad application prospects in the food industry, drug production, and space exploration, where they can serve as radiation indicators and natural antioxidants to protect astronauts' health during long-term space flights. | 2024 | 39119139 |
| 8362 | 15 | 0.9869 | Lifestyle evolution in symbiotic bacteria: insights from genomics. Bacteria that live only in eukaryotic cells and tissues, including chronic pathogens and mutualistic bacteriocyte associates, often possess a distinctive set of genomic traits, including reduced genome size, biased nucleotide base composition and fast polypeptide evolution. These phylogenetically diverse bacteria have lost certain functional categories of genes, including DNA repair genes, which affect mutational patterns. However, pathogens and mutualistic symbionts retain loci that underlie their unique interaction types, such as genes enabling nutrient provisioning by mutualistic bacteria-inhabiting animals. Recent genomic studies suggest that many of these bacteria are irreversibly specialized, precluding shifts between pathogenesis and mutualism. | 2000 | 10884696 |
| 8635 | 16 | 0.9869 | Techniques for enhancing the tolerance of industrial microbes to abiotic stresses: A review. The diversity of stress responses and survival strategies evolved by microorganism enables them to survive and reproduce in a multitude of harsh environments, whereas the discovery of the underlying resistance genes or mechanisms laid the foundation for the directional enhancement of microbial tolerance to abiotic stresses encountered in industrial applications. Many biological techniques have been developed for improving the stress resistance of industrial microorganisms, which greatly benefited the bacteria on which industrial production is based. This review introduces the main techniques for enhancing the resistance of microorganisms to abiotic stresses, including evolutionary engineering, metabolic engineering, and process engineering, developed in recent years. In addition, we also discuss problems that are still present in this area and offer directions for future research. | 2020 | 31206805 |
| 8142 | 17 | 0.9868 | RNA-seq reveals mechanisms of SlMX1 for enhanced carotenoids and terpenoids accumulation along with stress resistance in tomato. Improving nutritional fruit quality and impacts important agro-traits such as biotic or abiotic stresses are extremely important for human civilization. Our previous study reported that manipulation of SlMX1 gene enhanced carotenoids accumulation and drought resistance in tomato. Here, RNA-Seq analysis proved to be a very useful tool to provide insights into the regulatory mechanisms of SlMX1 involved in stress resistance and enhanced secondary metabolites. Physiological analysis showed that over-expression of SlMX1 results in substantially increased broad-spectrum tolerance to a wide-range of abiotic and biotic (fungus, bacteria, virus and insects) stresses in tomato. This research appears to be of remarkable interest because enhanced terpenoids content has been achieved by increasing trichome density. In addition, we reported two types of trichome which seems to be aberrant types in tomato. This study unravels the mechanism of regulation of SlMX1, which simultaneously modulates resistance and metabolic processes through regulating key structural and regulatory genes of the corresponding pathways. | 2017 | 36659256 |
| 588 | 18 | 0.9868 | Enhanced aphid detoxification when confronted by a host with elevated ROS production. Reactive oxygen species (ROS) plays an important role in plant defense responses against bacteria, fungi and insect pests. Most recently, we have demonstrated that loss of Arabidopsis thaliana BOTRYTIS-INDUCED KINASE1 (BIK1) function releases its suppression of aphid-induced H2O2 production and cell death, rendering the bik1 mutant more resistant to green peach aphid (Myzus persicae) than wild-type plants. However, little is known regarding how ROS-related gene expression is correlated with bik1-mediated resistance to aphids, or whether these aphids biochemically respond to the oxidative stress. Here, we show that the bik1 mutant exhibited elevated basal expression of ROS-generating and -responsive genes, but not ROS-metabolizing genes. Conversely, we detected enhanced detoxification enzymatic activities in aphids reared on bik1 plants compared to those on wild-type plants, suggesting that aphids counter the oxidative stress associated with bik1 through elevated metabolic resistance. | 2015 | 25932782 |
| 8638 | 19 | 0.9868 | Enhancing phytoremediation through the use of transgenics and endophytes. In the last decade, there has been an increase in research on improving the ability of plants to remove environmental pollution. Genes from microbes, plants, and animals are being used successfully to enhance the ability of plants to tolerate, remove, and degrade pollutants. Through expression of specific bacterial genes in transgenic plants, the phytotoxic effects of nitroaromatic pollutants were overcome, resulting in increased removal of these chemicals. Overexpression of mammalian genes encoding cytochrome P450s led to increased metabolism and removal of a variety of organic pollutants and herbicides. Genes involved in the uptake or detoxification of metal pollutants were used to enhance phytoremediation of this important class of pollutants. Transgenic plants containing specific bacterial genes converted mercury and selenium to less toxic forms. In addition to these transgenic approaches, the use of microbes that live within plants, termed endophytes, also led to improved tolerance to normally phytotoxic chemicals and increased removal of the pollutants. Bacteria that degraded a herbicide imparted resistance to the herbicide when inoculated into plants. In another study, plants harboring bacteria capable of degrading toluene were more tolerant to normally phytotoxic concentrations of the chemical, and transpired less of it into the atmosphere. This review examines the recent advances in enhancing phytoremediation through transgenic plant research and through the use of symbiotic endophytic microorganisms within plant tissues. | 2008 | 19086174 |