WITHIN - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
769800.9995Detecting horizontal gene transfer with metagenomics co-barcoding sequencing. Horizontal gene transfer (HGT) is the process through which genetic information is transferred between different genomes and that played a crucial role in bacterial evolution. HGT can enable bacteria to rapidly acquire antibiotic resistance and bacteria that have acquired resistance is spreading within the microbiome. Conventional methods of characterizing HGT patterns include short-read metagenomic sequencing (short-reads mNGS), long-read sequencing, and single-cell sequencing. These approaches present several limitations, such as short-read fragments, high amounts of input DNA, and sequencing costs, respectively. Here, we attempt to circumvent present limitations to detect HGT by developing a metagenomics co-barcode sequencing workflow (MECOS) and applying it to the human and mouse gut microbiomes. In addition to that, we have over 10-fold increased contig length compared to short-reads mNGS; we also obtained exceeding 30 million paired reads with co-barcode information. Applying the novel bioinformatic pipeline, we integrated this co-barcoding information and the context information from long reads, and observed over 50-fold HGT events after we corrected the potential wrong HGT events. Specifically, we detected approximately 3,000 HGT blocks in individual samples, encompassing ~6,000 genes and ~100 taxonomic groups, including loci conferring tetracycline resistance through ribosomal protection. MECOS provides a valuable tool for investigating HGT and advance our understanding on the evolution of natural microbial communities within hosts.IMPORTANCEIn this study, to better identify horizontal gene transfer (HGT) in individual samples, we introduce a new co-barcoding sequencing system called metagenomics co-barcoding sequencing (MECOS), which has three significant improvements: (i) long DNA fragment extraction, (ii) a special transposome insertion, (iii) hybridization of DNA to barcode beads, and (4) an integrated bioinformatic pipeline. Using our approach, we have over 10-fold increased contig length compared to short-reads mNGS, and observed over 50-fold HGT events after we corrected the potential wrong HGT events. Our results indicate the presence of approximately 3,000 HGT blocks, involving roughly 6,000 genes and 100 taxonomic groups in individual samples. Notably, these HGT events are predominantly enriched in genes that confer tetracycline resistance via ribosomal protection. MECOS is a useful tool for investigating HGT and the evolution of natural microbial communities within hosts, thereby advancing our understanding of microbial ecology and evolution.202438315121
378210.9995CRISPR spacers acquired from plasmids primarily target backbone genes, making them valuable for predicting potential hosts and host range. In recent years, there has been a surge in metagenomic studies focused on identifying plasmids in environmental samples. Although these studies have unearthed numerous novel plasmids, enriching our understanding of their environmental roles, a significant gap remains: the scarcity of information regarding the bacterial hosts of these newly discovered plasmids. Furthermore, even when plasmids are identified within bacterial isolates, the reported host is typically limited to the original isolate, with no insights into alternative hosts or the plasmid's potential host range. Given that plasmids depend on hosts for their existence, investigating plasmids without the knowledge of potential hosts offers only a partial perspective. This study introduces a method for identifying potential hosts and host ranges for plasmids through alignment with CRISPR spacers. To validate the method, we compared the PLSDB plasmids database with the CRISPR spacers database, yielding host predictions for 46% of the plasmids. When compared with reported hosts, our predictions achieved 84% concordance at the family level and 99% concordance at the phylum level. Moreover, the method frequently identified multiple potential hosts for a plasmid, thereby enabling predictions of alternative hosts and the host range. Notably, we found that CRISPR spacers predominantly target plasmid backbone genes while sparing functional genes, such as those linked to antibiotic resistance, aligning with our hypothesis that CRISPR spacers are acquired from plasmid-specific regions rather than insertion elements from diverse sources. Finally, we illustrate the network of connections among different bacterial taxa through plasmids, revealing potential pathways for horizontal gene transfer.IMPORTANCEPlasmids are notorious for their role in distributing antibiotic resistance genes, but they may also carry and distribute other environmentally important genes. Since plasmids are not free-living entities and rely on host bacteria for survival and propagation, predicting their hosts is essential. This study presents a method for predicting potential hosts for plasmids and offers insights into the potential paths for spreading functional genes between different bacteria. Understanding plasmid-host relationships is crucial for comprehending the ecological and clinical impact of plasmids and implications for various biological processes.202439508585
378320.9994Ecology drives a global network of gene exchange connecting the human microbiome. Horizontal gene transfer (HGT), the acquisition of genetic material from non-parental lineages, is known to be important in bacterial evolution. In particular, HGT provides rapid access to genetic innovations, allowing traits such as virulence, antibiotic resistance and xenobiotic metabolism to spread through the human microbiome. Recent anecdotal studies providing snapshots of active gene flow on the human body have highlighted the need to determine the frequency of such recent transfers and the forces that govern these events. Here we report the discovery and characterization of a vast, human-associated network of gene exchange, large enough to directly compare the principal forces shaping HGT. We show that this network of 10,770 unique, recently transferred (more than 99% nucleotide identity) genes found in 2,235 full bacterial genomes, is shaped principally by ecology rather than geography or phylogeny, with most gene exchange occurring between isolates from ecologically similar, but geographically separated, environments. For example, we observe 25-fold more HGT between human-associated bacteria than among ecologically diverse non-human isolates (P = 3.0 × 10(-270)). We show that within the human microbiome this ecological architecture continues across multiple spatial scales, functional classes and ecological niches with transfer further enriched among bacteria that inhabit the same body site, have the same oxygen tolerance or have the same ability to cause disease. This structure offers a window into the molecular traits that define ecological niches, insight that we use to uncover sources of antibiotic resistance and identify genes associated with the pathology of meningitis and other diseases.201122037308
965030.9994Plasmid-Encoded Traits Vary across Environments. Plasmids are key mobile genetic elements in bacterial evolution and ecology as they allow the rapid adaptation of bacteria under selective environmental changes. However, the genetic information associated with plasmids is usually considered separately from information about their environmental origin. To broadly understand what kinds of traits may become mobilized by plasmids in different environments, we analyzed the properties and accessory traits of 9,725 unique plasmid sequences from a publicly available database with known bacterial hosts and isolation sources. Although most plasmid research focuses on resistance traits, such genes made up <1% of the total genetic information carried by plasmids. Similar to traits encoded on the bacterial chromosome, plasmid accessory trait compositions (including general Clusters of Orthologous Genes [COG] functions, resistance genes, and carbon and nitrogen genes) varied across seven broadly defined environment types (human, animal, wastewater, plant, soil, marine, and freshwater). Despite their potential for horizontal gene transfer, plasmid traits strongly varied with their host's taxonomic assignment. However, the trait differences across environments of broad COG categories could not be entirely explained by plasmid host taxonomy, suggesting that environmental selection acts on the plasmid traits themselves. Finally, some plasmid traits and environments (e.g., resistance genes in human-related environments) were more often associated with mobilizable plasmids (those having at least one detected relaxase) than others. Overall, these findings underscore the high level of diversity of traits encoded by plasmids and provide a baseline to investigate the potential of plasmids to serve as reservoirs of adaptive traits for microbial communities. IMPORTANCE Plasmids are well known for their role in the transmission of antibiotic resistance-conferring genes. Beyond human and clinical settings, however, they disseminate many other types of genes, including those that contribute to microbially driven ecosystem processes. In this study, we identified the distribution of traits genetically encoded by plasmids isolated from seven broadly categorized environments. We find that plasmid trait content varied with both bacterial host taxonomy and environment and that, on average, half of the plasmids were potentially mobilizable. As anthropogenic activities impact ecosystems and the climate, investigating and identifying the mechanisms of how microbial communities can adapt will be imperative for predicting the impacts on ecosystem functioning.202336629415
965140.9994Host- plasmid network structure in wastewater is linked to antimicrobial resistance genes. As mobile genetic elements, plasmids are central for our understanding of antimicrobial resistance spread in microbial communities. Plasmids can have varying fitness effects on their host bacteria, which will markedly impact their role as antimicrobial resistance vectors. Using a plasmid population model, we first show that beneficial plasmids interact with a higher number of hosts than costly plasmids when embedded in a community with multiple hosts and plasmids. We then analyse the network of a natural host-plasmid wastewater community from a Hi-C metagenomics dataset. As predicted by the model, we find that antimicrobial resistance encoding plasmids, which are likely to have positive fitness effects on their hosts in wastewater, interact with more bacterial taxa than non-antimicrobial resistance plasmids and are disproportionally important for connecting the entire network compared to non- antimicrobial resistance plasmids. This highlights the role of antimicrobials in restructuring host-plasmid networks by increasing the benefits of antimicrobial resistance carrying plasmids, which can have consequences for the spread of antimicrobial resistance genes through microbial networks. Furthermore, that antimicrobial resistance encoding plasmids are associated with a broader range of hosts implies that they will be more robust to turnover of bacterial strains.202438228585
400950.9993Unraveling the role of mobile genetic elements in antibiotic resistance transmission and defense strategies in bacteria. Irrational antibiotic use contributes to the development of antibiotic resistance in bacteria, which is a major cause of healthcare-associated infections globally. Molecular research has shown that multiple resistance frequently develops from the uptake of pre-existing resistance genes, which are subsequently intensified under selective pressures. Resistant genes spread and are acquired through mobile genetic elements which are essential for facilitating horizontal gene transfer. MGEs have been identified as carriers of genetic material and are a significant player in evolutionary processes. These include insertion sequences, transposons, integrative and conjugative elements, plasmids, and genomic islands, all of which can transfer between and within DNA molecules. With an emphasis on pathogenic bacteria, this review highlights the salient features of the MGEs that contribute to the development and spread of antibiotic resistance. MGEs carry non-essential genes, including AMR and virulence genes, which can enhance the adaptability and fitness of their bacterial hosts. These elements employ evolutionary strategies to facilitate their replication and dissemination, thus enabling survival without positive selection for the harboring of beneficial genes.202540810119
400860.9993Impacts of mobile genetic elements on antimicrobial resistance genes in gram-negative pathogens: Current insights and genomic approaches. Antimicrobial resistance threatens to take 10 million lives per year by 2050. It is a recognised global health crisis and understanding the historic and current spread of resistance determinants is important for informing surveillance and control measures. The 'inheritance' of resistance is difficult to track because horizontal transfer is common. Antimicrobial resistance genes (ARGs) spread rapidly between bacteria, plasmids and chromosomes due to different mobile genetic elements (MGEs). This movement can increase the range of species carrying an ARG, simplify acquisition of multi-resistance, or otherwise alter the selective advantage associated with carriage of the ARG. MGE activity is therefore a significant factor in understanding routes of ARG dissemination. Characterising the combinations of MGEs contributing to the movement of individual ARGs is crucial. Each MGE category has unique genetic characteristics, and distinct impacts on the location and expression of associated ARGs. Here, the ways in which MGEs can meaningfully associate with ARGs are discussed. Approaches for extracting information about MGE associations from bacterial genome sequences are also considered. Accurate and informative annotations of the genetic contexts of relevant ARGs provide crucial insight into the presence of MGEs and their locations relative to ARGs. Combining this genomic information with knowledge about relevant biological processes allows more accurate conclusions to be drawn about transmission and dissemination of ARGs.202641005125
983770.9993Mobilizable genomic islands, different strategies for the dissemination of multidrug resistance and other adaptive traits. Mobile genetic elements are near ubiquitous DNA segments that revealed a surprising variety of strategies for their propagation among prokaryotes and between eukaryotes. In bacteria, conjugative elements were shown to be key drivers of evolution and adaptation by efficiently disseminating genes involved in pathogenicity, symbiosis, metabolic pathways, and antibiotic resistance. Conjugative plasmids of the incompatibility groups A and C (A/C) are important vehicles for the dissemination of antibiotic resistance and the consequent global emergence and spread of multi-resistant pathogenic bacteria. Beyond their own mobility, A/C plasmids were also shown to drive the mobility of unrelated non-autonomous mobilizable genomic islands, which may also confer further advantageous traits. In this commentary, we summarize the current knowledge on different classes of A/C-dependent mobilizable genomic islands and we discuss other DNA hitchhikers and their implication in bacterial evolution. Furthermore, we glimpse at the complex genetic network linking autonomous and non-autonomous mobile genetic elements, and at the associated flow of genetic information between bacteria.201728439449
400780.9993Detecting horizontal gene transfer among microbiota: an innovative pipeline for identifying co-shared genes within the mobilome through advanced comparative analysis. Horizontal gene transfer (HGT) is a key driver in the evolution of bacterial genomes. The acquisition of genes mediated by HGT may enable bacteria to adapt to ever-changing environmental conditions. Long-term application of antibiotics in intensive agriculture is associated with the dissemination of antibiotic resistance genes among bacteria with the consequences causing public health concern. Commensal farm-animal-associated gut microbiota are considered the reservoir of the resistance genes. Therefore, in this study, we identified known and not-yet characterized mobilized genes originating from chicken and porcine fecal samples using our innovative pipeline followed by network analysis to provide appropriate visualization to support proper interpretation.202438099617
964990.9993Bacteria of the order Burkholderiales are original environmental hosts of type II trimethoprim resistance genes (dfrB). It is consensus that clinically relevant antibiotic resistance genes have their origin in environmental bacteria, including the large pool of primarily benign species. Yet, for the vast majority of acquired antibiotic resistance genes, the original environmental host(s) has not been identified to date. Closing this knowledge gap could improve our understanding of how antimicrobial resistance proliferates in the bacterial domain and shed light on the crucial step of initial resistance gene mobilization in particular. Here, we combine information from publicly available long- and short-read environmental metagenomes as well as whole-genome sequences to identify the original environmental hosts of dfrB, a family of genes conferring resistance to trimethoprim. Although this gene family stands in the shadow of the more widespread, structurally different dfrA, it has recently gained attention through the discovery of several new members. Based on the genetic context of dfrB observed in long-read metagenomes, we predicted bacteria of the order Burkholderiales to function as original environmental hosts of the predominant gene variants in both soil and freshwater. The predictions were independently confirmed by whole-genome datasets and statistical correlations between dfrB abundance and taxonomic composition of environmental bacterial communities. Our study suggests that Burkholderiales in general and the family Comamonadaceae in particular represent environmental origins of dfrB genes, some of which now contribute to the acquired resistome of facultative pathogens. We propose that our workflow centered on long-read environmental metagenomes allows for the identification of the original hosts of further clinically relevant antibiotic resistance genes.202439658215
9719100.9993Dynamics of antibiotic resistance genes in plasmids and bacteriophages. This brief review explores the intricate interplay between bacteriophages and plasmids in the context of antibiotic resistance gene (ARG) dissemination. Originating from studies in the late 1950s, the review traces the evolution of knowledge regarding extrachromosomal factors facilitating horizontal gene transfer and adaptation in bacteria. Analyzing the gene repertoires of plasmids and bacteriophages, the study highlights their contributions to bacterial evolution and adaptation. While plasmids encode essential and accessory genes influencing host characteristics, bacteriophages carry auxiliary metabolic genes (AMGs) that augment host metabolism. The debate on phages carrying ARGs is explored through a critical evaluation of various studies, revealing contrasting findings from researchers. Additionally, the review addresses the interplay between prophages and plasmids, underlining their similarities and divergences. Based on the available literature evidence, we conclude that plasmids generally encode ARGs while bacteriophages typically do not contain ARGs. But extra-chromosomaly present prophages with plasmid characteristics can encode and disseminate ARGs.202538651513
7480110.9993Genetic compatibility and ecological connectivity drive the dissemination of antibiotic resistance genes. The dissemination of mobile antibiotic resistance genes (ARGs) via horizontal gene transfer is a significant threat to public health globally. The flow of ARGs into and between pathogens, however, remains poorly understood, limiting our ability to develop strategies for managing the antibiotic resistance crisis. Therefore, we aim to identify genetic and ecological factors that are fundamental for successful horizontal ARG transfer. We used a phylogenetic method to identify instances of horizontal ARG transfer in ~1 million bacterial genomes. This data was then integrated with >20,000 metagenomes representing animal, human, soil, water, and wastewater microbiomes to develop random forest models that can reliably predict horizontal ARG transfer between bacteria. Our results suggest that genetic incompatibility, measured as nucleotide composition dissimilarity, negatively influences the likelihood of transfer of ARGs between evolutionarily divergent bacteria. Conversely, environmental co-occurrence increases the likelihood, especially in humans and wastewater, in which several environment-specific dissemination patterns are observed. This study provides data-driven ways to predict the spread of ARGs and provides insights into the mechanisms governing this evolutionary process.202540090954
9692120.9993Host ecology regulates interspecies recombination in bacteria of the genus Campylobacter. Horizontal gene transfer (HGT) can allow traits that have evolved in one bacterial species to transfer to another. This has potential to rapidly promote new adaptive trajectories such as zoonotic transfer or antimicrobial resistance. However, for this to occur requires gaps to align in barriers to recombination within a given time frame. Chief among these barriers is the physical separation of species with distinct ecologies in separate niches. Within the genus Campylobacter, there are species with divergent ecologies, from rarely isolated single-host specialists to multihost generalist species that are among the most common global causes of human bacterial gastroenteritis. Here, by characterizing these contrasting ecologies, we can quantify HGT among sympatric and allopatric species in natural populations. Analyzing recipient and donor population ancestry among genomes from 30 Campylobacter species, we show that cohabitation in the same host can lead to a six-fold increase in HGT between species. This accounts for up to 30% of all SNPs within a given species and identifies highly recombinogenic genes with functions including host adaptation and antimicrobial resistance. As described in some animal and plant species, ecological factors are a major evolutionary force for speciation in bacteria and changes to the host landscape can promote partial convergence of distinct species through HGT.202235191377
3785130.9993A network approach to decipher the dynamics of Lysobacteraceae plasmid gene sharing. Plasmids provide an efficient vehicle for gene sharing among bacterial populations, playing a key role in bacterial evolution. Network approaches are particularly suitable to represent multipartite relationships and are useful tools to characterize plasmid-mediated gene sharing events. The bacterial family Lysobacteraceae includes plant commensal, plant pathogenic and opportunistic human pathogens for which plasmid-mediated adaptation has been reported. We searched for homologues of plasmid gene sequences from this family in the entire diversity of available bacterial genome sequences and built a network of plasmid gene sharing from the results. While plasmid genes are openly shared between the bacteria of the family Lysobacteraceae, taxonomy strongly defined the boundaries of these exchanges, which only barely reached other families. Most inferred plasmid gene sharing events involved a few genes only, and evidence of full plasmid transfers were restricted to taxonomically closely related taxa. We detected multiple plasmid-chromosome gene transfers, including the known sharing of a heavy metal resistance transposon. In the network, bacterial lifestyles shaped substructures of isolates colonizing specific ecological niches and harbouring specific types of resistance genes. Genes associated with pathogenicity or antibiotic and metal resistance were among those that most importantly structured the network, highlighting the imprints of human-mediated selective pressure on pathogenic populations. A massive sequencing effort on environmental Lysobacteraceae is therefore required to refine our understanding of how this reservoir fuels the emergence and the spread of genes among this family and its potential impact on plant, animal and human health.202335593155
9838140.9993Interactions between plasmids and other mobile genetic elements affect their transmission and persistence. Plasmids are genetic elements that play a role in bacterial evolution by providing new genes that promote adaptation to diverse conditions. Plasmids are also known to reduce bacterial competitiveness in the absence of selection for plasmid-encoded traits. It is easier to understand plasmid persistence when considering the evidence that plasmid maintenance can improve during co-evolution with the bacterial host, i.e. the chromosome. However, bacteria isolated from nature often harbor diverse mobile elements: phages, transposons, genomic islands and even other plasmids. Recent interest has emerged on the role such elements play on the persistence and evolution of plasmids. Here, we mainly review interactions between different plasmids, but also discuss their interactions with other genetic elements. We focus on interactions that impact fundamental plasmid traits, such as the fitness effect imposed on their hosts and the transfer efficiency into new host cells. We illustrate these phenomena with examples concerning clinically relevant organisms and the spread of plasmids carrying antibiotic resistance genes and virulence factors.201930771401
3774150.9993Forecasting the dissemination of antibiotic resistance genes across bacterial genomes. Antibiotic resistance spreads among bacteria through horizontal transfer of antibiotic resistance genes (ARGs). Here, we set out to determine predictive features of ARG transfer among bacterial clades. We use a statistical framework to identify putative horizontally transferred ARGs and the groups of bacteria that disseminate them. We identify 152 gene exchange networks containing 22,963 bacterial genomes. Analysis of ARG-surrounding sequences identify genes encoding putative mobilisation elements such as transposases and integrases that may be involved in gene transfer between genomes. Certain ARGs appear to be frequently mobilised by different mobile genetic elements. We characterise the phylogenetic reach of these mobilisation elements to predict the potential future dissemination of known ARGs. Using a separate database with 472,798 genomes from Streptococcaceae, Staphylococcaceae and Enterobacteriaceae, we confirm 34 of 94 predicted mobilisations. We explore transfer barriers beyond mobilisation and show experimentally that physiological constraints of the host can explain why specific genes are largely confined to Gram-negative bacteria although their mobile elements support dissemination to Gram-positive bacteria. Our approach may potentially enable better risk assessment of future resistance gene dissemination.202133893312
4027160.9993Good microbes, bad genes? The dissemination of antimicrobial resistance in the human microbiome. A global rise in antimicrobial resistance among pathogenic bacteria has proved to be a major public health threat, with the rate of multidrug-resistant bacterial infections increasing over time. The gut microbiome has been studied as a reservoir of antibiotic resistance genes (ARGs) that can be transferred to bacterial pathogens via horizontal gene transfer (HGT) of conjugative plasmids and mobile genetic elements (the gut resistome). Advances in metagenomic sequencing have facilitated the identification of resistome modulators, including live microbial therapeutics such as probiotics and fecal microbiome transplantation that can either expand or reduce the abundances of ARG-carrying bacteria in the gut. While many different gut microbes encode for ARGs, they are not uniformly distributed across, or transmitted by, various members of the microbiome, and not all are of equal clinical relevance. Both experimental and theoretical approaches in microbial ecology have been applied to understand differing frequencies of ARG horizontal transfer between commensal microbes as well as between commensals and pathogens. In this commentary, we assess the evidence for the role of commensal gut microbes in encoding antimicrobial resistance genes, the degree to which they are shared both with other commensals and with pathogens, and the host and environmental factors that can impact resistome dynamics. We further discuss novel sequencing-based approaches for identifying ARGs and predicting future transfer events of clinically relevant ARGs from commensals to pathogens.202235332832
9667170.9993Novel resistance functions uncovered using functional metagenomic investigations of resistance reservoirs. Rates of infection with antibiotic-resistant bacteria have increased precipitously over the past several decades, with far-reaching healthcare and societal costs. Recent evidence has established a link between antibiotic resistance genes in human pathogens and those found in non-pathogenic, commensal, and environmental organisms, prompting deeper investigation of natural and human-associated reservoirs of antibiotic resistance. Functional metagenomic selections, in which shotgun-cloned DNA fragments are selected for their ability to confer survival to an indicator host, have been increasingly applied to the characterization of many antibiotic resistance reservoirs. These experiments have demonstrated that antibiotic resistance genes are highly diverse and widely distributed, many times bearing little to no similarity to known sequences. Through unbiased selections for survival to antibiotic exposure, functional metagenomics can improve annotations by reducing the discovery of false-positive resistance and by allowing for the identification of previously unrecognizable resistance genes. In this review, we summarize the novel resistance functions uncovered using functional metagenomic investigations of natural and human-impacted resistance reservoirs. Examples of novel antibiotic resistance genes include those highly divergent from known sequences, those for which sequence is entirely unable to predict resistance function, bifunctional resistance genes, and those with unconventional, atypical resistance mechanisms. Overcoming antibiotic resistance in the clinic will require a better understanding of existing resistance reservoirs and the dissemination networks that govern horizontal gene exchange, informing best practices to limit the spread of resistance-conferring genes to human pathogens.201323760651
9258180.9993Plasmid Viability Depends on the Ecological Setting of Hosts within a Multiplasmid Community. Plasmids are extrachromosomal genetic elements, some of which disperse horizontally between different strains and species of bacteria. They are a major factor in the dissemination of virulence factors and antibiotic resistance. Understanding the ecology of plasmids has a notable anthropocentric value, and therefore, the interactions between bacterial hosts and individual plasmids have been studied in detail. However, bacterial systems often carry multiple genetically distinct plasmids, but dynamics within these multiplasmid communities have remained unstudied. Here, we set to investigate the survival of 11 mobilizable or conjugative plasmids under five different conditions where the hosts had a differing ecological status in comparison to other bacteria in the system. The key incentive was to determine whether plasmid dynamics are reproducible and whether there are tradeoffs in plasmid fitness that stem from the ecological situation of their initial hosts. Growth rates and maximum population densities increased in all communities and treatments over the 42-day evolution experiment, although plasmid contents at the end varied notably. Large multiresistance-conferring plasmids were unfit when the community also contained smaller plasmids with fewer resistance genes. This suggests that restraining the use of a few antibiotics can make bacterial communities sensitive to others. In general, the presence or absence of antibiotic selection and plasmid-free hosts (of various fitnesses) has a notable influence on which plasmids survive. These tradeoffs in different settings can help explain, for example, why some resistance plasmids have an advantage during a rapid proliferation of antibiotic-sensitive pathogens whereas others dominate in alternative situations. IMPORTANCE Conjugative and mobilizable plasmids are ubiquitous in bacterial systems. Several different plasmids can compete within a single bacterial community. We here show that the ecological setting of the host bacteria has a notable effect on the survival of individual plasmids. Selection for opportunistic genes such as antibiotic resistance genes and the presence of plasmid-free hosts can determine which plasmids survive in the system. Host bacteria appear to adapt specifically to a situation where there are multiple plasmids present instead of alleviating the plasmid-associated fitness costs of individual plasmids. Plasmids providing antibiotic resistance survived under all conditions even if there was a constant migration of higher-fitness plasmid-free hosts and no selection via antibiotics. This study is one of the first to observe the behavior of multiple genetically different plasmids as a part of a single system.202235416702
7482190.9993Prophage-encoded antibiotic resistance genes are enriched in human-impacted environments. The spread of antibiotic resistance genes (ARGs) poses a substantial threat to human health. Phage-mediated transduction could exacerbate ARG transmission. While several case studies exist, it is yet unclear to what extent phages encode and mobilize ARGs at the global scale and whether human impacts play a role in this across different habitats. Here, we combine 38,605 bacterial genomes, 1432 metagenomes, and 1186 metatranscriptomes across 12 contrasting habitats to explore the distribution of prophages and their cargo ARGs in natural and human-impacted environments. Worldwide, we observe a significant increase in the abundance, diversity, and activity of prophage-encoded ARGs in human-impacted habitats linked with relatively higher risk of past antibiotic exposure. This effect was driven by phage-encoded cargo ARGs that could be mobilized to provide increased resistance in heterologous E. coli host for a subset of analyzed strains. Our findings suggest that human activities have altered bacteria-phage interactions, enriching ARGs in prophages and making ARGs more mobile across habitats globally.202439333115