# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1473 | 0 | 0.9851 | Evaluation of the Unyvero i60 ITI® multiplex PCR for infected chronic leg ulcers diagnosis. OBJECTIVES: Unyvero i60 ITI multiplex PCR (mPCR) may identify a large panel of bacteria and antibiotic resistance genes. In this study, we compared results obtained by mPCR to standard bacteriology in chronic leg ulcer (CLU) infections. METHODS: A prospective study, part of the interventional-blinded randomized study "ulcerinfecte" (NCT02889926), was conducted at Saint Joseph Hospital in Paris. Fifty patients with a suspicion of infected CLU were included between February 2017 and September 2018. Conventional bacteriology and mPCR were performed simultaneously on deep skin biopsies. RESULTS: Staphylococcus aureus and Pseudomonas aeruginosa were the most detected pathogens. Regarding the global sensitivity, mPCR is not overcome to the standard culture. Anaerobes and slow growing bacteria were detected with a higher sensitivity rate by mPCR than standard culture. CONCLUSION: Unyvero i60 ITI multiplex PCR detected rapidly pathogenic bacteria in infected CLU especially anaerobes and slow growing bacteria and was particularly effective for patients previously treated with antibiotics. | 2020 | 31790779 |
| 515 | 1 | 0.9844 | The Streptomyces peucetius dpsY and dnrX genes govern early and late steps of daunorubicin and doxorubicin biosynthesis. The Streptomyces peucetius dpsY and dnrX genes govern early and late steps in the biosynthesis of the clinically valuable antitumor drugs daunorubicin (DNR) and doxorubicin (DXR). Although their deduced products resemble those of genes thought to be involved in antibiotic production in several other bacteria, this information could not be used to identify the functions of dpsY and dnrX. Replacement of dpsY with a mutant form disrupted by insertion of the aphII neomycin-kanamycin resistance gene resulted in the accumulation of UWM5, the C-19 ethyl homolog of SEK43, a known shunt product of iterative polyketide synthases involved in the biosynthesis of aromatic polyketides. Hence, DpsY must act along with the other components of the DNR-DXR polyketide synthase to form 12-deoxyaklanonic acid, the earliest known intermediate of the DXR pathway. Mutation of dnrX in the same way resulted in a threefold increase in DXR production and the disappearance of two acid-sensitive, unknown compounds from culture extracts. These results suggest that dnrX, analogous to the role of the S. peucetius dnrH gene (C. Scotti and C. R. Hutchinson, J. Bacteriol. 178:73167321, 1996), may be involved in the metabolism of DNR and/or DXR to acid-sensitive compounds, possibly related to the baumycins found in many DNR-producing bacteria. | 1998 | 9573189 |
| 625 | 2 | 0.9843 | Identification of hopanoid biosynthesis genes involved in polymyxin resistance in Burkholderia multivorans. A major challenge to clinical therapy of Burkholderia cepacia complex (Bcc) pulmonary infections is their innate resistance to a broad range of antimicrobials, including polycationic agents such as aminoglycosides, polymyxins, and cationic peptides. To identify genetic loci associated with this phenotype, a transposon mutant library was constructed in B. multivorans ATCC 17616 and screened for increased susceptibility to polymyxin B. Compared to the parent strain, mutant 26D7 exhibited 8- and 16-fold increases in susceptibility to polymyxin B and colistin, respectively. Genetic analysis of mutant 26D7 indicated that the transposon inserted into open reading frame (ORF) Bmul_2133, part of a putative hopanoid biosynthesis gene cluster. A strain with a mutation in another ORF in this cluster, Bmul_2134, was constructed and named RMI19. Mutant RMI19 also had increased polymyxin susceptibility. Hopanoids are analogues of eukaryotic sterols involved in membrane stability and barrier function. Strains with mutations in Bmul_2133 and Bmul_2134 showed increased permeability to 1-N-phenylnaphthylamine in the presence of increasing concentrations of polymyxin, suggesting that the putative hopanoid biosynthesis genes are involved in stabilizing outer membrane permeability, contributing to polymyxin resistance. Results from a dansyl-polymyxin binding assay demonstrated that polymyxin B does not bind well to the parent or mutant strains, suggesting that Bmul_2133 and Bmul_2134 contribute to polymyxin B resistance by a mechanism that is independent of lipopolysaccharide (LPS) binding. Through this work, we propose a role for hopanoid biosynthesis as part of the multiple antimicrobial resistance phenotype in Bcc bacteria. | 2012 | 22006009 |
| 527 | 3 | 0.9842 | Characterization of the bagremycin biosynthetic gene cluster in Streptomyces sp. Tü 4128. Bagremycin A and bagremycin B isolated from Streptomyces sp. Tü 4128 have activities against Gram-positive bacteria, fungi and also have a weak antitumor activity, which make them have great potential for development of novel antibiotics. Here, we report a draft genome 8,424,112 bp in length of S. sp. Tü 4128 by Illumina Hiseq2000, and identify the bagremycins biosynthetic gene cluster (BGC) by bioinformatics analysis. The putative bagremycins BGC includes 16 open reading frames (ORFs) with the functions of biosynthesis, resistance and regulation. Disruptions of relative genes and HPLC analysis of bagremycins production demonstrated that not all the genes within the BGC are responsible for the biosynthesis of bagremycins. In addition, the biosynthetic pathways of bagremycins are proposed for deeper inquiries into their intriguing biosynthetic mechanism. | 2019 | 30526412 |
| 5176 | 4 | 0.9841 | Genetic Alternatives for Experimental Adaptation to Colistin in Three Pseudomonas aeruginosa Lineages. Pseudomonas aeruginosa is characterized by a high adaptive potential, developing resistance in response to antimicrobial pressure. We employed a spatiotemporal evolution model to disclose the pathways of adaptation to colistin, a last-resort polymyxin antimicrobial, among three unrelated P. aeruginosa lineages. The P. aeruginosa ATCC-27833 reference strain (Pa_ATCC), an environmental P. aeruginosa isolate (Pa_Environment), and a clinical isolate with multiple drug resistance (Pa_MDR) were grown over an increasing 5-step colistin concentration gradient from 0 to 400 mg/L. Pa_Environment demonstrated the highest growth pace, achieving the 400 mg/L band in 15 days, whereas it took 37 and 60 days for Pa_MDR and Pa_ATCC, respectively. To identify the genome changes that occurred during adaptation to colistin, the isolates selected during the growth of the bacteria (n = 185) were subjected to whole genome sequencing. In total, 17 mutation variants in eight lipopolysaccharide-synthesis-associated genes were detected. phoQ and lpxL/PA0011 were affected in all three lineages, whereas changes in pmrB were found in Pa_Environment and Pa_MDR but not in Pa_ATCC. In addition, mutations were detected in 34 general metabolism genes, and each lineage developed mutations in a unique set of such genes. Thus, the three examined distinct P. aeruginosa strains demonstrated different capabilities and genetic pathways of colistin adaptation. | 2024 | 38786180 |
| 5067 | 5 | 0.9838 | Stepwise Evolution of a Klebsiella pneumoniae Clone within a Host Leading to Increased Multidrug Resistance. Five bla(CTX-M-14)-positive Klebsiella pneumoniae isolates (KpWEA1, KpWEA2, KpWEA3, KpWEA4-1, and KpWEA4-2) were consecutively obtained from a patient with relapsed acute myeloid leukemia who was continuously administered antimicrobials. Compared with KpWEA1 and KpWEA2, KpWEA3 showed decreased susceptibility to antimicrobials, and KpWEA4-1 and KpWEA4-2 (isolated from a single specimen) showed further-elevated multidrug-resistance (MDR) phenotypes. This study aims to clarify the clonality of the five isolates and their evolutionary processes leading to MDR by comparison of these complete genomes. The genome comparison revealed KpWEA1 was the antecedent of the other four isolates, and KpWEA4-1 and KpWEA4-2 independently emerged from KpWEA3. Increasing levels of MDR were acquired by gradual accumulation of genetic alterations related to outer membrane protein expression: the loss of OmpK35 and upregulation of AcrAB-TolC occurred in KpWEA3 due to ramA overexpression caused by a mutation in ramR; then OmpK36 was lost in KpWEA4-1 and KpWEA4-2 by different mechanisms. KpWEA4-2 further acquired colistin resistance by the deletion of mgrB. In addition, we found that exuR and kdgR, which encode repressors of hexuronate metabolism-related genes, were disrupted in different ways in KpWEA4-1 and KpWEA4-2. The two isolates also possessed different amino acid substitutions in AtpG, which occurred at very close positions. These genetic alterations related to metabolisms may compensate for the deleterious effects of major porin loss. Thus, our present study reveals the evolutionary process of a K. pneumoniae clone leading to MDR and also suggests specific survival strategies in the bacteria that acquired MDR by the genome evolution. IMPORTANCE Within-host evolution is a survival strategy that can occur in many pathogens and is often associated with the emergence of novel antimicrobial-resistant (AMR) bacteria. To analyze this process, suitable sets of clinical isolates are required. Here, we analyzed five Klebsiella pneumoniae isolates which were consecutively isolated from a patient and showed a gradual increase in the AMR level. By genome sequencing and other analyses, we show that the first isolate was the antecedent of the later isolates and that they gained increased levels of antimicrobial resistance leading to multidrug resistance (MDR) by stepwise changes in the expression of outer membrane proteins. The isolates showing higher levels of MDR lost major porins but still colonized the patient's gut, suggesting that the deleterious effects of porin loss were compensated for by the mutations in hexuronate metabolism-related genes and atpG, which were commonly detected in the MDR isolates. | 2021 | 34817239 |
| 5774 | 6 | 0.9838 | The correlation between the presence of quorum sensing, toxin-antitoxin system genes and MIC values with ability of biofilm formation in clinical isolates of Pseudomonas aeruginosa. INTRODUCTION: Pseudomonas aeruginosa is a Gram-negative bacterium that considered as important opportunistic human pathogen. One of the mechanisms that help bacteria to tolerate survival in adverse conditions and resistance to antibiotics is biofilm formation through quorum sensing (QS) signals and toxin-antitoxin (TA) systems. QS and TA are two systems that have important roles in biofilm formation. QS is a global regulatory mechanism that enable bacteria to communicate with each other by production of auto inducers (AI) molecules in population. Because of importance biofilm formation in P. aeruginosa infections, here, we studied frequency of QS and TA genes among clinical isolates of P. aeruginosa with ability of biofilm formation. MATERIALS AND METHODS: One hundred and forty clinical isolates of P. aeruginosa were collected from Tehran and Ilam hospitals. The isolates were identified by biochemical tests. Biofilm formation was evaluated by microplate method. After DNA extraction by boiling method, the frequency of QS genes (lasIR, rhlIR), and TA genes (mazEF, relBE, hipBA, ccdAB and mqsR) were analyzed by PCR. RESULTS: Our results showed that maximum resistance is related to aztreonam (72.85%) antibiotic. Most of isolates were able to produce biofilm (87.15%) and the majority of them formed strong biofilm (56.42%). PCR results showed that frequency of mazEF, relBE, hipBA, ccdAB, mqsR, lasIR and rhlIR genes were 85.71, 100, 1.42, 100, 57.14, 93.57 and 83.57 percent, respectively. CONCLUSION: Clinical isolates of P. aeruginosa had high ability to form biofilm, and QS and TA system genes among these isolates were very high (except hipBA genes). There are significaut correlation between biofilm for mation and present of QS and TA system genes. | 2014 | 25870745 |
| 5228 | 7 | 0.9837 | Mycobacterium bolletii respiratory infections. Contrary to other species in the Mycobacterium chelonae-abscessus complex, we reidentified M. bolletii strains isolated from 4 respiratory patients and found these strains to be uniformly resistant to clarithromycin. No mutations previously associated with macrolide resistance in bacteria were detected in either the 23S rDNA or the genes encoding riboproteins L4 and L22. | 2009 | 19193279 |
| 6129 | 8 | 0.9835 | Yersinia ruckeri Infection and Enteric Redmouth Disease among Endangered Chinese Sturgeons, China, 2022. During October 2022, enteric redmouth disease (ERM) affected Chinese sturgeons at a farm in Hubei, China, causing mass mortality. Affected fish exhibited characteristic red mouth and intestinal inflammation. Investigation led to isolation of a prominent bacterial strain, zhx1, from the internal organs and intestines of affected fish. Artificial infection experiments confirmed the role of zhx1 as the pathogen responsible for the deaths. The primary pathologic manifestations consisted of degeneration, necrosis, and inflammatory reactions, resulting in multiple organ dysfunction and death. Whole-genome sequencing of the bacteria identified zhx1 as Yersinia ruckeri, which possesses 135 drug-resistance genes and 443 virulence factor-related genes. Drug-susceptibility testing of zhx1 demonstrated high sensitivity to chloramphenicol and florfenicol but varying degrees of resistance to 18 other antimicrobial drugs. Identifying the pathogenic bacteria associated with ERM in Chinese sturgeons establishes a theoretical foundation for the effective prevention and control of this disease. | 2024 | 38781928 |
| 5775 | 9 | 0.9835 | Culture-independent detection of chlorhexidine resistance genes qacA/B and smr in bacterial DNA recovered from body sites treated with chlorhexidine-containing dressings. PURPOSE: Dressings containing chlorhexidine gluconate (CHG) are increasingly used in clinical environments for prevention of infection at central venous catheter insertion sites. Increased tolerance to this biocide in staphylococci is primarily associated with the presence of qacA/B and smr genes. METHODOLOGY: We used a culture-independent method to assess the prevalence of these genes in 78 DNA specimens recovered from the skin of 43 patients at catheter insertion sites in the arm that were covered with CHG dressings. RESULTS: Of the 78 DNA specimens analysed, 52 (67 %) possessed qacA/B and 14 (18 %) possessed smr; all samples positive for smr were also positive for qacA/B. These prevalence rates were not statistically greater than those observed in a subsample of specimens taken from non-CHG treated contralateral arms and non-CHG-dressing exposed arms. A statistically greater proportion of specimens with greater than 72 h exposure to CHG dressings were qac-positive (P=0.04), suggesting that the patients were contaminated with bacteria or DNA containing qacA/B during their hospital stay. The presence of qac genes was not positively associated with the presence of DNA specific for Staphylococcusepidermidis and Staphylococcusaureus in these specimens. CONCLUSION: Our results show that CHG genes are highly prevalent on hospital patients' skin, even in the absence of viable bacteria. | 2017 | 28463667 |
| 2478 | 10 | 0.9834 | Study on the resistance mechanism via outer membrane protein OprD2 and metal β-lactamase expression in the cell wall of Pseudomonas aeruginosa. The aim of the present study was to evaluate the imipenem-resistant mechanism via the outer membrane protein (OMP) OprD2 and metal β-lactamase expression in the cell wall of Pseudomonas aeruginosa. The Pseudomonas aeruginosa was clinically separated and validated by VITEK-2 full-automatic bacteria analyzer. Drug resistance, sensitive antibiotics and minimum inhibitory concentration (MIC) were tested using the drug sensitivity analysis system. The phenotype positive strains of MBL genes were screened using the Kirby-Bauer diffusion method by adding metal ion-chelating agent EDTA on the imipenem susceptibility paper. IMP-1, VIM-1 and SPM metaloenzyme genes were tested by polymerase chain reaction (PCR)-telomeric repeat amplification protocol (TRAP). The OMP OprD2 genes were tested by PCR-TRAP, and the protein expression was tested using western blot analysis. The location of OMP OprD2 was confirmed using the sodium salicylate inhibition test. The results showed that 80 portions (40%) of MBL-positive strains were screened out of 200 specimens. Imipenem-resistant Pseudomonas aeruginosa (IRPA) and MIC values were significantly higher than quality control bacteria and control bacteria (P<0.05). A total of 35 cases with IMP-1 positive, 20 with VIM-1 positive, 16 with SPM positive, 5 with 2 positive genes and 4 with 3 positive genes were screened among MBL positive strains. A total of 150 portions (75%) of OprD2 deficiencies were screened from 200 specimens. The standard strains and sensitive strains showed OprD2 protein bands at 45 kDa while no OprD2 protein bands appeared in OprD2 deficiency strains. It was in accordance with gene detection. In conclusion, OMP OprD2 deficiency and MBL phenotype positivity may be important mechanisms of IRPA. | 2016 | 27882088 |
| 5218 | 11 | 0.9833 | Expression of a Shiga-Like Toxin during Plastic Colonization by Two Multidrug-Resistant Bacteria, Aeromonas hydrophila RIT668 and Citrobacter freundii RIT669, Isolated from Endangered Turtles (Clemmys guttata). Aeromonas hydrophila RIT668 and Citrobacter freundii RIT669 were isolated from endangered spotted turtles (Clemmys guttata). Whole-genome sequencing, annotation and phylogenetic analyses of the genomes revealed that the closest relative of RIT668 is A. hydrophila ATCC 7966 and Citrobacter portucalensis A60 for RIT669. Resistome analysis showed that A. hydrophila and C. freundii harbor six and 19 different antibiotic resistance genes, respectively. Both bacteria colonize polyethylene and polypropylene, which are common plastics, found in the environment and are used to fabricate medical devices. The expression of six biofilm-related genes-biofilm peroxide resistance protein (bsmA), biofilm formation regulatory protein subunit R (bssR), biofilm formation regulatory protein subunit S (bssS), biofilm formation regulator (hmsP), toxin-antitoxin biofilm protein (tabA) and transcriptional activator of curli operon (csgD)-and two virulence factors-Vi antigen-related gene (viaB) and Shiga-like toxin (slt-II)-was investigated by RT-PCR. A. hydrophila displayed a >2-fold increase in slt-II expression in cells adhering to both polymers, C. freundii adhering on polyethylene displayed a >2-fold, and on polypropylene a >6-fold upregulation of slt-II. Thus, the two new isolates are potential pathogens owing to their drug resistance, surface colonization and upregulation of a slt-II-type diarrheal toxin on polymer surfaces. | 2020 | 32752245 |
| 198 | 12 | 0.9832 | The Drosophila immune defense against gram-negative infection requires the death protein dFADD. Drosophila responds to Gram-negative infections by mounting an immune response that depends on components of the IMD pathway. We recently showed that imd encodes a protein with a death domain with high similarity to that of mammalian RIP. Using a two-hybrid screen in yeast, we have isolated the death protein dFADD as a molecule that associates with IMD. Our data show that loss of dFADD function renders flies highly susceptible to Gram-negative infections without affecting resistance to Gram-positive bacteria. By genetic analysis we show that dFADD acts downstream of IMD in the pathway that controls inducibility of the antibacterial peptide genes. | 2002 | 12433364 |
| 248 | 13 | 0.9832 | Comparative Population Biology and Related Gene Expression in the Beta-Cypermethrin-Resistant Strains of Bactrocera dorsalis (Hendel). Diptera and Lepidoptera species have the highest levels of insecticide resistance, and the mechanism of drug resistance has been studied in detoxification metabolism genes such as P450, GST, EST, and ABC. Since Bactrocera dorsalis are resistant to a variety of chemicals, the pattern and mechanism of resistance in Bactrocera dorsalis have been investigated from a variety of aspects such as detoxification metabolism genes, detoxification enzymes, intestinal symbiotic bacteria, and synergists in the world. In this study, 51 species and 149 detoxification metabolism genes were annotated in the Suppression Subtractive Hybridization (SSH) library, and 12 candidate genes related to beta-cypermethrin resistance were screened and quantitatively expressed in this library. Two genes were found to be upregulated in the egg stage, three genes in the larval stage, one gene in the pupal stage, and five genes in the adult stage, and four genes were found to be upregulated in the midgut and the malacca ducts in the midgut. The expression of cyp6g1, cyp6a22, GST-Epsilon9, and Trypsin-4 genes was upregulated in resistant strains, with the most obvious upregulation occurring in the midgut and the Malpighian tubules. These results provide new insights into the study of pesticide resistance in quarantine insects. | 2024 | 39194774 |
| 5057 | 14 | 0.9832 | Genomic investigation unveils colistin resistance mechanism in carbapenem-resistant Acinetobacter baumannii clinical isolates. Colistin resistance in Acinetobacter baumannii is mediated by multiple mechanisms. Recently, mutations within pmrABC two-component system and overexpression of eptA gene due to upstream insertion of ISAba1 have been shown to play a major role. Thus, the aim of our study is to characterize colistin resistance mechanisms among the clinical isolates of A. baumannii in India. A total of 207 clinical isolates of A. baumannii collected from 2016 to 2019 were included in this study. Mutations within lipid A biosynthesis and pmrABC genes were characterized by whole-genome shotgun sequencing. Twenty-eight complete genomes were further characterized by hybrid assembly approach to study insertional inactivation of lpx genes and the association of ISAba1-eptA. Several single point mutations (SNPs), like M12I in pmrA, A138T and A444V in pmrB, and E117K in lpxD, were identified. We are the first to report two novel SNPs (T7I and V383I) in the pmrC gene. Among the five colistin-resistant A. baumannii isolates where complete genome was available, the analysis showed that three of the five isolates had ISAba1 insertion upstream of eptA. No mcr genes were identified among the isolates. We mapped the SNPs on the respective protein structures to understand the effect on the protein activity. We found that majority of the SNPs had little effect on the putative protein function; however, some SNPs might destabilize the local structure. Our study highlights the diversity of colistin resistance mechanisms occurring in A. baumannii, and ISAba1-driven eptA overexpression is responsible for colistin resistance among the Indian isolates.IMPORTANCEAcinetobacter baumannii is a Gram-negative, emerging and opportunistic bacterial pathogen that is often associated with a wide range of nosocomial infections. The treatment of these infections is hindered by increase in the occurrence of A. baumannii strains that are resistant to most of the existing antibiotics. The current drug of choice to treat the infection caused by A. baumannii is colistin, but unfortunately, the bacteria started to show resistance to the last-resort antibiotic. The loss of lipopolysaccharides and mutations in lipid A biosynthesis genes are the main reasons for the colistin resistance. The present study characterized 207 A. baumannii clinical isolates and constructed complete genomes of 28 isolates to recognize the mechanisms of colistin resistance. We showed the mutations in the colistin-resistant variants within genes essential for lipid A biosynthesis and that cause these isolates to lose the ability to produce lipopolysaccharides. | 2024 | 38214512 |
| 2477 | 15 | 0.9831 | Evaluation of targeted next-generation sequencing for microbiological diagnosis of acute lower respiratory infection. PURPOSE: To evaluate the performance of targeted next-generation sequencing (tNGS) in pathogen detection in acute lower respiratory infection. METHODS: The retrospective study was conducted between July 2023 and May 2024 at the Yantai Yuhuangding Hospital. Patients with acute lower respiratory infections were included. Qualified sputum or bronchoalveolar lavage fluid samples were collected for tNGS and conventional microbiological tests(CMTs), including culture, staining, polymerase chain reaction (PCR), and reverse transcription-PCR (RT-PCR). The time required and cost were counted. RESULTS: A total of 968 patients were enrolled. Study analysis discovered 1,019 strains of bacteria, 259 strains of fungi, 302 strains of viruses, 76 strains of Mycoplasma pneumoniae, and two strains of Chlamydia psittaci using tNGS. In addition, tNGS also identified 39 mecA, four KPC, 19 NDM, and two OXA-48 genes. The positive rates for bacteria, fungi, viruses, mycoplasma, and chlamydia obtained using tNGS were significantly higher than those determined using traditional methods. Among them, tNGS showed high consistence with mycobacterium DNA test, influenza A (H1N1) virus nucleic acid test and COVID-19 nucleic acid test. Poor consistency between drug resistance genes and bacterial resistance phenotypes was found. In addition, tNGS also had advantages over traditional methods in terms of detection time and cost. CONCLUSION: Compared to traditional methods, tNGS had higher sensitivity in detecting bacteria, fungi, viruses, and other pathogens in acute lower respiratory infection, and also had the advantages of timeliness and cost-effectiveness, making it a promising method for guiding clinical diagnosis. | 2025 | 40901079 |
| 5795 | 16 | 0.9831 | Direct identification of Gram-positive bacteria and resistance determinants from blood cultures using a microarray-based nucleic acid assay: in-depth analysis of microarray data for undetermined results. BACKGROUND: The Verigene Gram-Positive Blood Culture (BC-GP) nucleic acid assay (Nanosphere, Inc., Northbrook, IL, USA) is a newly developed microarray-based test with which 12 Gram-positive bacterial genes and three resistance determinants can be detected using blood culture broths. We evaluated the performance of this assay and investigated the signal characteristics of the microarray images. METHODS: At the evaluation stage, we tested 80 blood cultures that were positive for various bacteria (68 bacteria covered and 12 not covered by the BC-GP panel) collected from the blood of 36 patients and 44 spiked samples. In instances where the automated system failed and errors were called, we manually inspected microarray images, measured the signal intensities of target spots, and reclassified the results. RESULTS: With the manual analysis of the microarray images of 14 samples for which error calls were reported, we could obtain correct identification results for 12 samples without the need for retesting, because strong signals in the target spots were clearly discriminable from background noise. With our interpretation strategy, we could obtain 97.1% sensitivity and 100% specificity for bacterial identification by using the BC-GP assay. The two unidentified bacteria were viridans group streptococci, which produced weaker target signals. During the application stage, among 25 consecutive samples positive for Gram-positive bacteria, we identified two specimens with error calls as Streptococcus spp. by using manual analysis. CONCLUSIONS: With help of the manual review of the microarray images, the BC-GP assay could successfully identify species and resistance markers for many clinically important Gram-positive bacteria. | 2015 | 25536666 |
| 8427 | 17 | 0.9831 | Basal DNA repair machinery is subject to positive selection in ionizing-radiation-resistant bacteria. BACKGROUND: Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian selection is expected to play an important role in this trait, but no data are currently available regarding the role of positive adaptive selection in resistance to ionizing-radiation and tolerance of desiccation. We analyzed the four known genome sequences of IRRB (Deinococcus geothermalis, Deinococcus radiodurans, Kineococcus radiotolerans, and Rubrobacter xylanophilus) to determine the role of positive Darwinian selection in the evolution of resistance to ionizing radiation and tolerance of desiccation. RESULTS: We used the programs MultiParanoid and DnaSP to deduce the sets of orthologs that potentially evolved due to positive Darwinian selection in IRRB. We find that positive selection targets 689 ortholog sets of IRRB. Among these, 58 ortholog sets are absent in ionizing-radiation-sensitive bacteria (IRSB: Escherichia coli and Thermus thermophilus). The most striking finding is that all basal DNA repair genes in IRRB, unlike many of their orthologs in IRSB, are subject to positive selection. CONCLUSION: Our results provide the first in silico prediction of positively selected genes with potential roles in the molecular basis of resistance to gamma-radiation and tolerance of desiccation in IRRB. Identification of these genes provides a basis for future experimental work aimed at understanding the metabolic networks in which they participate. | 2008 | 18570673 |
| 2233 | 18 | 0.9831 | Assessment of the multiplex PCR-based assay Unyvero pneumonia application for detection of bacterial pathogens and antibiotic resistance genes in children and neonates. BACKGROUND: Pneumonia is a major healthcare problem. Rapid pathogen identification is critical, but often delayed due to the duration of culturing. Early, broad antibacterial therapy might lead to false-negative culture findings and eventually to the development of antibiotic resistances. We aimed to assess the accuracy of the new application Unyvero P50 based on multiplex PCR to detect bacterial pathogens in respiratory specimens from children and neonates. METHODS: In this prospective study, bronchoalveolar lavage fluids, tracheal aspirates, or pleural fluids from neonates and children were analyzed by both traditional culture methods and Unyvero multiplex PCR. RESULTS: We analyzed specimens from 79 patients with a median age of 1.8 (range 0.01-20.1). Overall, Unyvero yielded a sensitivity of 73.1% and a specificity of 97.9% compared to culture methods. Best results were observed for non-fermenting bacteria, for which sensitivity of Unyvero was 90% and specificity 97.3%, while rates were lower for Gram-positive bacteria (46.2 and 93.9%, respectively). For resistance genes, we observed a concordance with antibiogram of 75% for those specimens in which there was a cultural correlate. CONCLUSIONS: Unyvero is a fast and easy-to-use tool that might provide additional information for clinical decision making, especially in neonates and in the setting of nosocomial pneumonia. Sensitivity of the PCR for Gram-positive bacteria and important resistance genes must be improved before this application can be widely recommended. | 2018 | 29086343 |
| 5809 | 19 | 0.9831 | Genomic epidemiology of Streptococcus agalactiae ST283 in Southeast Asia. Streptococcus agalactiae, also known as Lancefield Group B Streptococcus (GBS), is typically regarded as a neonatal pathogen; however, several studies have shown that the bacteria are capable of causing invasive diseases in non-pregnant adults as well. The majority of documented cases were from Southeast Asian countries, and the most common genotype found was ST283, which is also known to be able to infect fish. This study sequenced 12 GBS ST283 samples collected from adult patients in Thailand. Together with publicly available sequences, we performed temporo-spatial analysis and estimated population dynamics of the bacteria. Putative drug resistance genes were also identified and characterized, and the drug resistance phenotypes were validated experimentally. The results, together with historical records, draw a detailed picture of the past transmission history of GBS ST283 in Southeast Asia. | 2022 | 35264716 |