# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5237 | 0 | 0.9706 | Phenotypic and genomic analysis of Enterococcus avium MC09 pathogenicity isolated from Scylla spp. (mud crab) in a Thai market. Enterococcus avium is a Gram-positive pathogenic bacterium classified under the Enterococcaceae family. E. avium has been isolated from diverse environmental sources, raising concerns about its potential role in the spread of antibiotic resistance. E. avium MC09, isolated from a mud crab in a Thai market, was analyzed for its antibiotic resistance and pathogenic potential in this study. The isolation of E. avium from mud crab is significant as it highlights the potential role of seafood as a reservoir for antibiotic-resistant bacteria, which may pose risks to public health throughout the food chain. Antibiotic susceptibility testing using the Kirby-Bauer disk diffusion method revealed that E. avium MC09 is resistant to clindamycin, erythromycin, streptomycin, and tetracycline, and exhibits alpha hemolysis on blood agar, indicating its potential virulence. Genomic DNA was extracted and sequenced using the Oxford Nanopore Technologies (ONT) platform, revealing the presence of resistance genes for macrolides (ermB) and tetracyclines (tetL and tetM). Furthermore, several virulence-associated genes were detected, such as srtC, ecbA, efaA, dltA, cpsA/uppS, cpsB/cdsA, cylR2, icps4I, cpsY, epsE, vctC, mgtB, ndk, lisR, and lgt suggesting a pathogenic potential. Additionally, the study identified several insertion sequences (ISs), including (IS1216, IS1216E, IS1216V, IS6770, ISEfa7, ISEfa8, and ISS1W which are commonly found in pathogenic Enterococcus strains. The presence of these IS elements further emphasizes the strain's potential for virulence and genetic adaptability. This study provides comprehensive insights into both the phenotypic and genotypic characteristics of E. avium MC09, highlighting its antimicrobial resistance and pathogenic mechanisms, and underlines the importance of monitoring antibiotic resistance in seafood-associated bacteria. | 2025 | 40015576 |
| 6199 | 1 | 0.9704 | A bacterial gene homologous to ABC transporters protect Oenococcus oeni from ethanol and other stress factors in wine. The wine lactic acid bacteria Oenococcus oeni has to cope with harsh environmental conditions including an acidic pH, a high alcoholic content, non-optimal growth temperatures, and growth inhibitory compounds such as fatty acids, phenolic acids and tannins. We here describe characterisation and cloning of the O. oeni omrA gene encoding a protein belonging to the ATP-binding cassette superfamily of transporters. The OmrA protein displays the highest sequence similarity with the subfamily of ATP-dependent multidrug resistance (MDR) proteins, most notably the bacterial Lactococcus lactis LmrA homologue of the human MDR1 P-glycoprotein. The omrA gene proved to be a stress-responsive gene since its expression was increased at high temperature or under osmotic shock. The OmrA protein function was tested in Escherichia coli, and consistent with the omrA gene expression pattern, OmrA conferred protection to bacteria grown on a high salt medium. OmrA also triggered bacterial resistance to sodium laurate, wine and ethanol toxicity. The homologous LmrA protein featured the same stress-protective pattern than OmrA when expressed in E. coli, and the contribution to resistance of both OmrA and LmrA transporters was decreased by verapamil, a well-known inhibitor of the human MDR1 protein. Genes homologous to omrA were detected in other wine lactic acid bacteria, suggesting that this type of genes might constitute a well-conserved stress-protective molecular device. | 2004 | 15033264 |
| 6049 | 2 | 0.9701 | Probiotic Properties and Antioxidant Activity In Vitro of Lactic Acid Bacteria. The properties of probiotics such as lactic acid bacteria (LAB) have been widely studied over the last decades. In the present study, four different LAB species, namely Lactobacillus gasseri ATCC 33323, Lacticaseibacillus rhamnosus GG ATCC 53103, Levilactobacillus brevis ATCC 8287, and Lactiplantibacillus plantarum ATCC 14917, were investigated in order to determine their ability to survive in the human gut. They were evaluated based on their tolerance to acids, resistance to simulated gastrointestinal conditions, antibiotic resistance, and the identification of genes encoding bacteriocin production. All four tested strains demonstrated high resistance to simulated gastric juice after 3 h, and the viable counts revealed declines in cell concentrations of less than 1 log cycle. L. plantarum showed the highest level of survival in the human gut, with counts of 7.09 log CFU/mL. For the species L. rhamnosus and L. brevis, the values were 6.97 and 6.52, respectively. L. gasseri, after 12 h, showed a 3.96 log cycle drop in viable counts. None of the evaluated strains inhibited resistance to ampicillin, gentamicin, kanamycin, streptomycin, erythromycin, clindamycin, tetracycline, or chloramphenicol. With regard to bacteriocin genes, the Pediocin PA gene was identified in Lactiplantibacillus plantarum ATCC 14917, Lacticaseibacillus rhamnosus GG ATCC 53103, and Lactobacillus gasseri ATCC 33323. The PlnEF gene was detected in Lactiplantibacillus plantarum ATCC 14917 and Lacticaseibacillus rhamnosus GG ATCC 53103. The Brevicin 174A and PlnA genes were not detected in any bacteria. Moreover, the potential antioxidant activity of LAB's metabolites was evaluated. At the same time, the possible antioxidant activity of metabolites of LAB was first tested using the free radical DDPH(•) (a, a-Diphenyl-β-Picrylhydrazyl) and then evaluated with regard to their radical scavenging activity and inhibition against peroxyl radical induced DNA scission. All strains showed antioxidant activity; however, the best antioxidant activity was achieved by L. brevis (94.47%) and L. gasseri (91.29%) at 210 min. This study provides a comprehensive approach to the action of these LAB and their use in the food industry. | 2023 | 37317238 |
| 153 | 3 | 0.9701 | Both arginine and fructose stimulate pH-independent resistance in the wine bacteria Oenococcus oeni. The wine bacteria Oenococcus oeni has to cope with harsh environmental conditions including an acidic pH, a high alcoholic content, and growth inhibitory compounds such as fatty acids, phenolic acids and tannins. So how can O. oeni bacteria naturally present on the surface of grape berries acquire a natural resistance that will alleviate the effect of wine stresses? One mechanism displayed by O. oeni and many other bacteria against the damaging effects of acid environments is arginine consumption through the arginine deiminase pathway. Various studies have shown that the bacterial protection conferred by arginine depends on the rise in pH associated with ammonia production. However, many experimental results disagree with this point of view. The aim of this study was to clarify the protective effect of arginine on O. oeni stress adaptation. Is it only by increasing the pH through ammonia production that this effect is triggered, or does stimulation of appropriate cellular responses play an additional role? This study shows that: (a) arginine in combination with fructose triggers the expression of a subset of genes which are also stress-responsive; (b) cultivation of O. oeni in a fructose- and arginine-supplemented medium prior to wine exposure protects bacteria against subsequent wine shock, and (c) this acquired stress resistance is independent of pH. | 2006 | 16380184 |
| 4357 | 4 | 0.9699 | Comparative genomic analysis of 255 Oenococcus oeni isolates from China: unveiling strain diversity and genotype-phenotype associations of acid resistance. Oenococcus oeni, the only species of lactic acid bacteria capable of fully completing malolactic fermentation under challenging wine conditions, continues to intrigue researchers owing to its remarkable adaptability, particularly in combating acid stress. However, the mechanism underlying its superior adaptation to wine stresses still remains elusive due to the lack of viable genetic manipulation tools for this species. In this study, we conducted genomic sequencing and acid resistance phenotype analysis of 255 O. oeni isolates derived from diverse wine regions across China, aiming to elucidate their strain diversity and genotype-phenotype associations of acid resistance through comparative genomics. A significant correlation between phenotypes and evolutionary relationships was observed. Notably, phylogroup B predominantly consisted of acid-resistant isolates, primarily originating from Shandong and Shaanxi wine regions. Furthermore, we uncovered a noteworthy linkage between prophage genomic islands and acid resistance phenotype. Using genome-wide association studies, we identified key genes correlated with acid resistance, primarily involved in carbohydrates and amino acid metabolism processes. This study offers profound insights into the genetic diversity and genetic basis underlying adaptation mechanisms to acid stress in O. oeni.IMPORTANCEThis study provides valuable insights into the genetic basis of acid resistance in Oenococcus oeni, a key lactic acid bacterium in winemaking. By analyzing 255 isolates from diverse wine regions in China, we identified significant correlations between strain diversity, genomic islands, and acid resistance phenotypes. Our findings reveal that certain prophage-related genomic islands and specific genes are closely linked to acid resistance, offering a deeper understanding of how O. oeni adapts to acidic environments. These discoveries not only advance our knowledge of microbial stress responses but also pave the way for selecting and engineering acid-resistant strains, enhancing malolactic fermentation efficiency and wine quality. This research underscores the importance of genomics in improving winemaking practices and addressing challenges posed by high-acidity wines. | 2025 | 40261018 |
| 8392 | 5 | 0.9697 | Identification of variable genomic regions related to stress response in Oenococcus oeni. The lactic acid bacterium Oenococcus oeni is the most important species involved in malolactic fermentation due to its capability to survive in presence of ethanol and in the acidic environment of wine. In order to identify novel genes involved in adaptation to wine, a new approach using genome-wide analysis based on stress-related genes was performed in strain O. oeni PSU-1, and 106 annotated stress genes were identified. The in silico analysis revealed the high similarity of all those genes through 57 O. oeni genomes; however, seven variable regions of genomic plasticity could be determined for their different presence observed among these strains. Regions 3 and 5 had the typical hallmarks of horizontal transfer, suggesting that the strategy of acquiring genes from other bacteria enhanced the fitness of O. oeni strains. Certain genes related to stress resistance were described in these regions, and similarities of putative acquired regions with other lactic acid bacteria species were found. Some genomic fragments present in all the strains were described and another new genomic island harbouring a threonine dehydrogenase was found. The association of selected sequences with adaptation to wine was assessed by screening 31 O. oeni strains using PCR of single genes, but no sequences were found to be exclusive to highly performing malolactic fermentation strains. This study provides new information about the genomic variability of O. oeni strains contributing to a further understanding of this species and the relationship of its genomic traits with the ability to adapt to stress conditions. | 2017 | 29195994 |
| 6048 | 6 | 0.9696 | Safety Evaluation of Oral Care Probiotics Weissella cibaria CMU and CMS1 by Phenotypic |and Genotypic Analysis. Weissella cibaria CMU and CMS1 are known to exert beneficial effects on the oral cavity but have not yet been determined to be generally recognized as safe (GRAS), although they are used as commercial strains in Korea. We aimed to verify the safety of W. cibaria CMU and CMS1 strains through phenotypic and genotypic analyses. Their safety was evaluated by a minimum inhibitory concentration assay for 14 antibiotics, DNA analysis for 28 antibiotic resistance genes (ARGs) and one conjugative element, antibiotic resistance gene transferability, virulence gene analysis, hemolysis, mucin degradation, toxic metabolite production, and platelet aggregation reaction. W. cibaria CMU showed higher kanamycin resistance than the European Food Safety Authority (EFSA) cut-off, but this resistance was not transferred to the recipient strain. W. cibaria CMU and CMS1 lacked ARGs in chromosomes and plasmids, and genetic analysis confirmed that antibiotic resistance of kanamycin was an intrinsic characteristic of W. cibaria. Additionally, these strains did not harbor virulence genes associated with pathogenic bacteria and lacked toxic metabolite production, β-hemolysis, mucin degradation, bile salt deconjugation, β-glucuronidase, nitroreductase activity, gelatin liquefaction, phenylalanine degradation, and platelet aggregation. Our findings demonstrate that W. cibaria CMU and CMS1 can achieve the GRAS status in future. | 2019 | 31159278 |
| 6050 | 7 | 0.9694 | Vancomycin resistance factor of Lactobacillus rhamnosus GG in relation to enterococcal vancomycin resistance (van) genes. Lactobacillus rhamnosus GG (ATCC 53103) is a probiotic strain used in fermented dairy products in many countries and is also used as a food supplement in the form of freeze-dried powder. The relationship of the vancomycin resistance factor in L. rhamnosus GG and the vancomycin resistance (van) genes of Enterococcus faecalis and E. faecium were studied using polymerase chain reaction (PCR), Southern hybridization and conjugation methods. Our results show that the vancomycin resistance determinant in L. rhamnosus GG is not closely related to enterococcal van genes, since no PCR product was amplified in L. rhamnosus GG with any of the three sets of vanA primers used, and enterococcal vanA, vanB, vnH, vanX, vanZ, vanY, vanS and vanR genes did not hybridize with DNA of L. rhamnosus GG. This strain does not contain plasmids and transfer of chromosomal vancomycin resistance determinant from L. rhamnosus GG to enterococcal species was not detected. Our results are in accordance with previous findings of intrinsically vancomycin-resistant lactic acid bacteria. | 1998 | 9706787 |
| 497 | 8 | 0.9694 | vanI: a novel D-Ala-D-Lac vancomycin resistance gene cluster found in Desulfitobacterium hafniense. The glycopeptide vancomycin was until recently considered a drug of last resort against Gram-positive bacteria. Increasing numbers of bacteria, however, are found to carry genes that confer resistance to this antibiotic. So far, 10 different vancomycin resistance clusters have been described. A chromosomal vancomycin resistance gene cluster was previously described for the anaerobic Desulfitobacterium hafniense Y51. We demonstrate that this gene cluster, characterized by its d-Ala-d-Lac ligase-encoding vanI gene, is present in all strains of D. hafniense, D. chlororespirans and some strains of Desulfosporosinus spp. This gene cluster was not found in vancomycin-sensitive Desulfitobacterium or Desulfosporosinus spp., and we show that this antibiotic resistance can be exploited as an intrinsic selection marker for Desulfitobacterium hafniense and D. chlororespirans. The gene cluster containing vanI is phylogenetically only distantly related with those described from soil and gut bacteria, but clusters instead with vancomycin resistance genes found within the phylum Actinobacteria that include several vancomycin-producing bacteria. It lacks a vanH homologue, encoding a D-lactate dehydrogenase, previously thought to always be present within vancomycin resistance gene clusters. The location of vanH outside the resistance gene cluster likely hinders horizontal gene transfer. Hence, the vancomycin resistance cluster in D. hafniense should be regarded a novel one that we here designated vanI after its unique d-Ala-d-Lac ligase. | 2014 | 25042042 |
| 6082 | 9 | 0.9693 | Complete genome sequence of the probiotic candidate strain Lacticaseibacillus rhamnosus B3421 isolated from Panax ginseng C. A. Meyer in South Korea. OBJECTIVES: Lacticaseibacillus rhamnosus is a widely recognized probiotic bacteria with therapeutic applications in human and animal health. The L. rhamnosus B3421 strain, isolated from Panax ginseng, has been reported to be associated with antioxidant and anti-inflammatory properties, supporting its functional potential. We sequenced and analyzed the genome of L. rhamnosus B3421 to evaluate its probiotic potential for human healthcare and animal applications, focusing on genomic features related to safety and functionality. DATA DESCRIPTION: In this study, we isolated L. rhamnosus B3421 from Panax ginseng C. A. Meyer (Ginseng) and performed whole-genome sequencing. The genome of L. rhamnosus B3421 consists of 3,000,051 base pairs (bp) with a guanine + cytosine (G + C) content of 46.70%. It encodes 59 transfer RNAs, 15 ribosomal RNAs, and 2,807 coding sequences (CDSs). Of these CDSs, 99.13% (2,758 proteins) were assigned to functional categories in the Clusters of Orthologous Group (COGs) classification system, while 49 proteins remained uncharacterized. Our genome analysis identified no antibiotic resistance (ABR) or antimicrobial resistance (AMR) genes, indicating that L. rhamnosus B3421 is a safe probiotic bacterium with minimal risk of contributing to the horizontal transfer of antibiotic resistance within the gut microbiome. Additionally, the genome contains genes associated with the ggmotif (PF10439), Enterocin X chain beta, and Carnocin CP52, as identified through BAGEL4 analysis, along with 24 other genes related to reductase or peroxidase activities. These genes may confer competitive advantages against pathogenic bacteria and oxidative stress. Our findings highlight the probiotic potential of L. rhamnosus B3421 and its prospective applications in promoting human and animal health. | 2025 | 40877785 |
| 6087 | 10 | 0.9690 | Draft genome of Raoultella planticola, a high lead resistance bacterium from industrial wastewater. Isolation of heavy metals-resistant bacteria from their original habitat is a crucial step in bioremediation. Six lead (Pb) resistant bacterial strains were isolated and identified utilizing 16S rRNA to be Enterobacter ludwigii FACU 4, Shigella flexneri FACU, Microbacterium paraoxydans FACU, Klebsiella pneumoniae subsp. pneumonia FACU, Raoultella planticola FACU 3 and Staphylococcus xylosus FACU. It was determined that all these strains had their Minimum inhibitory concentration (MIC) to be 2500 ppm except R. planticola FACU 3 has a higher maximum tolerance concentration (MTC) up to 2700 ppm. We evaluated the survival of all six strains on lead stress, the efficiency of biosorption and lead uptake. It was found that R. planticola FACU 3 is the highest MTC and S. xylosus FACU was the lowest MTC in this evaluation. Therefore, transmission electron microscopy (TEM) confirmed the difference between the morphological responses of these two strains to lead stress. These findings led to explore more about the genome of R. planticola FACU 3 using illumine Miseq technology. Draft genome sequence analysis revealed the genome size of 5,648,460 bp and G + C content 55.8% and identified 5526 CDS, 75 tRNA and 4 rRNA. Sequencing technology facilitated the identification of about 47 genes related to resistance to many heavy metals including lead, arsenic, zinc, mercury, nickel, silver and chromium of R. planticola FACU 3 strain. Moreover, genome sequencing identified plant growth-promoting genes (PGPGs) including indole acetic acid (IAA) production, phosphate solubilization, phenazine production, trehalose metabolism and 4-hydroxybenzoate production genes and a lot of antibiotic-resistant genes. | 2023 | 36715862 |
| 6026 | 11 | 0.9690 | Probiotic Characteristics and Whole Genome Analysis of Lactiplantibacillus plantarum PM8 from Giant Panda (Ailuropoda melanoleuca) Milk. Milk is a rich source of probiotics, particularly lactic acid bacteria (LAB), which have been shown to promote gut health, support the immune system, enhance digestion, and prevent pathogen colonization. This study aimed to isolate and identify LAB strains from giant panda (Ailuropoda melanoleuca) milk, evaluate their probiotic properties, and analyze the genomic characteristics of a promising strain. Thirteen LAB strains were isolated from 12 samples of giant panda milk. Among all LAB strains, Lactiplantibacillus plantarum PM8 (PM8) demonstrated probiotic properties and safety features. It exhibited strong growth performance, high antipathogenic activity against four pathogens, and strong survival rates under simulated gastrointestinal conditions. PM8 also showed excellent adhesion capabilities to Caco-2 cells. Additionally, safety assessment revealed no hemolysin production and minimal antibiotic resistance, making it a promising candidate for probiotic applications. The genome of PM8 consists of 3,227,035 bp with a GC content of 44.60% and contains 3171 coding sequences, including 113 carbohydrate-active enzyme genes and genes related to exopolysaccharides synthesis, vitamin B biosynthesis, adhesion, antioxidant activity, and bile salt hydrolysis. Notably, it contains genes involved in nonribosomally synthesized secondary metabolite and bacteriocin production. The genomic safety analysis confirmed that PM8 lacks the capacity to transmit bacterial antimicrobial resistance and is non-pathogenic to both humans and animals. These findings suggest that PM8 holds considerable potential for enhancing gut health and supporting the development of safe probiotic products. | 2025 | 39900880 |
| 5225 | 12 | 0.9689 | Two genes involved in clindamycin resistance of Bacillus licheniformis and Bacillus paralicheniformis identified by comparative genomic analysis. We evaluated the minimum inhibitory concentrations of clindamycin and erythromycin toward 98 Bacillus licheniformis strains isolated from several types of fermented soybean foods manufactured in several districts of Korea. First, based on recent taxonomic standards for bacteria, the 98 strains were separated into 74 B. licheniformis strains and 24 B. paralicheniformis strains. Both species exhibited profiles of erythromycin resistance as an acquired characteristic. B. licheniformis strains exhibited acquired clindamycin resistance, while B. paralicheniformis strains showed unimodal clindamycin resistance, indicating an intrinsic characteristic. Comparative genomic analysis of five strains showing three different patterns of clindamycin and erythromycin resistance identified 23S rRNA (adenine 2058-N6)-dimethyltransferase gene ermC and spermidine acetyltransferase gene speG as candidates potentially involved in clindamycin resistance. Functional analysis of these genes using B. subtilis as a host showed that ermC contributes to cross-resistance to clindamycin and erythromycin, and speG confers resistance to clindamycin. ermC is located in the chromosomes of strains showing clindamycin and erythromycin resistance and no transposable element was identified in its flanking regions. The acquisition of ermC might be attributable to a homologous recombination. speG was identified in not only the five genome-analyzed strains but also eight strains randomly selected from the 98 test strains, and deletions in the structural gene or putative promoter region caused clindamycin sensitivity, which supports the finding that the clindamycin resistance of Bacillus species is an intrinsic property. | 2020 | 32271828 |
| 407 | 13 | 0.9689 | Molecular cloning and characterization of two lincomycin-resistance genes, lmrA and lmrB, from Streptomyces lincolnensis 78-11. Two different lincomycin-resistance determinants (lmrA and lmrB) from Streptomyces lincolnensis 78-11 were cloned in Streptomyces lividans 66 TK23. The gene lmrA was localized on a 2.16 kb fragment, the determined nucleotide sequence of which encoded a single open reading frame 1446 bp long. Analysis of the deduced amino acid sequence suggested the presence of 12 membrane-spanning domains and showed significant similarities to the methylenomycin-resistance protein (Mmr) from Streptomyces coelicolor, the QacA protein from Staphylococcus aureus, and several tetracycline-resistance proteins from both Gram-positive and Gram-negative bacteria, as well as to some sugar-transport proteins from Escherichia coli. The lmrB gene was actively expressed from a 2.7 kb fragment. An open reading frame of 837 bp could be localized which encoded a protein that was significantly similar to 23S rRNA adenine(2058)-N-methyltransferases conferring macrolide-lincosamide-streptogramin resistance. LmrB also had putative rRNA methyltransferase activity since lincomycin resistance of ribosomes was induced in lmrB-containing strains. Surprisingly, both enzymes, LmrA and LmrB, had a substrate specificity restricted to lincomycin and did not cause resistance to other lincosamides such as celesticetin and clindamycin, or to macrolides. | 1992 | 1328813 |
| 5387 | 14 | 0.9689 | Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine. Susceptibility to 12 antibiotics was tested in 75 unrelated lactic acid bacteria strains of wine origin of the following species: 38 Lactobacillus plantarum, 3 Lactobacillus hilgardii, 2 Lactobacillus paracasei, 1 Lactobacillus sp, 21 Oenococcus oeni, 4 Pediococcus pentosaceus, 2 Pediococcus parvulus, 1 Pediococcus acidilactici, and 3 Leuconostoc mesenteroides. The Minimal Inhibitory Concentrations of the different antibiotics that inhibited 50% of the strains of the Lactobacillus, Leuconostoc and Pediococcus genera were, respectively, the following ones: penicillin (2, < or =0.5, and < or =0.5 microg/ml), erythromycin (< or =0.5 microg/ml), chloramphenicol (4 microg/ml), ciprofloxacin (64, 8, and 128 microg/ml), vancomycin (> or =128 microg/ml), tetracycline (8, 2, and 8 microg/ml), streptomycin (256, 32, and 512 microg/ml), gentamicin (64, 4, and 128 microg/ml), kanamycin (256, 64, and 512 microg/ml), sulfamethoxazole (> or =1024 microg/ml), and trimethoprim (16 microg/ml). All 21 O. oeni showed susceptibility to erythromycin, tetracycline, rifampicin and chloramphenicol, and exhibited resistance to aminoglycosides, vancomycin, sulfamethoxazole and trimethoprim, that could represent intrinsic resistance. Differences were observed among the O. oeni strains with respect to penicillin or ciprofloxacin susceptibility. Antibiotic resistance genes were studied by PCR and sequencing, and the following genes were detected: erm(B) (one P. acidilactici), tet(M) (one L. plantarum), tet(L) (one P. parvulus), aac(6')-aph(2") (four L. plantarum, one P. parvulus, one P. pentosaceus and two O. oeni), ant(6) (one L. plantarum, and two P. parvulus), and aph(3')-IIIa (one L. plantarum and one O. oeni). This is the first time, to our knowledge, that ant(6), aph(3')-IIIa and tet(L) genes are found in Lactobacillus and Pediococcus strains and antimicrobial resistance genes are reported in O. oeni strains. | 2006 | 16876896 |
| 5216 | 15 | 0.9689 | Unraveling the draft genome and phylogenomic analysis of a multidrug-resistant Planococcus sp. NCCP-2050(T): a promising novel bacteria from Pakistan. Planococcus is a genus of Gram-positive bacteria known for potential industrial and agricultural applications. Here, we report the first draft genome sequence and phylogenomic analysis of a CRISPR-carrying, multidrug-resistant, novel candidate Planococcus sp. NCCP-2050(T) isolated from agricultural soil in Pakistan. The strain NCCP-2050(T) exhibited significant resistance to various classes of antibiotics, including fluoroquinolones (i.e., ciprofloxacin, levofloxacin, ofloxacin, moxifloxacin, and bacitracin), cephalosporins (cefotaxime, ceftazidime, cefoperazone), rifamycins (rifampicin), macrolides (erythromycin), and glycopeptides (vancomycin). Planococcus sp. NCCP-2050(T) consists of genome size of 3,463,905 bp, comprised of 3639 annotated genes, including 82 carbohydrate-active enzyme genes and 39 secondary metabolite genes. The genome also contained 80 antibiotic resistance, 162 virulence, and 305 pathogen-host interaction genes along with two CRISPR arrays. Based on phylogenomic analysis, digital DNA-DNA hybridization, and average nucleotide identity values (i.e., 35.4 and 88.5%, respectively) it was suggested that strain NCCP-2050(T) might represent a potential new species within the genus Planococcus. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-023-03748-z. | 2023 | 37663752 |
| 8470 | 16 | 0.9689 | Genomic Insights into Vaccinium spp. Endophytes B. halotolerans and B. velezensis and Their Antimicrobial Potential. Plant microbiota contributes to nutrient absorption, and the production of hormones and vitamins, and plays a crucial role in responding to environmental stress. We hypothesized that Vaccinium spp. harbour a unique microbiota that enables them to coexist in extreme environments such as saline, nutrient-poor, and waterlogged conditions. Upon examining Bacillus spp. endophytes isolated from blueberries, cranberries and lingonberries in vitro, we identified B. halotolerans (Bil-LT1_1, Bil-LT1_2) and B. velezensis (Cran-LT1_8, Ling-NOR4_15) strains that inhibit the growth of five pathogenic fungi and five foodborne bacteria. Whole-genome sequencing provided insights into genome organization and plasticity, helping identify mobile elements and genes potentially acquired through horizontal gene transfer. Functional annotation identified genes associated with plant colonization, stress tolerance, biocontrol activity, and plant growth promotion. Comparative genomic analyses revealed key biosynthetic gene clusters (BGCs) responsible for producing antifungal metabolites, including lipopeptides and polyketides. Genes supporting plant nutrition, growth, and environmental adaptation were present also in these strains. Notably, isolated endophytes exhibited particularly high levels of genomic plasticity, likely due to horizontal gene transfer involving gene ontology (GO) pathways related to survival in polymicrobial and foreign environments. | 2025 | 40724928 |
| 6038 | 17 | 0.9689 | Genomic Comparison of Lactobacillus helveticus Strains Highlights Probiotic Potential. Lactobacillus helveticus belongs to the large group of lactic acid bacteria (LAB), which are the major players in the fermentation of a wide range of foods. LAB are also present in the human gut, which has often been exploited as a reservoir of potential novel probiotic strains, but several parameters need to be assessed before establishing their safety and potential use for human consumption. In the present study, six L. helveticus strains isolated from natural whey cultures were analyzed for their phenotype and genotype in exopolysaccharide (EPS) production, low pH and bile salt tolerance, bile salt hydrolase (BSH) activity, and antibiotic resistance profile. In addition, a comparative genomic investigation was performed between the six newly sequenced strains and the 51 publicly available genomes of L. helveticus to define the pangenome structure. The results indicate that the newly sequenced strain UC1267 and the deposited strain DSM 20075 can be considered good candidates for gut-adapted strains due to their ability to survive in the presence of 0.2% glycocholic acid (GCA) and 1% taurocholic and taurodeoxycholic acid (TDCA). Moreover, these strains had the highest bile salt deconjugation activity among the tested L. helveticus strains. Considering the safety profile, none of these strains presented antibiotic resistance phenotypically and/or at the genome level. The pangenome analysis revealed genes specific to the new isolates, such as enzymes related to folate biosynthesis in strains UC1266 and UC1267 and an integrated phage in strain UC1035. Finally, the presence of maltose-degrading enzymes and multiple copies of 6-phospho-β-glucosidase genes in our strains indicates the capability to metabolize sugars other than lactose, which is related solely to dairy niches. | 2019 | 31293536 |
| 6035 | 18 | 0.9689 | Developing Gut-Healthy Strains for Pets: Probiotic Potential and Genomic Insights of Canine-Derived Lactobacillus acidophilus GLA09. Probiotics are widely used to improve pet health and welfare due to their significant biological activity and health benefits. Lactobacillus acidophilus GLA09 was derived from the intestinal tract of healthy beagles. The safety and suitability evaluation of GLA09 was completed through a combination of whole genome sequence and phenotypic analyses, including tests for the inhibition of harmful bacteria, acid resistance, bile salt tolerance, adhesion, and amine-producing substance content. The findings revealed that GLA09 has good gastrointestinal tolerance, inhibits the growth of pathogenic bacteria, and does not produce toxic biogenic amines. The genome of GLA09 comprises one chromosome and one plasmid, with a genome size of 2.10 M and a Guanine + Cytosine content of 38.71%. It encodes a total of 2208 genes, including 10 prophages, and 1 CRISPR sequence. Moreover, 56 carbohydrate-encoding genes were identified in the CAZy database, along with 11 genes for cold and heat stress tolerance, 5 genes for bile salt tolerance, 12 genes for acid tolerance, and 14 predicted antioxidant genes. Furthermore, GLA09 has one lincosamide resistance gene, but there is no risk of transfer. GLA09 harbors a cluster of Helveticin J and Enterolysin A genes linked to antimicrobial activity. Genomic analysis validated the probiotic attributes of GLA09, indicating its potential utility as a significant probiotic in the pet food industry. In summary, L. acidophilus GLA09 has the potential to be used as a probiotic in pet food and can effectively combat intestinal health in pets. | 2025 | 40005717 |
| 5390 | 19 | 0.9689 | Presence of erythromycin and tetracycline resistance genes in lactic acid bacteria from fermented foods of Indian origin. Lactic acid bacteria (LAB) resistant to erythromycin were isolated from different food samples on selective media. The isolates were identified as Enterococcus durans, Enterococcus faecium, Enterococcus lactis, Enterococcus casseliflavus, Lactobacillus salivarius, Lactobacillus reuteri, Lactobacillus plantarum, Lactobacillus fermentum, Pediococcus pentosaceus and Leuconostoc mesenteroides. Of the total 60 isolates, 88 % harbored the ermB gene. The efflux gene msrA was identified in E. faecium, E. durans, E. lactis, E. casseliflavus, P. pentosaceus and L. fermentum. Further analysis of the msrA gene by sequencing suggested its homology to msrC. Resistance to tetracycline due to the genes tetM, tetW, tetO, tetK and tetL, alone or in combination, were identified in Lactobacillus species. The tetracycline efflux genes tetK and tetL occurred in P. pentosaceus and Enterococcus species. Since it appeared that LAB had acquired these genes, fermented foods may be a source of antibiotic resistance. | 2012 | 22644346 |