# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2233 | 0 | 0.9921 | Assessment of the multiplex PCR-based assay Unyvero pneumonia application for detection of bacterial pathogens and antibiotic resistance genes in children and neonates. BACKGROUND: Pneumonia is a major healthcare problem. Rapid pathogen identification is critical, but often delayed due to the duration of culturing. Early, broad antibacterial therapy might lead to false-negative culture findings and eventually to the development of antibiotic resistances. We aimed to assess the accuracy of the new application Unyvero P50 based on multiplex PCR to detect bacterial pathogens in respiratory specimens from children and neonates. METHODS: In this prospective study, bronchoalveolar lavage fluids, tracheal aspirates, or pleural fluids from neonates and children were analyzed by both traditional culture methods and Unyvero multiplex PCR. RESULTS: We analyzed specimens from 79 patients with a median age of 1.8 (range 0.01-20.1). Overall, Unyvero yielded a sensitivity of 73.1% and a specificity of 97.9% compared to culture methods. Best results were observed for non-fermenting bacteria, for which sensitivity of Unyvero was 90% and specificity 97.3%, while rates were lower for Gram-positive bacteria (46.2 and 93.9%, respectively). For resistance genes, we observed a concordance with antibiogram of 75% for those specimens in which there was a cultural correlate. CONCLUSIONS: Unyvero is a fast and easy-to-use tool that might provide additional information for clinical decision making, especially in neonates and in the setting of nosocomial pneumonia. Sensitivity of the PCR for Gram-positive bacteria and important resistance genes must be improved before this application can be widely recommended. | 2018 | 29086343 |
| 2212 | 1 | 0.9920 | Distribution and drug resistance of pathogens causing urinary tract infection in patients with urinary calculi. OBJECTIVE: This study set out to clarify the distribution and drug resistance of pathogens causing urinary tract infection (UTI) in patients with urinary calculi. METHODS: Pathogens were isolated from urine samples of patients with urinary calculi also complicated with UTIs, during the period from 2015 to 2019, and the samples were cultured for drug sensitivity testing to study the drug resistance of pathogens. The results were analyzed by SPSS 22.0 software. RESULTS: Gram-negative bacteria were the main pathogens found in patients with urinary calculi complicated with UTI (84.52%). Escherichia coli, Enterococcus faecalis and Monilia albicans were the most common Gram-negative bacteria (48.84%), Gram-positive bacteria (34.78%) and fungus (29.41%), respectively. The UTI rates were higher in female patients than in male patients, and were higher in patients ≥ 60 years old compared with those < 60 years old. Escherichia coli and Klebsiella pneumoniae had the highest resistance to ampicillin and the lowest resistance to imipenem. Enterococcus faecalis Enterococcus Faecium had the highest resistance to penicillin and ampicillin, but the lowest resistance to vancomycin and linezolid. CONCLUSION: The present study found that the pathogenic bacteria found in patients with urinary calculi complicated with UTI are mainly Gram-negative bacteria; and Escherichia coli is the main pathogenic bacteria causing the infection. Gender and age may be risk factors for urinary calculi complicated with UTI. Antibiotics should be selected reasonably according to the drug resistance pattern of pathogenic bacteria in clinical anti-infection management. | 2021 | 34650726 |
| 2239 | 2 | 0.9919 | The Direct Semi-Quantitative Detection of 18 Pathogens and Simultaneous Screening for Nine Resistance Genes in Clinical Urine Samples by a High-Throughput Multiplex Genetic Detection System. BACKGROUND: Urinary tract infections (UTIs) are one the most common infections. The rapid and accurate identification of uropathogens, and the determination of antimicrobial susceptibility, are essential aspects of the management of UTIs. However, existing detection methods are associated with certain limitations. In this study, a new urinary tract infection high-throughput multiplex genetic detection system (UTI-HMGS) was developed for the semi-quantitative detection of 18 pathogens and the simultaneously screening of nine resistance genes directly from the clinical urine sample within 4 hours. METHODS: We designed and optimized a multiplex polymerase chain reaction (PCR) involving fluorescent dye-labeled specific primers to detect 18 pathogens and nine resistance genes. The specificity of the UTI-HMGS was tested using standard strains or plasmids for each gene target. The sensitivity of the UTI-HMGS assay was tested by the detection of serial tenfold dilutions of plasmids or simulated positive urine samples. We also collected clinical urine samples and used these to perform urine culture and antimicrobial susceptibility testing (AST). Finally, all urine samples were detected by UTI-HMGS and the results were compared with both urine culture and Sanger sequencing. RESULTS: UTI-HMGS showed high levels of sensitivity and specificity for the detection of uropathogens when compared with culture and sequencing. In addition, ten species of bacteria and three species of fungi were detected semi-quantitatively to allow accurate discrimination of significant bacteriuria and candiduria. The sensitivity of the UTI-HMGS for the all the target genes could reach 50 copies per reaction. In total, 531 urine samples were collected and analyzed by UTI-HMGS, which exhibited high levels of sensitivity and specificity for the detection of uropathogens and resistance genes when compared with Sanger sequencing. The results from UTI-HMGS showed that the detection rates of 15 pathogens were significantly higher (P<0.05) than that of the culture method. In addition, there were 41(7.72%, 41/531) urine samples were positive for difficult-to-culture pathogens, which were missed detected by routine culture method. CONCLUSIONS: UTI-HMGS proved to be an efficient method for the direct semi-quantitative detection of 18 uropathogens and the simultaneously screening of nine antibiotic resistance genes in urine samples. The UTI-HMGS could represent an alternative method for the clinical detection and monitoring of antibiotic resistance. | 2021 | 33912478 |
| 2207 | 3 | 0.9919 | Precision medicine in practice: unravelling the prevalence and antibiograms of urine cultures for informed decision making in federal tertiary care- a guide to empirical antibiotics therapy. BACKGROUND AND OBJECTIVES: Urinary tract infections (UTIs), one of the most prevalent bacterial infections, are facing limited treatment options due to escalating concern of antibiotic resistance. Urine cultures significantly help in identification of etiological agents responsible for these infections. Assessment of antibiotic susceptibility patterns of these bacteria aids in tackling the emerging concern of antibiotic resistance and establishment of empirical therapy guidelines. Our aim was to determine various agents responsible for urinary tract infections and to assess their antibiotic susceptibility patterns. MATERIALS AND METHODS: This cross-sectional study was performed over a period of six months from January 2023 to July 2023 in Department of Microbiology of Pakistan Institute of Medical Sciences (PIMS). RESULTS: Out of 2957 positive samples, Gram negative bacteria were the most prevalent in 1939 (65.6%) samples followed by Gram positive bacteria in 418 (14.1%) and Candida spp. in 269 (9.1%) samples. In gram negative bacteria, Escherichia coli (E. coli) was the most prevalent bacteria isolated from 1070 samples (55.2%) followed by Klebsiella pneumoniae in 397 samples (20.5%). In Gram positive bacteria, Enterococcus spp. was the most common bacteria in 213 samples (51%) followed by Staphylococcus aureus in 120 samples (28.7%). Amikacin was the most sensitive drug (91%) for Gram negative bacteria. Gram positive bacteria were most susceptible to linezolid (97%-100%). CONCLUSION: The generation of a hospital tailored antibiogram is essential for the effective management of infections and countering antibiotic resistance. By adopting antimicrobial stewardship strategies by deeper understanding of sensitivity patterns, we can effectively combat antibiotic resistance. | 2024 | 39267930 |
| 5791 | 4 | 0.9919 | Revisiting the Frequency and Antimicrobial Resistance Patterns of Bacteria Implicated in Community Urinary Tract Infections. Urinary tract infections (UTIs) are one of the most common infectious diseases at the community level. The continue misuse of antimicrobials is leading to an increase in bacterial resistance, which is a worldwide problem. The objective of this work was to study the incidence and pattern of antimicrobial resistance of the main bacteria responsible for UTI in the community of central and northern Portugal, and establish an appropriate empirical treatment. The urine samples were collected in Avelab—Laboratório Médico de Análises Clínicas over a period of 5 years (2015−2019). The urine cultures were classified as positive when bacterial growth was equal to or higher than 105 CFU/mL, and only for these cases, an antimicrobial susceptibility test was performed. Of the 106,019 samples analyzed, 15,439 had a urinary infection. Urinary infections were more frequent in females (79.6%) than in males (20.4%), affecting more elderly patients (56.9%). Escherichia coli (70.1%) was the most frequent uropathogen, followed by Klebsiella pneumoniae (8.9%). The bacteria responsible for UTI varied according to the patient’s sex, with the greatest differences being observed for Enterococcus faecalis and Pseudomonas aeruginosa, these being more prevalent in men. In general, there was a growth in bacterial resistance as the age of the patients increased. The resistance of bacteria in male patients was, in most cases, statistically different (Chi-Square test, p < 0.05) from that observed for bacteria isolated from female patients, showing, in general, higher resistance in male patients. Although E. coli was the most responsible uropathogen for UTI, it was among the bacteria most susceptible to antibiotics. The isolates of K. pneumoniae, Proteus vulgaris and Enterobacter showed high resistance to the tested antimicrobials. The most common multidrug-resistant (MDR) bacteria implicated in UTI were K. pneumoniae (40.4%) and P. aeruginosa (34.7%), but E. coli, the most responsible bacteria for UTI, showed a MDR of 23.3%. When we compared our results with the results from 10 years ago for the same region, in general, an increase in bacterial resistance was observed. The results of this study confirmed that urinary tract infections are a very common illness, caused frequently by resistant uropathogens, for which the antibiotic resistance profile has varied over a short time, even within a specific region. This indicates that periodically monitoring the microbial resistance of each region is essential in order to select the best empirical antibiotic therapy against these infections, and prevent or decrease the resistance among uropathogenic strains. | 2022 | 35740174 |
| 2319 | 5 | 0.9919 | Bacterial resistance to antibiotics and associated factors in two hospital centers in Lebanon from January 2017 to June 2017. GENERAL PRESENTATION: Resistance of bacteria to antibiotics is a universal problem. With the increase in the rate of resistance, knowledge of susceptibility patterns is essential to guide antimicrobial therapy. In Lebanon, many studies investigated this subject. OBJECTIVES: Determine the rate of multidrug and extremely drug-resistant bacteria as well as the patterns of resistance and the factors associated with this resistance. MATERIALS AND METHODS: A cross-sectional study was performed using the cultures from the labs of two university hospitals in Lebanon. Bacteria were divided into four groups: sensitive, multidrug-, extremely- and pan-drug resistant. Patient information was obtained from the medical records. Using the SPSS software for Windows, version 20 (IBM, Armonk, USA), the frequency of the bacteria, their susceptibilities and the association of resistance with seven potential factors (age, gender, diabetes mellitus, cancer, chronic kidney disease, dialysis, previous hospitalization) were studied. RESULTS: The frequency of resistance was 53.7% (39.9% multidrug-resistant and 13.8% extremely drug-resistant). Escherichia coli strains were mostly susceptible to carbapenems and tigecycline; and nitrofurantoine and fosfomycin in urine. Pseudomonas and Acinetobacter species were mostly sensitive to colistin. Klebsiella species were mostly susceptible to amikacin and carbapenems. MRSA rates were 34.8%. Association was seen between the resistant bacteria and older age, chronic kidney disease, dialysis, and previous hospitalization. CONCLUSION: Resistance of bacteria to drugs in Lebanon is increasing. Significant association is seen between these bacteria and older age, chronic kidney disease, dialysis, and previous hospitalization. | 2020 | 34368694 |
| 2437 | 6 | 0.9919 | Periodontal pathogens and tetracycline resistance genes in subgingival biofilm of periodontally healthy and diseased Dominican adults. OBJECTIVE: The objective of this study was to compare the periodontopathogen prevalence and tetracycline resistance genes in Dominican patients with different periodontal conditions. METHODS: Seventy-seven samples were collected from healthy, gingivitis, chronic (CP) and aggressive (AgP) periodontitis patients. Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Prevotella intermedia, Parvimonas micra, Eikenella corrodens and Dialister pneumosintes and 11 resistance genes were studied by PCR. P. gingivalis fimA genotype was determined. RESULTS: In healthy patients, P. micra and P. intermedia were the most and least frequently detected, respectively. T. forsythia and E. corrodens appeared in 100% of gingivitis patients. Red complex, D. pneumosintes and E. corrodens were significantly more prevalent in CP compared to healthy patients. F. nucleatum and T. denticola were detected more frequently in AgP. A. actinomycetemcomitans was the most rarely observed in all groups. The fimA II genotype was the most prevalent in periodontitis patients. Seven tetracycline-resistant genes were detected. tet(Q), tet(32) and tet(W) showed the greatest prevalence. tet(32) was significantly more prevalent in CP than in healthy patients. CONCLUSIONS: Red complex bacteria and D. pneumosintes were significantly the most prevalent species among periodontitis patients. T. forsythia was the most frequently detected in this population. To our knowledge, this is the first study describing the tet(32) gene in subgingival biofilm from healthy and periodontally diseased subjects. CLINICAL RELEVANCE: This study contributes to the knowledge on the subgingival microbiota and its resistance genes of a scarcely studied world region. Knowing the prevalence of resistance genes could impact on their clinical prescription and could raise awareness to the appropriate use of antibiotics. | 2016 | 26121972 |
| 1462 | 7 | 0.9918 | Phenotypic synergy testing of ceftazidime-avibactam with aztreonam in a university hospital having high number of metallobetalactamase producing bacteria. BACKGROUND: Ceftazidime-avibactam combination with aztreonam and role of rapid synergy reporting has not been widely evaluated. Also the synergy correlation with various betalactamases has not been widely studied. METHODS: We studied phenotypic synergy testings and molecular detection of betalactamases in our university hospital where we have large number of mellatobetalactmase producing bacteria. We tested two phenotypic synergy methods for ceftazidime-avibactam with aztreonam (Disc-E strip method, E strip-Agar method) for rapid reporting to clinicians (153 isolates). The treatment (colistin, ceftazidime-avibactam, ceftazidime-avibactam with aztreonam) was guided as indicated in the synergy testings. The resistance genes in bacteria were identified by polymerase chain reaction (PCR) and correlated with synergy results. RESULTS: The highest synergy was seen in Klebsiella pneumoniae by Disc-E strip and E strip-Agar method (86% and 84% respectively). About 70% of Pseudomonas aeruginosa and 29% of Escherichia coli showed synergy. Molecular methods revealed multiple resistance gene combinations and bla(NDM) (96%) was predominant gene in isolates showing synergy. Among isolates that were sensitive to ceftazidime-avibactam, the predominant genes were bla(OXA-48) and bla(IMP.) Rapid laboratory reporting led to proper utilization of antibiotic combinations. CONCLUSIONS: Ceftazidime-avibactam and aztreonam rapid synergy testing will be highly beneficial in treatment of infections by metallobetalactamase producing resistant bacteria, especially K. pneumoniae and P. aeruginosa. | 2020 | 32628575 |
| 2347 | 8 | 0.9918 | Multiple drug resistance of Listeria monocytogenes isolated from aborted women by using serological and molecular techniques in Diwaniyah city/Iraq. BACKGROUND AND OBJECTIVES: The study was sought to detect the effect of Listeria monocytogenes on pregnant Iraqi women at Al-Diwaniya hospitals and determination of virulence genes and antimicrobial susceptibility of isolates. MATERIALS AND METHODS: 360 specimens including blood, urine, vaginal and endocervical were collected from 90 patients with spontaneous abortions. Blood samples were displayed to immunological study and remaining specimens were subjected to bacteriological diagnosis. PCR was used to determine the virulence factors and antimicrobial resistance genes. RESULTS: Fifteen positive samples (16.6%) of patients and thirteen isolates (14.5%) from patients were recognized based on ELISA and PCR assay respectively. The general isolation of L. monocytogenes strains in cases of abortive women was 13/270 (4.8%). L. monocytogenes strains were highly virulent because of presence of virulence factors associated genes, namely actA, hlyA, plcA and prfA in all strains. Multiple drug resistance (MAR) index values of 15.4% of isolates were >0.2. CONCLUSION: It is necessary for conducting susceptibility testing and to select the suitable antibiotics and avoid the effects of these bacteria in pregnant women. | 2020 | 32994901 |
| 2230 | 9 | 0.9918 | Rapid detection of gram-negative antimicrobial resistance determinants directly from positive blood culture broths using a multiplex PCR system. Currently available rapid blood culture diagnostics detect few gram-negative resistance determinants, limiting their clinical utility. We prospectively evaluated the prototype BIOFIRE FILMARRAY Antimicrobial Resistance (AMR) Panel, a rapid multiplex PCR test that detects 31 AMR genes, on residual positive blood culture broths from patients with gram-negative bacteremia due to five target organisms at a New York City hospital. Predicted antimicrobial resistance based on the AMR Panel was compared to results from broth microdilution testing of bloodstream isolates recovered in culture. A simulated stewardship study assessed opportunities for the optimization of therapy if the AMR Panel results had been available for patient care in real time. We enrolled 148 patients with gram-negative bacteremia (Escherichia coli, n = 75; Klebsiella pneumoniae, n = 44; Pseudomonas aeruginosa, n = 17; Enterobacter cloacae complex, n = 9; and Acinetobacter baumannii, n = 3). The sensitivity of the AMR Panel for predicting antimicrobial resistance was ≥90% for 10/14 antimicrobial agents in E. coli and for 10/16 agents in K. pneumoniae. Specificity was ≥90% for 15/17 agents in E. coli and for all 16 agents in K. pneumoniae. Performance for other organisms was poor. For E. coli or K. pneumoniae bacteremia, use of the AMR Panel could have led to earlier escalation or de-escalation of β-lactam therapy in a majority of patients compared to what actually occurred. This study demonstrates that a rapid multiplex PCR test with a large menu of AMR genes can be applied to positive blood culture broths to rapidly predict resistance to frontline antimicrobial agents in patients with E. coli or K. pneumoniae bacteremia.IMPORTANCEPatients with gram-negative bacteremia require urgent treatment with antimicrobial agents that are effective against their infecting pathogen. However, conventional laboratory work-up of blood cultures takes days to yield results, and during this time, patients may receive ineffective therapies. We evaluated the prototype BIOFIRE FILMARRAY AMR Panel, an assay that detects 31 genes in gram-negative bacteria that confer resistance to β-lactams, fluoroquinolones, and aminoglycosides in approximately 1 hour, directly from positive blood culture broths, and compared these results to antimicrobial susceptibility testing of isolates recovered in culture. We found that the AMR Panel accurately predicted resistance in Escherichia coli and Klebsiella pneumoniae to most antimicrobials. Moreover, if results from this assay had been used for patient care, there would have been opportunities to optimize antimicrobial prescribing more quickly than using conventional methods. These data demonstrate how novel molecular assays could optimize care for patients with E. coli and K. pneumoniae bacteremia. | 2025 | 41117625 |
| 1463 | 10 | 0.9918 | Identification of colistin resistance and its bactericidal activity against uropathogenic gram negative bacteria from Hayatabad Medical Complex Peshawar. OBJECTIVES: Identification of colistin resistance and its bactericidal activity against gram-negative bacteria isolated from urinary tract infection (UTI) patients. METHODS: This 6-month cross sectional study was conducted in Hayatabad Medical Complex Peshawar from January 2019-June2019.. A total of 2000 urine samples were collected and transported to the Health Research Institute, NIH, Research Centre, Khyber Medical College Peshawar. Samples were streaked on different media and incubated at 37C° for 24hrs. Gram negative bacteria were identified through gram staining and Analytical Profile Index (API) 10s. Gram negative bacteria were subjected under antibiotic sensitivity profile through Kirby-Bauer disc diffusion method. Colistin resistance was found through broth microdilution method. Minimum bactericidal activity was performed to find out the lowest concentration of colistin required to kill gram-negative bacteria. RESULTS: A total of 241(12.05%) uropathogenic gram negative bacteria were isolated and identified from 2000 urine samples while excluding intrinsically resistant bacteria. After broth microdilution, colistin resistance was found in 48(19.9%) Escherichia coli, 4(1.6%) Klebsiella pneumoniae and 3(1.3%) Pseudomonas aeruginosa respectively. Colistin resistant Escherichia coli were resistant to 77% Cephalosporins, 81% to Fluoroquinolones and 70% to Penicillin combinations. Colistin resistant Klebsiella pneumoniae were 100% resistant to Cephalosporins, Penicillin combinations and Fluoroquinolones while 75% were resistant to Carbapenems and Monobactams. Pseudomonas aeruginosa isolates were sensitive to all used antibiotics. CONCLUSION: E.coli was the mainly responsible uropathogen causing UTIs. Colistin resistance was found in 22.8% gram negative uropathogens. Klebsiella pneumoniae isolates exhibited highest resistance to antibiotics. | 2022 | 35634614 |
| 8732 | 11 | 0.9918 | RNA-Seq identification of candidate defense genes targeted by endophytic Bacillus cereus-mediated induced systemic resistance against Meloidogyne incognita in tomato. BACKGROUND: The endophytic bacteria Bacillus cereus BCM2 has shown great potential as a defense against the parasitic nematode Meloidogyne incognita. Here, we studied endophytic bacteria-mediated plant defense against M. incognita and searched for defense-related candidate genes using RNA-Seq. RESULTS: The induced systemic resistance of BCM2 against M. incognita was tested using the split-root method. Pre-inoculated BCM2 on the inducer side was associated with a dramatic reduction in galls and egg masses on the responder side, but inoculated BCM2 alone did not produce the same effect. In order to investigate which plant defense-related genes are specifically activated by BCM2, four RNA samples from tomato roots were sequenced, and four high-quality total clean bases were obtained, ranging from 6.64 to 6.75 Gb, with an average of 21 558 total genes. The 34 candidate defense-related genes were identified by pair-wise comparison among libraries, representing the targets for BCM2 priming resistance against M. incognita. Functional characterization revealed that the plant-pathogen interaction pathway (ID: ko04626) was significantly enriched for BCM2-mediated M. incognita resistance. CONCLUSION: This study demonstrates that B. cereus BCM2 maintains a harmonious host-microbe relationship with tomato, but appeared to prime the plant, resulting in more vigorous defense response toward the infection nematode. © 2018 Society of Chemical Industry. | 2018 | 29737595 |
| 2243 | 12 | 0.9918 | Clinical and metagenomic predicted antimicrobial resistance in pediatric critically ill patients with infectious diseases in a single center of Zhejiang. BACKGROUND: Antimicrobial resistance (AMR) poses a significant threat to pediatric health; therefore, precise identification of pathogens as well as AMR is imperative. This study aimed at comprehending antibiotic resistance patterns among critically ill children with infectious diseases admitted to pediatric intensive care unit (PICU) and to clarify the impact of drug-resistant bacteria on the prognosis of children. METHODS: This study retrospectively collected clinical data, identified pathogens and AMR from 113 children's who performed metagenomic next-generation sequencing for pathogen and antibiotic resistance genes identification, and compared the clinical characteristic difference and prognostic effects between children with and without AMR detected. RESULTS: Based on the presence or absence of AMR test results, the 113 patients were divided into Antimicrobial resistance test positive group (AMRT+, n = 44) and Antimicrobial resistance test negative group (AMRT-, n = 69). Immunocompromised patients (50% vs. 28.99%, P = 0.0242) and patients with underlying diseases (70.45% vs. 40.58%, P = 0.0019) were more likely to develop resistance to antibiotics. Children in the AMRT + group showed significantly increased C-reaction protein, score of pediatric sequential organ failure assessment and pediatric risk of mortality of children and longer hospital stay and ICU stay in the AMRT + group compared to the AMRT+- group (P < 0.05). Detection rate of Gram-negative bacteria was significantly higher in the AMRT + group rather than Gram-positive bacteria (n = 45 vs. 31), in contrast to the AMRT- group (n = 10 vs. 36). Cephalosporins, β-lactams/β-Lactamase inhibitors, carbapenems and sulfonamides emerged as the most common types of drug resistance in children. Resistance rates to these antibiotics exhibited considerable variation across common pathogens, including Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii. CONCLUSIONS: The development of drug resistance in bacteria will significantly affect the prognosis of patients. The significant differences in drug resistance of common pathogenic bacteria indicate that identification of drug resistance is important for the rational use of antibiotics and patient prognosis. | 2024 | 39707302 |
| 2308 | 13 | 0.9918 | Trends of Antibiotic Resistance in Multidrug-Resistant Pathogens Isolated from Blood Cultures in a Four-Year Period. BACKGROUND: Multidrug-resistant organisms cause serious infections with significant morbidity and mortality in the worldwide. These organisms have been identified as urgent and serious threats by CDC. The aim of this study was to determine the prevalence and changes of antibiotic resistance of multidrug-resistant pathogens isolated from blood cultures over a four-year period in a tertiary-care hospital. METHODS: Blood cultures were incubated in a blood culture system. Positive signalling blood cultures were subcultured on 5% sheep-blood agar. Identification of isolated bacteria was performed using conventional or automated identification systems. Antibiotic susceptibility tests were performed by disc diffusion and/or gradient test methods, if necessary, by automated systems. The CLSI guidelines were used for interpretation of antibiotic susceptibility testing of bacteria. RESULTS: The most frequently isolated Gram-negative bacteria was Escherichia coli (33.4%) followed by Klebsiella pneumoniae (21.5%). ESBL positivity was 47% for E. coli, 66% for K. pneumoniae. Among E. coli, K. pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii isolates, carbapenem resistance was 4%, 41%, 37%, and 62%, respectively. Carbapenem resistance of K. pneumoniae isolates has increased from 25% to 57% over the years, and the highest rate (57%) occured during the pandemic period. It is noteworthy that the aminoglycoside resistance in E. coli isolates gradually increased from 2017 to 2021. The rate of methicillin-resistant S. aureus (MRSA) was found to be 35.5%. CONCLUSIONS: Increased carbapenem resistance in K. pneumoniae and A. baumannii isolates is noteworthy, but carbapenem resistance in P. aeruginosa decreased. It is of great importance for each hospital to monitor the increase in resistance in clinically important bacteria, especially isolated from invasive samples, in order to take the necessary precautions in a timely manner. Future studies involving clinical data of patients and bacterial resistance genes are warranted. | 2023 | 37307126 |
| 2318 | 14 | 0.9917 | Distribution of pathogenic bacteria in lower respiratory tract infection in lung cancer patients after chemotherapy and analysis of integron resistance genes in respiratory tract isolates of uninfected patients. BACKGROUND: We studied the distribution of pathogenic bacteria in lower respiratory tract infection in lung cancer patients after chemotherapy and analyzed the integron resistance genes in respiratory tract isolates of uninfected patients. METHODS: Retrospective analysis was used to select sputum samples from 400 lung cancer patients after chemotherapy admitted in Fuyang People's Hospital from July 2017 to July 2019. Culture, isolation and identification of strains were conducted in accordance with the national clinical examination operating procedures. RESULTS: A total of 134 strains were identified. In 120 patients with pulmonary infection, 114 strains were cultured. Twenty strains of klebsiella pneumoniae were cultured in 280 patients without pulmonary infection. Among the 134 strains, the detection rate of gram-negative bacteria was 79.10%. The first four strains were Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Haemophilus influenzae. The gram-positive bacteria detection rate was 4.47%, mainly Staphylococcus aureus and Streptococcus. The fungus detection rate was 16.42%. The drug sensitivity results showed that the resistance rate of gram-negative bacillus to penicillin and cephalosporin was higher, and were more sensitive to carbapenem, piperacillin tazobactam and cefoperazone sulbactam. Gram-positive cocci were resistant to penicillin, macrolide and clindamycin, and sensitive to linezolid, vancomycin and rifampicin. All strains of fungal culture were candida albicans, which were sensitive to common antifungal drugs. Among the 20 strains of klebsiella pneumoniae cultured in sputum specimens of non-infected patients with lung cancer undergoing chemotherapy, 2 strains were integron-positive strains, and all of them were class I integrons. CONCLUSIONS: Lung cancer patients after chemotherapy have a high resistance to commonly used antimicrobial drugs, so it is necessary to detect the resistance of pathogenic microorganisms in clinical practice. The strains carried by patients with lung cancer without pulmonary infection during chemotherapy can isolate type I integrons, suggesting that the spread of drug resistance at gene level should be closely detected. | 2020 | 32944333 |
| 2206 | 15 | 0.9917 | Retrospective analysis of pediatric sepsis and the burden of antimicrobial resistance in Duhok, Kurdistan Region of Iraq. Introduction: Sepsis is a life-threatening complication in pediatric patients. This study primarily aimed to investigate sepsis-causing bacteria and their antimicrobial resistance profile and check the change in the antimicrobial resistance trend for some selected bacteria. In addition, we evaluated the incidence of sepsis, the related mortality rate, and the effectiveness and outcome of the treatment regimes in sepsis pediatric patients. Methods: A retrospective analysis was conducted on 4-year data (2018-2021) collected from three intensive care units at the Hevi Pediatric Teaching Hospital. Sepsis screening involved clinical detection and confirmation by blood culture. Results: A total of 520 out of 1,098 (47.35%) blood samples showed positive microbial growth. A decrease in sepsis rate was observed during the COVID-19 pandemic. Coagulase-negative Staphylococci (CoNS) and Klebsiella pneumonia were the most commonly isolated bacteria. A notable variation in the antimicrobial resistance trend was observed among sepsis-causing bacteria. The empirical sepsis treatment recommended by the WHO was ineffective, as certain bacteria exhibited 100% resistance to every antibiotic tested. The mortality rate significantly increased from 1.3% in 2018 to 16.5% in 2021. Discussion: The antimicrobial resistance profile of sepsis causing bacteria is of concerns, indicating a potentially serious situation. Thus, to avoid treatment failure, the monitoring of antimicrobial resistance in pediatric patients is essential. | 2024 | 38469402 |
| 1476 | 16 | 0.9917 | Evaluation of the BioFire FilmArray Pneumonia Panel for rapid detection of respiratory bacterial pathogens and antibiotic resistance genes in sputum and endotracheal aspirate specimens. OBJECTIVES: The performance of the investigational-use-only version of the BioFire FilmArray Pneumonia Panel (FA-Pneumo), a high-order nested multiplex PCR, was evaluated for the detection of typical respiratory bacterial pathogens and antibiotic resistance genes in sputa and endotracheal aspirate (ETA) specimens. METHODS: Thirty-one sputa and 69 ETA specimens were analyzed. The diagnostic performance of FA-Pneumo was assessed using routine microbiological methods as the reference standard. RESULTS: Overall sensitivity and specificity for organism detection using FA-Pneumo were 98.5% and 76.5%, respectively. The sensitivity for each pathogen was 100%, except for Klebsiella aerogenes, and the range of specificity was 83.3-99.0%. FA-Pneumo detected antimicrobial resistance genes in 17 out of 18 specimens (94.4%) that were resistant by antimicrobial susceptibility testing. FA-Pneumo additionally detected 25 resistance genes in 22 specimens, and sequencing for the presence of resistance genes confirmed the majority of these results (20/25, 80%). Semi-quantitative analysis of bacterial nucleic acid amounts by FA-Pneumo revealed that 88.2% of the identified bacteria (67/76) with ≥10(6) copies/ml also gave culture-positive results with significant amounts of bacteria. CONCLUSIONS: FA-Pneumo is a rapid test with high sensitivity for the detection of bacteria and antimicrobial resistance genes in sputum and ETA specimens and could aid in determining antibiotic therapy. | 2020 | 32179139 |
| 2200 | 17 | 0.9917 | Bloodstream infections and antibiotic resistance at a regional hospital, Colombia, 2019-2021. OBJECTIVES: To assess antibiotic susceptibility of World Health Organization (WHO) priority bacteria (Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Salmonella spp., Staphylococcus aureus, and Streptococcus pneumoniae) in blood cultures at the Orinoquía regional hospital in Colombia. METHODS: This was cross-sectional study using routine laboratory data for the period 2019-2021. Data on blood samples from patients suspected of a bloodstream infection were examined. We determined: the total number of blood cultures done and the proportion with culture yield; the characteristics of patients with priority bacteria; and the type of bacteria isolated and antibiotic resistance patterns. RESULTS: Of 25 469 blood cultures done, 1628 (6%) yielded bacteria; 774 (48%) of these bacteria were WHO priority pathogens. Most of the priority bacteria isolated (558; 72%) were gram-negative and 216 (28%) were gram-positive organisms. Most patients with priority bacteria (666; 86%) were hospitalized in wards other than the intensive care unit, 427 (55%) were male, and 321 (42%) were ≥ 60 years of age. Of the 216 gram-positive bacteria isolated, 205 (95%) were Staphylococcus aureus. Of the 558 gram-negative priority bacteria isolated, the three most common were Escherichia coli (34%), Klebsiella pneumoniae (28%), and Acinetobacter baumannii (20%). The highest resistance of Staphylococcus aureus was to oxacillin (41%). For gram-negative bacteria, resistance to antibiotics ranged from 4% (amikacin) to 72% (ampicillin). CONCLUSIONS: Bacterial yield from blood cultures was low and could be improved. WHO priority bacteria were found in all hospital wards. This calls for rigorous infection prevention and control standards and continued surveillance of antibiotic resistance. | 2023 | 37082533 |
| 1699 | 18 | 0.9917 | Association between the presence of CRISPR-Cas system genes and antibiotic resistance in Klebsiella pneumoniae isolated from patients admitted in Ahvaz teaching hospitals. BACKGROUND: This study aims to investigate the frequency of cas1 and cas3 and CRISPR1,2,3 genes in Klebsiella pneumoniae isolates, as well as their connection with antibiotic resistance. MATERIALS AND METHODS: 106 K. pneumoniae isolates were identified by biochemical assays and PCR. The susceptibility to antibiotics was determined by Kirby-Bauer disk diffusion method. Screening of ESBLs was undertaken by using double disk diffusion and standard disk diffusion methods. The E-test and mCIM techniques was used to confirm the disc diffusion-based carbapenem resistance profiles. CRISPR-Cas system genes were identified using PCR. RESULTS: ESBL production was found in 19% of isolates. Carbapenemase production was found in 46% of the isolates. Furthermore, the bacteria were classified as multidrug (76%), extensively drug-resistant (4%), or pan-drug-resistant (2%). When CRISPR/Cas systems were present, antibiotic resistance was lower; conversely, when they were absent, resistance was higher. CONCLUSIONS: If the CRISPR/Cas modules aren't present, the bacteria can still acquire foreign DNA, including antibiotic resistance genes. K. pneumoniae isolates with a CRISPR-Cas system were less likely to carry antibiotic-resistance genes than those lacking this defense system. | 2024 | 39375619 |
| 2109 | 19 | 0.9917 | Screening of nursing home residents for colonization with carbapenem-resistant Enterobacteriaceae admitted to acute care hospitals: Incidence and risk factors. BACKGROUND: There are increasing reports of multidrug-resistant gram-negative bacilli in nursing homes and acute care hospitals. METHODS: We performed a point prevalence survey to detect fecal carriage of gram-negative bacteria carrying carbapenem resistance genes or which were otherwise resistant to carbapenem antibiotics among 500 consecutive admissions from local nursing homes to 2 hospitals in Providence, Rhode Island. We performed a case-control study to identify risk factors associated with carriage of carbapenem-resistant Enterobacteriaceae (CRE). RESULTS: There were 404 patients with 500 hospital admissions during which they had rectal swab samples cultured. Fecal carriage of any carbapenem-resistant or carbapenemase- producing gram-negative bacteria was found in 23 (4.6%) of the 500 hospital admissions, including 7 CRE (1.4%), 2 (0.4%) of which were Klebsiella pneumoniae carbapenemase (ie, blaKPC) producing (CPE) Citrobacter freundii, 1 of which was carbapenem susceptible by standard testing methods. Use of a gastrostomy tube was associated with CRE carriage (P = .04). We demonstrated fecal carriage of carbapenem-resistant or carbapenemase-producing gram-negative bacteria in 4.6% of nursing home patients admitted to 2 acute care hospitals, but only 0.4% of such admissions were patients with fecal carriage of CPE. Use of gastrostomy tubes was associated with fecal carriage of gram-negative bacteria with detectable carbapenem resistance. CONCLUSION: CRE fecal carriage is uncommon in our hospital admissions from nursing homes. | 2016 | 26631643 |