WE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
960800.9997A genome-wide atlas of antibiotic susceptibility targets and pathways to tolerance. Detailed knowledge on how bacteria evade antibiotics and eventually develop resistance could open avenues for novel therapeutics and diagnostics. It is thereby key to develop a comprehensive genome-wide understanding of how bacteria process antibiotic stress, and how modulation of the involved processes affects their ability to overcome said stress. Here we undertake a comprehensive genetic analysis of how the human pathogen Streptococcus pneumoniae responds to 20 antibiotics. We build a genome-wide atlas of drug susceptibility determinants and generated a genetic interaction network that connects cellular processes and genes of unknown function, which we show can be used as therapeutic targets. Pathway analysis reveals a genome-wide atlas of cellular processes that can make a bacterium less susceptible, and often tolerant, in an antibiotic specific manner. Importantly, modulation of these processes confers fitness benefits during active infections under antibiotic selection. Moreover, screening of sequenced clinical isolates demonstrates that mutations in genes that decrease antibiotic sensitivity and increase tolerance readily evolve and are frequently associated with resistant strains, indicating such mutations could be harbingers for the emergence of antibiotic resistance.202235672367
937610.9997Historical Contingency Drives Compensatory Evolution and Rare Reversal of Phage Resistance. Bacteria and lytic viruses (phages) engage in highly dynamic coevolutionary interactions over time, yet we have little idea of how transient selection by phages might shape the future evolutionary trajectories of their host populations. To explore this question, we generated genetically diverse phage-resistant mutants of the bacterium Pseudomonas syringae. We subjected the panel of mutants to prolonged experimental evolution in the absence of phages. Some populations re-evolved phage sensitivity, whereas others acquired compensatory mutations that reduced the costs of resistance without altering resistance levels. To ask whether these outcomes were driven by the initial genetic mechanisms of resistance, we next evolved independent replicates of each individual mutant in the absence of phages. We found a strong signature of historical contingency: some mutations were highly reversible across replicate populations, whereas others were highly entrenched. Through whole-genome sequencing of bacteria over time, we also found that populations with the same resistance gene acquired more parallel sets of mutations than populations with different resistance genes, suggesting that compensatory adaptation is also contingent on how resistance initially evolved. Our study identifies an evolutionary ratchet in bacteria-phage coevolution and may explain previous observations that resistance persists over time in some bacterial populations but is lost in others. We add to a growing body of work describing the key role of phages in the ecological and evolutionary dynamics of their host communities. Beyond this specific trait, our study provides a new insight into the genetic architecture of historical contingency, a crucial component of interpreting and predicting evolution.202235994371
935120.9996Postgenomic analysis of bacterial pathogens repertoire reveals genome reduction rather than virulence factors. In the pregenomic era, the acquisition of pathogenicity islands via horizontal transfer was proposed as a major mechanism in pathogen evolution. Much effort has been expended to look for the contiguous blocks of virulence genes that are present in pathogenic bacteria, but absent in closely related species that are nonpathogenic. However, some of these virulence factors were found in nonpathogenic bacteria. Moreover, and contrary to expectation, pathogenic bacteria were found to lack genes (antivirulence genes) that are characteristic of nonpathogenic bacteria. The availability of complete genome sequences has led to a new era of pathogen research. Comparisons of genomes have shown that the most pathogenic bacteria have reduced genomes, with less ribosomal RNA and unorganized operons; they lack transcriptional regulators but have more genes that encode protein toxins, toxin-antitoxin (TA) modules, and proteins for DNA replication and repair, when compared with less pathogenic close relatives. These findings questioned the paradigm of virulence by gene acquisition and put forward the notion of genomic repertoire of virulence.201323814139
960730.9996Transcriptome-Level Signatures in Gene Expression and Gene Expression Variability during Bacterial Adaptive Evolution. Antibiotic-resistant bacteria are an increasingly serious public health concern, as strains emerge that demonstrate resistance to almost all available treatments. One factor that contributes to the crisis is the adaptive ability of bacteria, which exhibit remarkable phenotypic and gene expression heterogeneity in order to gain a survival advantage in damaging environments. This high degree of variability in gene expression across biological populations makes it a challenging task to identify key regulators of bacterial adaptation. Here, we research the regulation of adaptive resistance by investigating transcriptome profiles of Escherichia coli upon adaptation to disparate toxins, including antibiotics and biofuels. We locate potential target genes via conventional gene expression analysis as well as using a new analysis technique examining differential gene expression variability. By investigating trends across the diverse adaptation conditions, we identify a focused set of genes with conserved behavior, including those involved in cell motility, metabolism, membrane structure, and transport, and several genes of unknown function. To validate the biological relevance of the observed changes, we synthetically perturb gene expression using clustered regularly interspaced short palindromic repeat (CRISPR)-dCas9. Manipulation of select genes in combination with antibiotic treatment promotes adaptive resistance as demonstrated by an increased degree of antibiotic tolerance and heterogeneity in MICs. We study the mechanisms by which identified genes influence adaptation and find that select differentially variable genes have the potential to impact metabolic rates, mutation rates, and motility. Overall, this work provides evidence for a complex nongenetic response, encompassing shifts in gene expression and gene expression variability, which underlies adaptive resistance. IMPORTANCE Even initially sensitive bacteria can rapidly thwart antibiotic treatment through stress response processes known as adaptive resistance. Adaptive resistance fosters transient tolerance increases and the emergence of mutations conferring heritable drug resistance. In order to extend the applicable lifetime of new antibiotics, we must seek to hinder the occurrence of bacterial adaptive resistance; however, the regulation of adaptation is difficult to identify due to immense heterogeneity emerging during evolution. This study specifically seeks to generate heterogeneity by adapting bacteria to different stresses and then examines gene expression trends across the disparate populations in order to pinpoint key genes and pathways associated with adaptive resistance. The targets identified here may eventually inform strategies for impeding adaptive resistance and prolonging the effectiveness of antibiotic treatment.201728217741
962140.9996Bacterial biodiversity drives the evolution of CRISPR-based phage resistance. About half of all bacteria carry genes for CRISPR-Cas adaptive immune systems(1), which provide immunological memory by inserting short DNA sequences from phage and other parasitic DNA elements into CRISPR loci on the host genome(2). Whereas CRISPR loci evolve rapidly in natural environments(3,4), bacterial species typically evolve phage resistance by the mutation or loss of phage receptors under laboratory conditions(5,6). Here we report how this discrepancy may in part be explained by differences in the biotic complexity of in vitro and natural environments(7,8). Specifically, by using the opportunistic pathogen Pseudomonas aeruginosa and its phage DMS3vir, we show that coexistence with other human pathogens amplifies the fitness trade-offs associated with the mutation of phage receptors, and therefore tips the balance in favour of the evolution of CRISPR-based resistance. We also demonstrate that this has important knock-on effects for the virulence of P. aeruginosa, which became attenuated only if the bacteria evolved surface-based resistance. Our data reveal that the biotic complexity of microbial communities in natural environments is an important driver of the evolution of CRISPR-Cas adaptive immunity, with key implications for bacterial fitness and virulence.201931645729
934350.9996Origin of the bacterial SET domain genes: vertical or horizontal? The presence of Supressor of variegation-Enhanser of zeste-Trithorax (SET) domain genes in bacteria is a current paradigm for lateral genetic exchange between eukaryotes and prokaryotes. Because a major function of SET domain proteins is the chemical modification of chromatin and bacteria do not have chromatin, there is no apparent functional requirement for the existence of bacterial SET domain genes. Consequently, their finding in only a small fraction of pathogenic and symbiotic bacteria was taken as evidence that bacteria have obtained the SET domain genes from their hosts. Furthermore, it was proposed that the products of the genes would, most likely, be involved in bacteria-host interactions. The broadened scope of sequenced bacterial genomes to include also free-living and environmental species provided a larger sample to analyze the bacterial SET domain genes. By phylogenetic analysis, examination of individual chromosomal regions for signs of insertion, and evaluating the chromosomal versus SET domain genes' GC contents, we provide evidence that SET domain genes have existed in the bacterial domain of life independently of eukaryotes. The bacterial genes have undergone an evolution of their own unconnected to the evolution of the eukaryotic SET domain genes. Initial finding of SET domain genes in predominantly pathogenic and symbiotic bacteria resulted, most probably, from a biased sample. However, a lateral transfer of SET domain genes may have occurred between some bacteria and a family of Archaea. A model for the evolution and distribution of SET domain genes in bacteria is proposed.200717148507
934260.9996Natural transformation in Gram-negative bacteria thriving in extreme environments: from genes and genomes to proteins, structures and regulation. Extremophilic prokaryotes live under harsh environmental conditions which require far-reaching cellular adaptations. The acquisition of novel genetic information via natural transformation plays an important role in bacterial adaptation. This mode of DNA transfer permits the transfer of genetic information between microorganisms of distant evolutionary lineages and even between members of different domains. This phenomenon, known as horizontal gene transfer (HGT), significantly contributes to genome plasticity over evolutionary history and is a driving force for the spread of fitness-enhancing functions including virulence genes and antibiotic resistances. In particular, HGT has played an important role for adaptation of bacteria to extreme environments. Here, we present a survey of the natural transformation systems in bacteria that live under extreme conditions: the thermophile Thermus thermophilus and two desiccation-resistant members of the genus Acinetobacter such as Acinetobacter baylyi and Acinetobacter baumannii. The latter is an opportunistic pathogen and has become a world-wide threat in health-care institutions. We highlight conserved and unique features of the DNA transporter in Thermus and Acinetobacter and present tentative models of both systems. The structure and function of both DNA transporter are described and the mechanism of DNA uptake is discussed.202134542714
941970.9996Genes required for mycobacterial growth defined by high density mutagenesis. Despite over a century of research, tuberculosis remains a leading cause of infectious death worldwide. Faced with increasing rates of drug resistance, the identification of genes that are required for the growth of this organism should provide new targets for the design of antimycobacterial agents. Here, we describe the use of transposon site hybridization (TraSH) to comprehensively identify the genes required by the causative agent, Mycobacterium tuberculosis, for optimal growth. These genes include those that can be assigned to essential pathways as well as many of unknown function. The genes important for the growth of M. tuberculosis are largely conserved in the degenerate genome of the leprosy bacillus, Mycobacterium leprae, indicating that non-essential functions have been selectively lost since this bacterium diverged from other mycobacteria. In contrast, a surprisingly high proportion of these genes lack identifiable orthologues in other bacteria, suggesting that the minimal gene set required for survival varies greatly between organisms with different evolutionary histories.200312657046
935780.9996The bifunctional enzymes of antibiotic resistance. The evolutionary union of two genes--each encoding proteins of complementary enzymatic activity--into a single gene so as to allow the coordinated expression of these activities as a fusion polypeptide, is an increasingly recognized biological occurrence. The result of this genetic union is the bifunctional enzyme. This fusion of separate catalytic activities into a single protein, whose gene is regulated by a single promoter, is seen especially where the coordinated expression of the separate activities is highly desirable. Increasingly, a circumstance driving the evolution of the bifunctional enzyme in bacteria is the resistance response of bacteria to antibiotic chemotherapy. We summarize the knowledge on bifunctional antibiotic-resistance enzymes, as possible harbingers of clinically significant resistance mechanisms of the future.200919615931
959790.9996Role of xenobiotic transporters in bacterial drug resistance and virulence. Since the discovery of antibiotic therapeutics, the battles between humans and infectious diseases have never been stopped. Humans always face the appearance of a new bacterial drug-resistant strain followed by new antibiotic development. However, as the genome sequences of infectious bacteria have been gradually determined, a completely new approach has opened. This approach can analyze the entire gene resources of bacterial drug resistance. Through analysis, it may be possible to discover the underlying mechanism of drug resistance that will appear in the future. In this review article, we will first introduce the method to analyze all the xenobiotic transporter genes by using the genomic information. Next, we will discuss the regulation of xenobiotic transporter gene expression through the two-component signal transduction system, the principal environmental sensing and response system in bacteria. Furthermore, we will also introduce the virulence roles of xenobiotic transporters, which is an ongoing research area.200818481812
9716100.9996Fitness effects of plasmids shape the structure of bacteria-plasmid interaction networks. Antimicrobial resistance (AMR) genes are often carried on broad host range plasmids, and the spread of AMR within microbial communities will therefore depend on the structure of bacteria–plasmid networks. Empirical and theoretical studies of ecological interaction networks suggest that network structure differs between communities that are predominantly mutualistic versus antagonistic, with the former showing more generalized interactions (i.e., species interact with many others to a similar extent). This suggests that mutualistic bacteria–plasmid networks—where antibiotics are present and plasmids carry AMR genes—will be more generalized than antagonistic interactions, where plasmids do not confer benefits to their hosts. We first develop a simple theory to explain this link: fitness benefits of harboring a mutualistic symbiont promote the spread of the symbiont to other species. We find support for this theory using an experimental bacteria–symbiont (plasmid) community, where the same plasmid can be mutualistic or antagonistic depending on the presence of antibiotics. This short-term and parsimonious mechanism complements a longer-term mechanism (coevolution and stability) explaining the link between mutualistic and antagonistic interactions and network structure.202235613058
9241110.9996Evolutionary Mechanisms Shaping the Maintenance of Antibiotic Resistance. Antibiotics target essential cellular functions but bacteria can become resistant by acquiring either exogenous resistance genes or chromosomal mutations. Resistance mutations typically occur in genes encoding essential functions; these mutations are therefore generally detrimental in the absence of drugs. However, bacteria can reduce this handicap by acquiring additional mutations, known as compensatory mutations. Genetic interactions (epistasis) either with the background or between resistances (in multiresistant bacteria) dramatically affect the fitness cost of antibiotic resistance and its compensation, therefore shaping dissemination of antibiotic resistance mutations. This Review summarizes current knowledge on the evolutionary mechanisms influencing maintenance of resistance mediated by chromosomal mutations, focusing on their fitness cost, compensatory evolution, epistasis, and the effect of the environment on these processes.201829439838
9612120.9996Using experimental evolution to explore natural patterns between bacterial motility and resistance to bacteriophages. Resistance of bacteria to phages may be gained by alteration of surface proteins to which phages bind, a mechanism that is likely to be costly as these molecules typically have critical functions such as movement or nutrient uptake. To address this potential trade-off, we combine a systematic study of natural bacteria and phage populations with an experimental evolution approach. We compare motility, growth rate and susceptibility to local phages for 80 bacteria isolated from horse chestnut leaves and, contrary to expectation, find no negative association between resistance to phages and bacterial motility or growth rate. However, because correlational patterns (and their absence) are open to numerous interpretations, we test for any causal association between resistance to phages and bacterial motility using experimental evolution of a subset of bacteria in both the presence and absence of naturally associated phages. Again, we find no clear link between the acquisition of resistance and bacterial motility, suggesting that for these natural bacterial populations, phage-mediated selection is unlikely to shape bacterial motility, a key fitness trait for many bacteria in the phyllosphere. The agreement between the observed natural pattern and the experimental evolution results presented here demonstrates the power of this combined approach for testing evolutionary trade-offs.201121509046
9336130.9996Molecular dissection of nutrient exchange at the insect-microbial interface. Genome research is transforming our understanding of nutrient exchange between insects and intracellular bacteria. A key characteristic of these bacteria is their small genome size and gene content. Their fastidious and inflexible nutritional requirements are met by multiple metabolites from the insect host cell. Although the bacteria have generally retained genes coding the synthesis of nutrients required by the insect, some apparently critical genes have been lost, and compensated for by shared metabolic pathways with the insect host or supplementary bacteria with complementary metabolic capabilities.201428043404
9605140.9996Gene Expression Variability Underlies Adaptive Resistance in Phenotypically Heterogeneous Bacterial Populations. The root cause of the antibiotic resistance crisis is the ability of bacteria to evolve resistance to a multitude of antibiotics and other environmental toxins. The regulation of adaptation is difficult to pinpoint due to extensive phenotypic heterogeneity arising during evolution. Here, we investigate the mechanisms underlying general bacterial adaptation by evolving wild-type Escherichia coli populations to dissimilar chemical toxins. We demonstrate the presence of extensive inter- and intrapopulation phenotypic heterogeneity across adapted populations in multiple traits, including minimum inhibitory concentration, growth rate, and lag time. To search for a common response across the heterogeneous adapted populations, we measured gene expression in three stress-response networks: the mar regulon, the general stress response, and the SOS response. While few genes were differentially expressed, clustering revealed that interpopulation gene expression variability in adapted populations was distinct from that of unadapted populations. Notably, we observed both increases and decreases in gene expression variability upon adaptation. Sequencing select genes revealed that the observed gene expression trends are not necessarily attributable to genetic changes. To further explore the connection between gene expression variability and adaptation, we propagated single-gene knockout and CRISPR (clustered regularly interspaced short palindromic repeats) interference strains and quantified impact on adaptation to antibiotics. We identified significant correlations that suggest genes with low expression variability have greater impact on adaptation. This study provides evidence that gene expression variability can be used as an indicator of bacterial adaptive resistance, even in the face of the pervasive phenotypic heterogeneity underlying adaptation.201527623410
9604150.9995Extreme Antibiotic Persistence via Heterogeneity-Generating Mutations Targeting Translation. Antibiotic persistence, the noninherited tolerance of a subpopulation of bacteria to high levels of antibiotics, is a bet-hedging phenomenon with broad clinical implications. Indeed, the isolation of bacteria with substantially increased persistence rates from chronic infections suggests that evolution of hyperpersistence is a significant factor in clinical therapy resistance. However, the pathways that lead to hyperpersistence and the underlying cellular states have yet to be systematically studied. Here, we show that laboratory evolution can lead to increase in persistence rates by orders of magnitude for multiple independently evolved populations of Escherichia coli and that the driving mutations are highly enriched in translation-related genes. Furthermore, two distinct adaptive mutations converge on concordant transcriptional changes, including increased population heterogeneity in the expression of several genes. Cells with extreme expression of these genes showed dramatic differences in persistence rates, enabling isolation of subpopulations in which a substantial fraction of cells are persisters. Expression analysis reveals coherent regulation of specific pathways that may be critical to establishing the hyperpersistence state. Hyperpersister mutants can thus enable the systematic molecular characterization of this unique physiological state, a critical prerequisite for developing antipersistence strategies.IMPORTANCE Bacterial persistence is a fascinating phenomenon in which a small subpopulation of bacteria becomes phenotypically tolerant to lethal antibiotic exposure. There is growing evidence that populations of bacteria in chronic clinical infections develop a hyperpersistent phenotype, enabling a substantially larger subpopulation to survive repeated antibiotic treatment. The mechanisms of persistence and modes of increasing persistence rates remain largely unknown. Here, we utilized experimental evolution to select for Escherichia coli mutants that have more than a thousandfold increase in persistence rates. We discovered that a variety of individual mutations to translation-related processes are causally involved. Furthermore, we found that these mutations lead to population heterogeneity in the expression of specific genes. We show that this can be used to isolate populations in which the majority of bacteria are persisters, thereby enabling systems-level characterization of this fascinating and clinically significant microbial phenomenon.202031964772
9693160.9995Antibody-mediated crosslinking of gut bacteria hinders the spread of antibiotic resistance. The body is home to a diverse microbiota, mainly in the gut. Resistant bacteria are selected by antibiotic treatments, and once resistance becomes widespread in a population of hosts, antibiotics become useless. Here, we develop a multiscale model of the interaction between antibiotic use and resistance spread in a host population, focusing on an important aspect of within-host immunity. Antibodies secreted in the gut enchain bacteria upon division, yielding clonal clusters of bacteria. We demonstrate that immunity-driven bacteria clustering can hinder the spread of a novel resistant bacterial strain in a host population. We quantify this effect both in the case where resistance preexists and in the case where acquiring a new resistance mutation is necessary for the bacteria to spread. We further show that the reduction of spread by clustering can be countered when immune hosts are silent carriers, and are less likely to get treated, and/or have more contacts. We demonstrate the robustness of our findings to including stochastic within-host bacterial growth, a fitness cost of resistance, and its compensation. Our results highlight the importance of interactions between immunity and the spread of antibiotic resistance, and argue in the favor of vaccine-based strategies to combat antibiotic resistance.201930957218
9671170.9995Genome-scale genetic manipulation methods for exploring bacterial molecular biology. Bacteria are diverse and abundant, playing key roles in human health and disease, the environment, and biotechnology. Despite progress in genome sequencing and bioengineering, much remains unknown about the functional organization of prokaryotes. For instance, roughly a third of the protein-coding genes of the best-studied model bacterium, Escherichia coli, currently lack experimental annotations. Systems-level experimental approaches for investigating the functional associations of bacterial genes and genetic structures are essential for defining the fundamental molecular biology of microbes, preventing the spread of antibacterial resistance in the clinic, and driving the development of future biotechnological applications. This review highlights recently introduced large-scale genetic manipulation and screening procedures for the systematic exploration of bacterial gene functions, molecular relationships, and the global organization of bacteria at the gene, pathway, and genome levels.201222517266
9614180.9995Antibiotic-Independent Adaptive Effects of Antibiotic Resistance Mutations. Antibiotic usage selects for the accumulation and spread of antibiotic-resistant bacteria. However, resistance can also accumulate in the absence of antibiotic exposure. Antibiotics are often designed to target widely distributed regulatory housekeeping genes. The targeting of such genes enables these antibiotics to be useful against a wider variety of pathogens. This review highlights work suggesting that regulatory housekeeping genes of the type targeted by many antibiotics function as hubs of adaptation to conditions unrelated to antibiotic exposure. As a result of this, some mutations to the regulatory housekeeping gene targets of antibiotics confer both antibiotic resistance and an adaptive effect unrelated to antibiotic exposure. Such antibiotic-independent adaptive effects of resistance mutations may substantially affect the dynamics of antibiotic resistance accumulation and spread.201728629950
9423190.9995Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Antimicrobial peptides (AMPs) are promising antimicrobials, however, the potential of bacterial resistance is a major concern. Here we systematically study the evolution of resistance to 14 chemically diverse AMPs and 12 antibiotics in Escherichia coli. Our work indicates that evolution of resistance against certain AMPs, such as tachyplesin II and cecropin P1, is limited. Resistance level provided by point mutations and gene amplification is very low and antibiotic-resistant bacteria display no cross-resistance to these AMPs. Moreover, genomic fragments derived from a wide range of soil bacteria confer no detectable resistance against these AMPs when introduced into native host bacteria on plasmids. We have found that simple physicochemical features dictate bacterial propensity to evolve resistance against AMPs. Our work could serve as a promising source for the development of new AMP-based therapeutics less prone to resistance, a feature necessary to avoid any possible interference with our innate immune system.201931586049