XDGS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
679500.9144Interplay of xenobiotic-degrading and antibiotic-resistant microorganisms among the microbiome found in the air, handrail, and floor of the subway station. Investigating the quality of the subway environment, especially regarding antibiotic resistance genes (ARGs) and xenobiotics, conveys ecological and health impacts. In this study, compositions and relations of microorganisms harboring ARGs and xenobiotic degradation and metabolism genes (XDGs) in the Sukhumvit subway station (MRT-SKV) in Bangkok was assessed by analyzing the taxonomic and genetic diversity of the microbiome in the air and on the surfaces of floor and handrail. The major bacteria in the MRT-SKV (including Moraxella, which was abundant in the bioaerosol and handrail samples, and Staphylococcus, which was abundant in the bioaerosol samples) were found to contain both ARGs and XDGs. The co-abundance correlation network revealed notable relationships among bacteria harboring antibiotic resistance genes (ARGs) and xenobiotic degradation genes (XDGs). Significant associations were observed between ARGs linked to glycopeptide and fluoroquinolone resistance and genes associated with benzoate, styrene, and atrazine degradation pathways, as well as between ARGs related to cephamycin, cephalosporin, and MLS resistance and XDGs associated with the cytochrome P450-dependent drug metabolism pathway. These correlations suggested that selective pressure exerted by certain xenobiotics and antibiotics can simultaneously affect both ARGs and XDGs in the environment and should favor correlations and co-survival among ARG- and XDG-containing bacteria in the environments. The correlations may occur via shared mechanisms of resistance to both xenobiotics and antibiotics. Finally, different correlation pairs were seen in different niches (air, handrail, floor) of the subway environment or different geolocations. Thus, the relationship between ARG and XDG pairs most likely depends on the unique characteristics of the niches and on the prominent types of xenobiotics and antibiotics in the subway environment. The results indicated that interactions and connections between microbial communities can impact how they function. These microorganisms can have profound effects on accumulation of xenobiotics and ARGs in the MRT-SKV.202438246293
863910.9062Toad's survivability and soil microbiome alterations impacted via individual abundance. Artificial breeding is a valid strategy for the reverse of current extinction tendency in wild population of amphibian like toads. Considering public health, an alternative to antibiotics is demanded for ameliorating survival of toads during the culture period. Relying on the cognition of probiotics or antagonistic bacteria, the present work investigated viability and soil microorganism variations induced by distribution characteristic on toads using high-throughput sequencing technology. Comparison and analysis of soil metagenome from clustered and depopulated groups distinguished by toad behavior showed differences of bacterial community composition (e.g., Proteobacteria bacterium TMED72 and Nannocystis exedens) and antibiotic resistance genes involving antibiotic efflux and inactivation (e.g., mdtB and acrF). There were 18 and 10 distribution-typical genes independently enriched in Proteobacteria bacterium TMED72 and bacterium TMED88 of clustered group and Nannocystis exedens of depopulated group. In Nannocystis exedens, one of the distribution-typical genes was annotated as 6-phosphogluconate dehydrogenase acting role on bacterial growth restriction. It implied that, compared with the group emerging rare traces, the reduction of soil bacteria which possess genes retarding bacterial growth putatively impairs competitiveness to pathogenic bacteria and results in poor survivability of toads under clustering behavior. With the co-occurrence of virulence genes, more evidences are needed on the antagonistic bacteria Nannocystis exedens as antibiotic substitute.202540478395
638020.9050Seasonal dynamics of anammox bacteria in estuarial sediment of the Mai Po Nature Reserve revealed by analyzing the 16S rRNA and hydrazine oxidoreductase (hzo) genes. The community and population dynamics of anammox bacteria in summer (wet) and winter (dry) seasons in estuarial mudflat sediment of the Mai Po Nature Reserve were investigated by 16S rRNA and hydrazine oxidoreductase (hzo) genes. 16S rRNA phylogenetic diversity showed that sequences related to 'Kuenenia' anammox bacteria were presented in summer but not winter while 'Scalindua' anammox bacteria occurred in both seasons and could be divided into six different clusters. Compared to the 16S rRNA genes, the hzo genes revealed a relatively uniform seasonal diversity, with sequences relating to 'Scalindua', 'Anammoxoglobus', and planctomycete KSU-1 found in both seasons. The seasonal specific bacterial groups and diversity based on the 16S rRNA and hzo genes indicated strong seasonal community structures in estuary sediment of this site. Furthermore, the higher abundance of hzo genes in summer than winter indicates clear seasonal population dynamics. Combining the physicochemical characteristics of estuary sediment in the two seasons and their correlations with anammox bacteria community structure, we proposed the strong seasonal dynamics in estuary sediment of Mai Po to be due to the anthropogenic and terrestrial inputs, especially in summer, which brings in freshwater anammox bacteria, such as 'Kuenenia', interacting with the coastal marine anammox bacteria 'Scalindua'.201121487198
774230.9047The dissimilarity of antibiotic and quorum sensing inhibitor on activated sludge nitrification system: Microbial communities and antibiotic resistance genes. Effects of antibiotics (azithromycin, AZM, 1-40 mg/L) and quorum sensing inhibitor (QSI, 2(5H)-furanone, 1-40 mg/L) combined pollution with environmental concentration of copper on bacterial/archaeal community and antibiotic resistance genes (ARGs) in activated sludge system were explored. QSI inhibited nitrification more obviously than AZM. AZM and QSI were synergistic inhibitions on bacterial diversity, and AZM inhibited bacterial compositions more than QSI. While, QSI had more impacts on archaeal diversity/compositions. Less interactions among bacteria and archaea communities with Aquimonas as keystone genus. Functional differences in bacteria/archaea communities were little, and AZM had more effects on metabolism. AZM mainly affected nitrifying bacteria (Candidatus Nitrospira nitrificans and Nitrosomonas). Specific denitrifying bacteria were enriched by AZM (Brevundimonas, 1.76-31.69%) and QSI (Comamonas, 0.61-9.61%), respectively. AZM enriched ARGs more easily than QSI and they were antagonistic to proliferation of ARGs. Bacteria were main hosts of ARGs (macrolide-lincosamide-streptogramin B, other/efflux, etc.) and archaea (Methanosphaerula, Methanolobus) carried multiple ARGs.202235306131
794840.9045Ciprofloxacin increased abundance of antibiotic resistance genes and shaped microbial community in epiphytic biofilm on Vallisneria spiralis in mesocosmic wetland. This study investigated the fate of ciprofloxacin (CIP) in wetlands dominated by Vallisneria spiralis. About 99% of CIP was degraded from overlaying water within 4 days of treatment but significantly inhibited the nutrient removal capacity (TN, TP, and COD) by causing a drastic reduction in microbial aggregation in epiphytic biofilm and bacterial biodiversity. CIP triggered resistance mechanisms among dominant bacteria phyla such as Proteobacteria, Actinobacteria, and Planctomycetes causing their increased relative abundance. Additionally, the relative abundances of eukaryotic microorganisms (including; Chloroplastida, Metazoa, and Rhizaria) and 13 ARGs subtypes (including; Efflux pump, Tetracycline, Multi-drug, Rifampin, Beta-lactam, Peptide, Trimethoprim) were significantly increased. While dominant metabolic pathways such as Carbohydrate, amino acid, energy and nucleotide metabolism were inhibited. This study revealed that V. spiralis has great sorption capacity for CIP than sediment and though CIP was effectively removed from the overlying water, it caused a prolonged effect on the epiphytic biofilm microbial communities.202133412499
811550.9044Effects of reductive soil disinfestation on potential pathogens and antibiotic resistance genes in soil. Reductive soil disinfestation (RSD) is commonly employed for soil remediation in greenhouse cultivation. However, its influence on antibiotic resistance genes (ARGs) in soil remains uncertain. This study investigated the dynamic changes in soil communities, potential bacterial pathogens, and ARG profiles under various organic material treatments during RSD, including distillers' grains, potato peel, peanut vine, and peanut vine combined with charcoal. Results revealed that applying diverse organic materials in RSD significantly altered bacterial community composition and diminished the relative abundance of potential bacterial pathogens (P < 0.05). The relative abundance of high-risk ARGs decreased by 10.7%-30.6% after RSD treatments, the main decreased ARG subtypes were AAC(3)_Via, dfrA1, ErmB, lnuB, aadA. Actinobacteria was the primary host of ARGs and was suppressed by RSD. Soil physicochemical properties, such as total nitrogen, soil pH, total carbon, were crucial factors affecting ARG profiles. Our findings demonstrated that RSD treatment inhibited pathogenic bacteria and could be an option for reducing high-risk ARG proliferation in soil.202539306413
692160.9043Impacts of Chemical and Organic Fertilizers on the Bacterial Communities, Sulfonamides and Sulfonamide Resistance Genes in Paddy Soil Under Rice-Wheat Rotation. The responses of sulfonamides, sulfonamide-resistance genes (sul) and soil bacterial communities to different fertilization regimes were investigated by performing a field experiment using paddy soil with no fertilizer applied, chemical fertilizer applied, organic fertilizer applied, and combination of chemical and organic fertilizer applied. Applying organic fertilizer increased the bacterial community diversity and affected the bacterial community composition. Eutrophic bacteria (Bacteroidetes, Gemmatimonadetes, and Proteobacteria) were significantly enriched by applying organic fertilizer. It was also found organic fertilizer application increased sulfamethazine content and the relative abundances of sul1 and sul2 in the soil. In contrast, applying chemical fertilizer significantly increased the abundance of Nitrospirae, Parcubacteria, and Verrucomicrobia and caused no obvious changes on sul. Correlation analysis indicated that sul enrichment was associated with the increases in sulfamethazine content and potential hosts (e.g., Novosphingobium and Rhodoplanes) population. The potential ecological risks of antibiotics in paddy soil with organic fertilizer applied cannot be ignored.202236547725
811470.9041Reductive soil disinfestation attenuates antibiotic resistance genes in greenhouse vegetable soils. Reductive soil disinfestation (RSD) is an emerging technique that ameliorates soil degradation, but its effects against antibiotic resistance genes (ARGs) were unclear. Here, we examined soil properties, ARG types and numbers, and ARG profiles, and bacterial community compositions following 4 soil treatments: control; straw addition (SA); water flooding (WF); and RSD, both straw addition and water flooding. The results showed that the numbers of ARG types and subtypes decreased by 10.8% and 21.1%, respectively, after RSD, and the numbers of ARGs decreased by 18.6%. The attenuated multidrug, beta-lactam, macrolide, and phenicol resistance genes in the RSD soil corresponded to a decreased relative abundance of ARG subtypes (i.e., adeF, mdtM, TypeB_NfxB, mecA, nalC, OXA-60, and cmlA4). Taxa in phyla Proteobacteria, Actinobacteria, and Deinococcus-Thermus were the main hosts for dominant ARG subtypes and were inhibited by RSD. The selected bacterial genera and soil properties explained 83.4% of the variance in ARG composition, suggesting that the improved soil properties and the reduced potential ARG hosts produced by the interactions of straw addition and water flooding are likely responsible for ARG attenuation by RSD. Therefore, RSD has the potential to mitigate ARG pollution in soils.202134293692
871680.9041Organophosphorus mineralizing-Streptomyces species underpins uranate immobilization and phosphorus availability in uranium tailings. Phosphate-solubilizing bacteria (PSB) are important but often overlooked regulators of uranium (U) cycling in soil. However, the impact of PSB on uranate fixation coupled with the decomposition of recalcitrant phosphorus (P) in mining land remains poorly understood. Here, we combined gene amplicon sequencing, metagenome and metatranscriptome sequencing analysis and strain isolation to explore the effects of PSB on the stabilization of uranate and P availability in U mining areas. We found that the content of available phosphorus (AP), carbonate-U and Fe-Mn-U oxides in tailings was significantly (P < 0.05) higher than their adjacent soils. Also, organic phosphate mineralizing (PhoD) bacteria (e.g., Streptomyces) and inorganic phosphate solubilizing (gcd) bacteria (e.g., Rhodococcus) were enriched in tailings and soils, but only organic phosphate mineralizing-bacteria substantially contributed to the AP. Notably, most genes involved in organophosphorus mineralization and uranate resistance were widely present in tailings rather than soil. Comparative genomics analyses supported that organophosphorus mineralizing-Streptomyces species could increase soil AP content and immobilize U(VI) through organophosphorus mineralization (e.g., PhoD, ugpBAEC) and U resistance related genes (e.g., petA). We further demonstrated that the isolated Streptomyces sp. PSBY1 could enhance the U(VI) immobilization mediated by the NADH-dependent ubiquinol-cytochrome c reductase (petA) through decomposing organophosphorous compounds. This study advances our understanding of the roles of PSB in regulating the fixation of uranate and P availability in U tailings.202438908177
794990.9034Tetracycline and quinolone contamination mediate microbial and antibiotic resistant gene composition in epiphytic biofilms of mesocosmic wetlands. The fate and ecological impact of antibiotics on aquatic ecosystems have not been properly elucidated in mesocosm wetlands scale. This study explored how tetracyclines (TCs, including tetracycline TC and oxytetracycline) and fluoroquinolones (QNs, including ciprofloxacin CIP and levofloxacin) affect mesocosm wetlands vegetated by V. spiralis, focusing on their impact on epiphytic biofilm microbial communities and antibiotic resistance genes (ARGs). Results showed that submerged plants absorbed more antibiotics than sediment. Both TCs and QNs disrupted microbial communities in different ways and increased eukaryotic community diversity in a concentration-dependent manner (2-4 mg/L for CIP, 4-8 mg/L for TC). TCs mainly inhibited epiphytic bacteria, while CIP increased bacterial phyla abundance. TC reduced Cyanobacteriota, Acidobacteriota, and Patescibacteria but increased Bacillota, Bacteroidota, and Armatimonadota. In contrast, CIP reduced Bacteroidota, Cyanobacteriota, and Gemmatimonadota but increased Bacillota, Planctomycetota, and Acidobacteriota. Significant differences in ARG profiles were observed between QNs and TCs, with TCs having a more substantial effect on ARGs due to their stronger impact on bacterial communities. Both antibiotics raised ARG levels with higher concentrations, particularly for multidrug resistance, tetracyclines, trimethoprim, sulfonamides, aminoglycosides, and fosfomycin, emphasizing their role in antimicrobial resistance. The study suggests that antibiotics can either stimulate or inhibit ARGs depending on their effects on bacterial communities. This study provides key evidence on the ecological mechanisms underlying the impact of TCs and QNs on epiphytic microbes of mesocosm wetlands.202439321725
6379100.9032Shotgun metagenome guided exploration of anthropogenically driven resistomic hotspots within Lonar soda lake of India. Anthropogenic activities mediated antibiotic resistance genes (ARGs) in the pristine aquatic bodies (lakes) is raising concern worldwide. Long read shotgun sequencing was used to assess taxonomic diversity, distribution of ARGs and metal resistance genes (MRGs) and mobile genetic elements (MGEs) in six sites within hypersaline Lonar soda lake (India) prone to various anthropogenic activities. Proteobacteria and Euryarchaeota were dominant phyla under domain Bacteria and Archaea respectively. Higher abundance of Bacteroidetes was pragmatic at sites 18LN5 and 18LN6. Functional analysis indicated 26 broad-spectrum ARGs types, not reported earlier in this ecosystem. Abundant ARG types identified were multidrug efflux, glycopepetide, bacitracin, tetracycline and aminogylcoside resistance. Sites 18LN1 and 18LN5 depicted 167 and 160 different ARGs subtypes respectively and rpoB2, bcrA, tetA(48), mupA, ompR, patA, vanR and multidrug ABC transporter genes were present in all samples. The rpoB2 gene was dominant in 18LN1, whereas bcrA gene in 18LN2-18LN6 sites. Around 24 MRGs types were detected with higher abundance of arsenic in 18LN1 and copper in 18LN2-18LN6, signifying metal contamination linked to MRGs. The bacterial taxa Pseudomonas, Thioalkalivibrio, Burkholderia, Clostridium, Paenibacillus, Bacillus and Streptomyces were significantly associated with ARGs. This study highlights the resistomic hotspots in the lake for deploying policies for conservation efforts.202032155479
7950110.9032Fate and removal of fluoroquinolone antibiotics in mesocosmic wetlands: Impact on wetland performance, resistance genes and microbial communities. The fate of fluoroquinolone antibiotics norfloxacin and ofloxacin were investigated in mesocosmic wetlands, along with their effects on nutrients removal, antibiotic resistance genes (ARGs) and epiphytic microbial communities on Hydrilla verticillate using bionic plants as control groups. Approximately 99% of norfloxacin and ofloxacin were removed from overlaying water, and H. verticillate inhibited fluoroquinolones accumulation in surface sediments compared to bionic plants. Partial least squares path modeling showed that antibiotics significantly inhibited the nutrient removal capacity (0.55) but had no direct effect on plant physiology. Ofloxacin impaired wetland performance more strongly than norfloxacin and more impacted the primary microbial phyla, whereas substrates played the most decisive role on microbial diversities. High antibiotics concentration shifted the most dominant phyla from Proteobacteria to Bacteroidetes and inhibited the Xenobiotics biodegradation function, contributing to the aggravation in wetland performance. Dechloromonas and Pseudomonas were regarded as the key microorganisms for antibiotics degradation. Co-occurrence network analysis excavated that microorganisms degrade antibiotics mainly through co-metabolism, and more complexity and facilitation/reciprocity between microbes attached to submerged plants compared to bionic plants. Furthermore, environmental factors influenced ARGs mainly by altering the community dynamics of differential bacteria. This study offers new insights into antibiotic removal and regulation of ARGs accumulation in wetlands with submerged macrophyte.202438569335
6905120.9028The hot air circulation ventilation composting system removes antibiotic resistance genes through competitive inhibition by core bacteria. Livestock manure is a significant reservoir of antibiotic resistance genes (ARGs). Aerobic composting technology can produce mature compost while effectively removing ARGs. In this study, we developed an energy-saving and emission-reducing hot air circulating ventilated composting technology (HACV), which had no adverse effects on the composting process or compost maturity. The HACV composting altered bacterial communities, primarily driven by heterogeneous selection among deterministic factors (65 %). Specifically, it increased the complexity of bacterial networks and promoted the colonization of high-temperature-tolerant bacteria, such as Erysipelothrix, Oceanobacillus and unclassified_f_Bacillaceae. Topological analysis revealed that core bacteria primarily functioned as connectors in composting, serving as important ARGs hosts and facilitating their spread in conventional composting. Among these, a core pathogenic bacterium (Corynebacterium) carried and transmitted ARGs with higher risks. In contrast, although the number of core bacteria (Bacillus, Oceanobacillus, Caldicoprobacter, Saccharomonospora, and Lactobacillus) increased during HACV composting, these bacteria were not potential hosts of the target ARGs. This contributed to the removal of aadE by 80.49 %. Consequently, compared to conventional composting, HACV composting was more effective at controlling risky ARGs, particularly aac(6')-Ib-cr and sul1. Furthermore, the ARGs removal mechanism primarily involved inhibiting horizontal gene transfer (HGT) in HACV composting, attributed to competition between core bacteria and ARGs hosts. In summary, HACV composting effectively promotes ARGs removal and reduces the risk of bacterial resistance. ENVIRONMENTAL IMPLICATION: In this study, we developed an energy-saving and emission-reducing hot air circulation ventilation composting technology (HACV), which effectively removes antibiotic resistance genes (ARGs). The HACV system maintained composting efficiency and maturity while driving bacterial community succession through deterministic processes (heterogeneous selection). HACV composting increased the colonization of core bacteria in the microbial network. Acting as connectors, the core bacteria are not hosts of ARGs in the HACV system, inhibiting horizontal gene transfer (HGT) and remove ARGs through competition with host bacteria.202540682888
8070130.9027Impacts of combined pollution under gradient increasing and gradient decreasing exposure modes on activated sludge: Microbial communities and antibiotic resistance genes. The responses of microbial communities and antibiotic resistance genes (ARGs) to azithromycin and copper combined pollution under gradient increasing (from 0.5 to 10 mg/L) and decreasing exposure (from 10 to 0.5 mg/L) modes were investigated. Nitrification was inhibited more obviously under gradient increasing exposure mode. Responses of archaeal community and function structure were more obvious than bacteria under both exposure modes. The dominant bacterial and archaeal compositions (Hyphomicrobium, Euryarchaeota, etc.) were affected by two exposure modes, except some rare archaea (Methanoregula and Methanosarcina). There were more positive correlations between bacteria and archaea, and Nitrospira was keystone genus. Ammonia-oxidizing archaea (0.37-3.06%) and complete ammonia oxidizers (Nitrospira_ENR4) were enriched, and Nitrososphaera_viennensis was closely related to denitrifying genes (napA/B, nosZ, etc.). 50 ARG subtypes were detected and specific ARG subtypes (aac, ImrA, etc.) proliferated in two exposure modes. Bacteria and archaea were common hosts for 24 ARGs and contributed to their shifts.202234921920
7738140.9026The microbiome and its association with antibiotic resistance genes in the hadal biosphere at the Yap Trench. The hadal biosphere, the deepest part of the ocean, is known as the least-explored aquatic environment and hosts taxonomically diverse microbial communities. However, the microbiome and its association with antibiotic resistance genes (ARGs) in the hadal ecosystem remain unknown. Here, we profiled the microbiome diversity and ARG occurrence in seawater and sediments of the Yap Trench (YT) using metagenomic sequencing. Within the prokaryote (bacteria and archaea) lineages, the main components of bacteria were Gammaproteobacteria (77.76 %), Firmicutes (8.36 %), and Alphaproteobacteria (2.25 %), whereas the major components of archaea were Nitrososphaeria (6.51 %), Nanoarchaeia (0.42 %), and Thermoplasmata (0.25 %), respectively. Taxonomy of viral contigs showed that the classified viral communities in YT seawater and sediments were dominated by Podoviridae (45.96 %), Siphoviridae (29.41 %), and Myoviridae (24.63 %). A large majority of viral contigs remained uncharacterized and exhibited endemicity. A total of 48 ARGs encoding resistance to 12 antibiotic classes were identified and their hosts were bacteria and viruses. Novel ARG subtypes mexF(YTV-1), mexF(YTV-2), mexF(YTV-3), vanR(YTV-1), vanS(YTV-1) (carried by unclassified viruses), and bacA(YTB-1) (carried by phylum Firmicutes) were detected in seawater samples. Overall, our findings imply that the hadal environment of the YT is a repository of viral and ARG diversity.202235870206
8651150.9025Repercussions of Prolonged Pesticide Use on Natural Soil Microbiome Dynamics Using Metagenomics Approach. The residual pesticides in soil can affect the natural microbiome composition and genetic profile that drive nutrient cycling and soil fertility. In the present study, metagenomic approach was leveraged to determine modulations in nutrient cycling and microbial composition along with connected nexus of pesticide, antibiotic, and heavy metal resistance in selected crop and fallow soils having history of consistent pesticide applications. GC-MS analysis estimated residuals of chlorpyrifos, hexachlorbenzene, and dieldrin showing persistent nature of pesticides that pose selective pressure for microbial adaptation. Taxonomic profiling showed increased abundance of pesticide degrading Streptomyces, Xanthomonas, Cupriavidus, and Pseudomonas across the selected soils. Genes encoding for pesticide degrading cytochrome p450, organophosphorus hydrolase, aldehyde dehydrogenase, and oxidase were predominant and positively correlated with Bacillus, Sphingobium, and Burkholderia. Nitrogen-fixing genes (nifH, narB, and nir) were relatively less abundant in crop soils, correlating to the decrease in nitrogen-fixing bacteria (Anabaena, Pantoea, and Azotobacter). Microbial enzymes involved in carbon (pfkA, gap, pgi, and tpiA) and phosphorus cycle (gmbh and phnJ) were significantly higher in crop soils indicating extensive utilization of pesticide residuals as a nutrient source by the indigenous soil microbiota. Additionally, presence of antibiotic and heavy metal resistance genes suggested potential cross-resistance under pressure from pesticide residues. The results implied selective increase in pesticide degrading microbes with decrease in beneficial bacteria that resulted in reduced soil health and fertility. The assessment of agricultural soil microbial profile will provide a framework to develop sustainable agriculture practices to conserve soil health and fertility.202539096471
6385160.9024Study on microbes and antibiotic resistance genes in karst primitive mountain marshes - A case study of Niangniang Mountain in Guizhou, China. Previous research on antibiotic resistance genes and microorganisms centered on those in urban sewage treatment plants, breeding farms, hospitals and others with serious antibiotic pollution. However, at present, there are evident proofs that antibiotic resistance genes (ARGs) indeed exist in a primitive environment hardly without any human's footprints. Accordingly, an original karst mountain swamp ecosystem in Niangniang Mountain, Guizhou, China, including herbaceous swamp, shrub swamp, sphagnum bog and forest swamp, was selected to analyze the physical and chemical parameters of sediments. Moreover, microbial compositions, functions, as well as their connections with ARGs were assayed and analyzed using metagenomic technology. The results showed that there was no significant difference in the dominant microorganisms and ARGs in the four marshes, in which the dominant bacteria phyla were Proteobacteria (37.82 %), Acidobacteriota (22.17 %) and Actinobacteriota (20.64 %); the dominant archaea Euryarchaeota. (1.00 %); and the dominant eukaryotes Ascomycota (0.07 %), with metabolism as their major functions. Based on the ARDB database, the number of ARGs annotated reached 209 including 30 subtypes, and the dominant ARGs were all Bacitracin resistance genes (bacA, 84.77 %). In terms of the diversity of microorganisms and ARGs, the herbaceous swamp ranked the top, and the shrub swamp were at the bottom. Correlation analysis between microorganisms and resistance genes showed that, apart from aac2ic, macB, smeE, tetQ, and tetL, other ARGs were positively correlated with microorganisms. Among them, baca coexisted with microorganisms. Pearson correlation analysis results showed that contrary to ARGs, microorganisms were more affected by environmental factors.202236306620
7164170.9023Anthropogenic pressures amplify high-risk antibiotic resistome via co-selection among biocide resistance, virulence, and antibiotic resistance genes in the Ganjiang River basin: Drivers diverge in densely versus sparsely populated reaches. As the largest river in the Poyang Lake system, the Ganjiang River faces escalating anthropogenic pressures that amplify resistance gene dissemination. This study integrated antibiotic resistance genes (ARGs), biocide resistance genes (BRGs), and virulence factor genes (VFGs) to reveal their co-selection mechanisms and divergent environmental drivers between densely (DES) and sparsely populated (SPAR) regions of the Ganjiang River basin. The microbial and viral communities and structures differed significantly between the DES and SPAR regions (PERMANOVA, p < 0.001). Midstream DES areas were hotspots for ARGs/BRGs/VFGs enrichment, with peak enrichment multiples reaching 10.2, 5.7, and 5.9-fold respectively. Procrustes analysis revealed limited dependence of ARGs transmission on mobile genetic elements (MGEs) (p > 0.05). Separately, 74 % of dominant ARGs (top 1 %) showed strong correlations with BRGs (r(2) = 0.973, p < 0.01) and VFGs (r(2) = 0.966, p < 0.01) via co-selection. Pathogenic Pseudomonas spp. carrying multidrug-resistant ARGs, BRGs, and adhesion-VFGs were identified as high-risk vectors. In SPAR areas, anthropogenic pressure directly dominated ARGs risk (RC = 54.2 %, β = 0.39, p < 0.05), with biological factors as secondary contributors (RC = 45.8 %, β = 0.33, p < 0.05). In contrast, DES regions showed anthropogenic pressure exerting broader, enduring influences across microorganisms, physicochemical parameters, and biological factors, escalating ARGs risks through diverse pathways, with BRGs/VFGs acting as direct drivers. This study proposes establishing a risk prevention system using BRGs and pathogenic microorganisms as early-warning indicators.202540858019
7945180.9022Effects of eutrophication on the horizontal transfer of antibiotic resistance genes in microalgal-bacterial symbiotic systems. Overloading of nutrients such as nitrogen causes eutrophication of freshwater bodies. The spread of antibiotic resistance genes (ARGs) poses a threat to ecosystems. However, studies on the enrichment and spread of ARGs from increased nitrogen loading in algal-bacterial symbiotic systems are limited. In this study, the transfer of extracellular kanamycin resistance (KR) genes from large (RP4) small (pEASY-T1) plasmids into the intracellular and extracellular DNA (iDNA, eDNA) of the inter-algal environment of Chlorella pyrenoidosa was investigated, along with the community structure of free-living (FL) and particle-attached (PA) bacteria under different nitrogen source concentrations (0-2.5 g/L KNO(3)). The results showed that KR gene abundance in the eDNA adsorbed on solid particles (D-eDNA) increased initially and then decreased with increasing nitrogen concentration, while the opposite was true for the rest of the free eDNA (E-eDNA). Medium nitrogen concentrations promoted the transfer of extracellular KR genes into the iDNA attached to algal microorganisms (A-iDNA), eDNA attached to algae (B-eDNA), and the iDNA of free microorganisms (C-iDNA); high nitrogen contributed to the transfer of KR genes into C-iDNA. The highest percentage of KR genes was found in B-eDNA with RP4 plasmid treatment (66.2%) and in C-iDNA with pEASY-T1 plasmid treatment (86.88%). In addition, dissolved oxygen (DO) significantly affected the bacterial PA and FL community compositions. Nephelometric turbidity units (NTU) reflected the abundance of ARGs in algae. Proteobacteria, Cyanobacteria, Bacteroidota, and Actinobacteriota were the main potential hosts of ARGs. These findings provide new insights into the distribution and dispersal of ARGs in the phytoplankton inter-algal environment.202438493856
8657190.9022The Phytoplankton Taxon-Dependent Oil Response and Its Microbiome: Correlation but Not Causation. Phytoplankton strongly interact with their associated bacteria, both attached (PA), and free-living (FL), and bacterial community structures can be specific to phytoplankton species. Similarly, responses to environmental stressors can vary by taxon, as exemplified by observed shifts in phytoplankton community structure from diatoms to phytoflagellates after the Deepwater Horizon (DWH) oil spill. Here, we assess the extent to which associated bacteria influence the phytoplankton taxon-specific oil response by exposing xenic and axenic strains of three phytoplankton species to oil and/or dispersant. The dinoflagellates Amphidinium carterae and Peridinium sociale, and the diatom Skeletonema sp., all harbored significantly distinct bacterial communities that reflected their host oil response. Oil degrading bacteria were detected in both PA and FL communities of the oil resistant dinoflagellates, but their FL bacteria were more efficient in lipid hydrolysis, a proxy for oil degradation capability. Inversely, the growth rate and photosynthetic parameters of the diatom Skeletonema sp. was the most impacted by dispersed oil compared to the dinoflagellates, and oil-degrading bacteria were not significantly associated to its microbiome, even in the dispersed oil treatment. Moreover, the FL bacteria of Skeletonema did not show significant oil degradation. Yet, the lack of consistent significant differences in growth or photosynthetic parameters between the xenic and axenic cultures after oil exposure suggest that, physiologically, the associated bacteria do not modify the phytoplankton oil response. Instead, both oil resistance and phycosphere composition appear to be species-specific characteristics that are not causally linked. This study explores one aspect of what is undoubtedly a complex suite of interactions between phytoplankton and their associated bacteria; future analyses would benefit from studies of genes and metabolites that mediate algal-bacterial exchanges.201930915045