# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3542 | 0 | 0.9634 | Fecal indicators, pathogens, antibiotic resistance genes, and ecotoxicity in Galveston Bay after Hurricane Harvey. Unprecedented rainfall after Hurricane Harvey caused a catastrophic flood in the southern coast of Texas, and flushed significant floodwater and sediments into Galveston Bay, the largest estuary along the Texas Gulf Coast. This study investigated the immediate and long-term (6 months post-Harvey) fecal indicators, pathogenic bacteria, antibiotic resistance genes (ARGs), and ecotoxicity in the Galveston Bay. Dramatic decrease of salinity profile to zero, increased levels of fecal indicator bacteria and pathogenic bacteria, and detection of various ARGs were observed in the water and sediment samples collected 2 weeks post-Harvey. High levels of Bla(TEM) and cytotoxicity measured by yeast bioluminescent assay (BLYR) were also observed especially near the river mouths. While Vibrio spp. was dominant in water, much higher abundance of fecal indicator bacteria and pathogen were detected in the sediments. A decreasing trend of Bla(TEM) and cytotoxicity was observed in March 2018 samples, suggesting the Bay has returned to its pre-hurricane conditions 6 months post-Harvey. Interestingly, the abundance of fecal indicator bacteria and pathogens were shifted dramatically according to high-streamflow and low-streamflow seasons in the Bay. The data are useful to construct the model of risk assessment in coastal estuaries system and predict the effects of extreme flooding events in the future. | 2021 | 33445049 |
| 7350 | 1 | 0.9632 | The vertical distribution of tetA and intI1 in a deep lake is rather due to sedimentation than to resuspension. Lakes are exposed to anthropogenic pollution including the release of allochthonous bacteria into their waters. Antibiotic resistance genes (ARGs) stabilize in bacterial communities of temperate lakes, and these environments act as long-term reservoirs of ARGs. Still, it is not clear if the stabilization of the ARGs is caused by a periodical introduction, or by other factors regulated by dynamics within the water column. Here we observed the dynamics of the tetracycline resistance gene (tetA) and of the class 1 integron integrase gene intI1 a proxy of anthropogenic pollution in the water column and in the sediments of subalpine Lake Maggiore, together with several chemical, physical and microbiological variables. Both genes resulted more abundant within the bacterial community of the sediment compared to the water column and the water-sediment interface. Only at the inset of thermal stratification they reached quantifiable abundances in all the water layers, too. Moreover, the bacterial communities of the water-sediment interface were more similar to deep waters than to the sediments. These results suggest that the vertical distribution of tetA and intI1 is mainly due to the deposition of bacteria from the surface water to the sediment, while their resuspension from the sediment is less important. | 2020 | 31926010 |
| 8657 | 2 | 0.9631 | The Phytoplankton Taxon-Dependent Oil Response and Its Microbiome: Correlation but Not Causation. Phytoplankton strongly interact with their associated bacteria, both attached (PA), and free-living (FL), and bacterial community structures can be specific to phytoplankton species. Similarly, responses to environmental stressors can vary by taxon, as exemplified by observed shifts in phytoplankton community structure from diatoms to phytoflagellates after the Deepwater Horizon (DWH) oil spill. Here, we assess the extent to which associated bacteria influence the phytoplankton taxon-specific oil response by exposing xenic and axenic strains of three phytoplankton species to oil and/or dispersant. The dinoflagellates Amphidinium carterae and Peridinium sociale, and the diatom Skeletonema sp., all harbored significantly distinct bacterial communities that reflected their host oil response. Oil degrading bacteria were detected in both PA and FL communities of the oil resistant dinoflagellates, but their FL bacteria were more efficient in lipid hydrolysis, a proxy for oil degradation capability. Inversely, the growth rate and photosynthetic parameters of the diatom Skeletonema sp. was the most impacted by dispersed oil compared to the dinoflagellates, and oil-degrading bacteria were not significantly associated to its microbiome, even in the dispersed oil treatment. Moreover, the FL bacteria of Skeletonema did not show significant oil degradation. Yet, the lack of consistent significant differences in growth or photosynthetic parameters between the xenic and axenic cultures after oil exposure suggest that, physiologically, the associated bacteria do not modify the phytoplankton oil response. Instead, both oil resistance and phycosphere composition appear to be species-specific characteristics that are not causally linked. This study explores one aspect of what is undoubtedly a complex suite of interactions between phytoplankton and their associated bacteria; future analyses would benefit from studies of genes and metabolites that mediate algal-bacterial exchanges. | 2019 | 30915045 |
| 2 | 3 | 0.9630 | A Widespread Glycosidase Confers Lobophorin Resistance and Host-Dependent Structural Diversity. Identifying new environmental resistance determinants is significant to combat rising antibiotic resistance. Herein we report the unexpected correlation of a lobophorin (LOB) resistance-related glycosidase KijX with the host-dependent chemical diversity of LOBs, by a process of glycosylation, deglycosylation and reglycosylation. KijX homologues are widespread among bacteria, archaea and fungi, and encode the same glycohydrolytic activity on LOBs. The crystal structure of AcvX (a KijX homologue) shows a similar fold to that of the glycoside hydrolase family 113 and a special negatively charged groove to accommodate and deglycosylate LOBs. Antagonistic assays indicate kijX as a defense weapon of actinomycetes to combat LOB producers in environment, reflecting an elegant coevolution relationship. Our study provides insight into the KijX-related glycosidases as preexisting resistance determinants and represents an example of resistance genes accidentally integrated into natural product assembly. | 2023 | 37076762 |
| 8127 | 4 | 0.9629 | Microbial Multitrophic Communities Drive the Variation of Antibiotic Resistome in the Gut of Soil Woodlice (Crustacea: Isopoda). Multitrophic communities inhabit in soil faunal gut, including bacteria, fungi, and protists, which have been considered a hidden reservoir for antibiotic resistance genes (ARGs). However, there is a dearth of research focusing on the relationships between ARGs and multitrophic communities in the gut of soil faunas. Here, we studied the contribution of multitrophic communities to variations of ARGs in the soil woodlouse gut. The results revealed diverse and abundant ARGs in the woodlouse gut. Network analysis further exhibited strong connections between key ecological module members and ARGs, suggesting that multitrophic communities in the keystone ecological cluster may play a pivotal role in the variation of ARGs in the woodlouse gut. Moreover, long-term application of sewage sludge significantly altered the woodlice gut resistome and interkingdom communities. The variation portioning analysis indicated that the fungal community has a greater contribution to variations of ARGs than bacterial and protistan communities in the woodlice gut after long-term application of sewage sludge. Together, our results showed that changes in gut microbiota associated with agricultural practices (e.g., sewage sludge application) can largely alter the gut interkingdom network in ecologically relevant soil animals, with implications for antibiotic resistance, which advances our understanding of the microecological drivers of ARGs in terrestrial ecosystem. | 2022 | 35876241 |
| 7349 | 5 | 0.9627 | Bacterial and DNA contamination of a small freshwater waterway used for drinking water after a large precipitation event. Sewage contamination of freshwater occurs in the form of raw waste or as effluent from wastewater treatment plants (WWTP's). While raw waste (animal and human) and under-functioning WWTP's can introduce live enteric bacteria to freshwater systems, most WWTP's, even when operating correctly, do not remove bacterial genetic material from treated waste, resulting in the addition of bacterial DNA, including antibiotic resistance genes, into water columns and sediment of freshwater systems. In freshwater systems with both raw and treated waste inputs, then, there will be increased interaction between live sewage-associated bacteria (untreated sewage) and DNA contamination (from both untreated and treated wastewater effluent). To evaluate this understudied interaction between DNA and bacterial contamination in the freshwater environment, we conducted a three-month field-based study of sewage-associated bacteria and genetic material in water and sediment in a freshwater tributary of the Hudson River (NY, USA) that supplies drinking water and receives treated and untreated wastewater discharges from several municipalities. Using both DNA and culture-based bacterial analyses, we found that both treated and untreated sewage influences water and sediment bacterial communities in this tributary, and water-sediment exchanges of enteric bacteria and genetic material. Our results also indicated that the treated sewage effluent on this waterway serves as a concentrated source of intI1 (antibiotic resistance) genes, which appear to collect in the sediments below the outfall along with fecal indicator bacteria. Our work also captured the environmental impact of a large rain event that perturbed bacterial populations in sediment and water matrices, independently from the outflow. This study suggests that large precipitation events are an important cause of bacterial and DNA contamination for freshwater tributaries, with runoff from the surrounding environment being an important factor. | 2025 | 40096758 |
| 3690 | 6 | 0.9626 | High Occurrence Rate of Tetracycline (TC)-Resistant Bacteria and TC Resistance Genes Relates to Microbial Diversity in Sediment of Mekong River Main Waterway. Spatial monitoring of tetracycline (TC)-resistant bacteria in sediments of the Mekong River watershed revealed that the main waterway showed a high occurrence rate of TC-resistant bacteria, whereas Tonle Sap Lake and the Sai Gon estuary did not. The Shannon index (H'), an indicator of ecological diversity, was calculated from denaturing gradient gel electrophoresis (DGGE) profiles, which indicated that the main waterway of the Mekong River had high microbial diversity (high H') compared to Tonle Sap Lake and the Sai Gon estuary; this diversity was positively correlated with the occurrence rate of TC-resistant bacteria. Analysis of ribosomal protection protein (RPP) genes tet(M), tet(S) and tet(W) in the same area also revealed that high diversity was positively correlated with the occurrence rate of RPP genes, suggesting that RPP genes are well conserved across various bacterial species. Further evidence of different genotypes of tet(M) suggests that the drug resistance genes likely have various origins, and are mixed in the sediment. Sediments in this area are therefore potential reservoirs of drug resistance genes. | 2008 | 21558701 |
| 6788 | 7 | 0.9626 | Release and Constancy of an Antibiotic Resistance Gene in Seawater under Grazing Stress by Ciliates and Heterotrophic Nanoflagellates. Extracellular DNA (exDNA) is released from bacterial cells through various processes. The antibiotic resistance genes (ARGs) coded on exDNA may be horizontally transferred among bacterial communities by natural transformation. We quantitated the released/leaked tetracycline resistance gene, tet(M) over time under grazing stress by ciliates and heterotrophic nanoflagellates (HNFs), and found that extracellular tet(M) (ex-tetM) increased with bacterial grazing. Separate microcosms containing tet(M)-possessing bacteria with ciliates or HNFs were prepared. The copy number of ex-tetM in seawater in the ciliate microcosm rapidly increased until 3 d after the incubation, whereas that in the HNF microcosm showed a slower increase until 20 d. The copy number of ex-tetM was stable in both cases throughout the incubation period, suggesting that extracellular ARGs are preserved in the environment, even in the presence of grazers. Additionally, ARGs in bacterial cells were constant in the presence of grazers. These results suggest that ARGs are not rapidly extinguished in a marine environment under grazing stress. | 2017 | 28592722 |
| 6722 | 8 | 0.9625 | Studies on the bacterial permeability of non-woven fabrics and cotton fabrics. The permeability of cotton and non-woven fabrics to bacteria, air and water was studied. Non-woven fabrics, even when wet, showed low resistance to air, and high resistance to permeation of water and bacteria. Water-repellent cotton fabrics were resistant to permeation of water, air and bacteria, but these properties decreased on washing. Non-water-repellent cotton fabrics were poor bacterial barriers even when new. | 1986 | 2873172 |
| 6733 | 9 | 0.9625 | Bioavailability of tetracycline to antibiotic resistant Escherichia coli in water-clay systems. Tetracyclines are a class of antimicrobials frequently found in the environment, and have promoted the proliferation of antibiotic resistance. An unanswered research question is whether tetracycline sorbed to soils is still bioavailable to bacteria and exerts selective pressure on the bacterial community for the development of antibiotic resistance. In this study, bioreporter E. coli MC4100/pTGM strain was used to probe the bioavailability of tetracycline sorbed by smectite clay, a class of common soil minerals. Batch sorption experiments were conducted to prepare clay samples with a wide range of sorbed tetracycline concentration. The bioreporter was incubated with tetracycline-sorbed clay at different clay/solution ratios and water contents, as well as using dialysis tubings to prevent the direct contact between bacterial cells and clay particles. The expression of antibiotic resistance genes from the bioreporter was measured using a flow cytometer as a measurement of bioavailability/selective pressure. The direct contact of bioreporter cells to clay surfaces represented an important pathway facilitating bacterial access to clay-sorbed tetracycline. In clay-water suspensions, reducing solution volume rendered more bacteria to attach to clay surfaces enhancing the bioavailability of clay-sorbed tetracycline. The strong fluorescence emission from bioreporter cells on clay surfaces indicated that clay-sorbed tetracycline was still bioavailable to bacteria. The formation of biofilms on clay surfaces could increase bacterial access to clay-sorbed tetracycline. In addition, desorption of loosely sorbed tetracycline into bulk solution contributed to bacterial exposure and activation of the antibiotic resistance genes. Tetracycline sorbed by soil geosorbents could exert selective pressure on the surrounding microbial communities via bacterial exposure to tetracycline in solution from desorption and to the geosorbent-sorbed tetracycline as well. | 2018 | 30253298 |
| 6732 | 10 | 0.9623 | Assessment of Bioavailability of Biochar-Sorbed Tetracycline to Escherichia coli for Activation of Antibiotic Resistance Genes. Human overuse and misuse of antibiotics have caused the wide dissemination of antibiotics in the environment, which has promoted the development and proliferation of antibiotic resistance genes (ARGs) in soils. Biochar (BC) with strong sorption affinity to many antibiotics is considered to sequester antibiotics and hence mitigate their impacts to bacterial communities in soils. However, little is known about whether BC-sorbed antibiotics are bioavailable and exert selective pressure on soil bacteria. In this study, we probed the bioavailability of tetracycline sorbed by BCs prepared from rice-, wheat-, maize-, and bean-straw feedstock using Escherichia coli MC4100/pTGM bioreporter strain. The results revealed that BC-sorbed tetracycline was still bioavailable to the E. coli attached to BC surfaces. Tetracycline sorbed by BCs prepared at 400 °C (BC400) demonstrated a higher bioavailability to bacteria compared to that sorbed by BCs prepared at 500 °C (BC500). Tetracycline could be sorbed primarily in the small pores of BC500 where bacteria could not access due to the size exclusion to bacteria. In contrast, tetracycline could be sorbed mainly on BC400 surfaces where bacteria could conveniently access tetracycline. Increasing the ambient humidity apparently enhanced the bioavailability of BC400-sorbed tetracycline. BC500-sorbed tetracycline exposed to varying levels of ambient humidity showed no significant changes in bioavailability, indicating that water could not effectively mobilize tetracycline from BC500 pores to surfaces where bacteria could access tetracycline. The results from this study suggest that BCs prepared at a higher pyrolysis temperature could be more effective to sequester tetracycline and mitigate the selective pressure on soil bacteria. | 2020 | 32786566 |
| 7487 | 11 | 0.9621 | Impact of cyanobacterial bloom on microbiomes of freshwater lakes. Cyanobacterial blooms are harmful because of their cyanotoxins production. It occurs due to the eutrophication of freshwater reserves. Nagpur city has three lakes which serves as public water resource and are affected by algal bloom events. Metagenomic approach was used for the exploration of taxonomic, catabolic, and resistome profile of these lakes. Taxonomic profiling indicated prevalence of cyanobacterial species like Microcystis, Anabaena, Trichodesmium, Microcoleus, and Nodularia. These bacteria are well known for their association with algal bloom and microcystin production. High Performance Liquid Chromatography (HPLC) detected the presence of microcystin toxin and concentration was relatively higher in Ambazari lakewater. In addition, the presence of several antibiotic resistance genes like vancomycin, beta-lactamase, methicillin, and fluoroquinolones were observed. Genes conferring metal resistance such as copper, cadmium, zinc were also mined indicating presence of metal resistant microorganisms. The study suggests that lake water contaminated with Microcystis (algal bloom) harbors complex microbial community having diverse catabolic and resistome profiles, which negatively affect the ecosystems services. | 2021 | 34785623 |
| 7443 | 12 | 0.9621 | Wastewater pollution differently affects the antibiotic resistance gene pool and biofilm bacterial communities across streambed compartments. Wastewater discharges introduce antibiotic residues and antibiotic-resistant bacteria (ARB) into surface waters. Both inputs directly affect the streambed resistome, either by exerting a selective pressure that favour the proliferation of resistant phenotypes or by enriching the resident communities with wastewater-associated ARB. Here, we investigated the impact of raw and treated urban wastewater discharges on epilithic (growing on rocks) and epipsammic (growing on sandy substrata) streambed biofilms. The effects were assessed by comparing control and impact sites (i) on the composition of bacterial communities; (ii) on the abundance of twelve antibiotic resistance genes (ARGs) encoding resistance to β-lactams, fluoroquinolones, sulphonamides, tetracyclines, macrolides and vancomycin, as well as the class 1 integron-integrase gene (intI1); (iii) on the occurrence of wastewater-associated bacteria, including putative pathogens, and their potential linkage to target ARGs. We measured more pronounced effects of raw sewage than treated wastewater at the three studied levels. This effect was especially noticeable in epilithic biofilms, which showed a higher contribution of wastewater-associated bacteria and ARB than in epipsammic biofilms. Comparison of correlation coefficients obtained between the relative abundance of both target ARGs and operational taxonomic units classified as either potential pathogens or nonpathogens yielded significant higher correlations between the former category and genes intI1, sul1, sul2 and ermB. Altogether, these results indicate that wastewater-associated micro-organisms, including potential pathogens, contribute to maintain the streambed resistome and that epilithic biofilms appear as sensitive biosensors of the effect of wastewater pollution in surface waters. | 2017 | 28792642 |
| 4 | 13 | 0.9621 | Bacteria deplete deoxynucleotides to defend against bacteriophage infection. DNA viruses and retroviruses consume large quantities of deoxynucleotides (dNTPs) when replicating. The human antiviral factor SAMHD1 takes advantage of this vulnerability in the viral lifecycle, and inhibits viral replication by degrading dNTPs into their constituent deoxynucleosides and inorganic phosphate. Here, we report that bacteria use a similar strategy to defend against bacteriophage infection. We identify a family of defensive bacterial deoxycytidine triphosphate (dCTP) deaminase proteins that convert dCTP into deoxyuracil nucleotides in response to phage infection. We also identify a family of phage resistance genes that encode deoxyguanosine triphosphatase (dGTPase) enzymes, which degrade dGTP into phosphate-free deoxyguanosine and are distant homologues of human SAMHD1. Our results suggest that bacterial defensive proteins deplete specific deoxynucleotides (either dCTP or dGTP) from the nucleotide pool during phage infection, thus starving the phage of an essential DNA building block and halting its replication. Our study shows that manipulation of the dNTP pool is a potent antiviral strategy shared by both prokaryotes and eukaryotes. | 2022 | 35817891 |
| 6991 | 14 | 0.9620 | Distribution and drivers of antibiotic resistance genes in brackish water aquaculture sediment. Brackish water aquaculture has brought numerous economic benefits, whereas anthropogenic activities in aquaculture may cause the dissemination of antibiotic resistance genes (ARGs) in brackish water sediments. The intricate relationships between environmental factors and microbial communities as well as their role in ARGs dissemination in brackish water aquaculture remain unclear. This study applied PCR and 16S sequencing to identify the variations in ARGs, class 1 integron gene (intI1) and microbial communities in brackish water aquaculture sediment. The distribution of ARGs in brackish water aquaculture sediment was similar to that in freshwater aquaculture, and the sulfonamide resistance gene sul1 was the indicator of ARGs. Proteobacteria and Firmicutes were the dominant phyla, and Paenisporosarcina (p_ Firmicutes) was the dominant genus. The results of correlation, network and redundancy analysis indicated that the microbial community in the brackish water aquaculture sediment was function-driven. The neutral model and variation partitioning analysis were used to verify the ecological processes of the bacterial community. The normalized stochasticity ratio showed that pond bacteria community was dominated by determinacy, which was affected by aquaculture activities. The total nitrogen and organic matter influenced the abundance of ARGs, while Proteobacteria and Thiobacillus (p_Proteobacteria) were the key antibiotic-resistant hosts. Our study provides insight into the prevalence of ARGs in brackish water aquaculture sediments, and indicates that brackish water aquaculture is a reservoir of ARGs. | 2023 | 36436623 |
| 7348 | 15 | 0.9619 | Diversity of integron- and culture-associated antibiotic resistance genes in freshwater floc. Clinically important antibiotic resistance genes were detected in culturable bacteria and class 1 integron gene cassettes recovered from suspended floc, a significant aquatic repository for microorganisms and trace elements, across freshwater systems variably impacted by anthropogenic activities. Antibiotic resistance gene cassettes in floc total community DNA differed appreciably in number and type from genes detected in bacteria cultured from floc. The number of floc antibiotic resistance gene cassette types detected across sites was positively correlated with total (the sum of Ag, As, Cu, and Pb) trace element concentrations in aqueous solution and in a component of floc readily accessible to bacteria. In particular, concentrations of Cu and Pb in the floc component were positively correlated with floc resistance gene cassette diversity. Collectively, these results identify suspended floc as an important reservoir, distinct from bulk water and bed sediment, for antibiotic resistance in aquatic environments ranging from heavily impacted urban sites to remote areas of nature reserves and indicate that trace elements, particularly Cu and Pb, are geochemical markers of resistance diversity in this environmental reservoir. The increase in contamination of global water supplies suggests that aquatic environments will become an even more important reservoir of clinically important antibiotic resistance in the future. | 2012 | 22467502 |
| 6792 | 16 | 0.9618 | Parity in bacterial communities and resistomes: Microplastic and natural organic particles in the Tyrrhenian Sea. Petroleum-based microplastic particles (MPs) are carriers of antimicrobial resistance genes (ARGs) in aquatic environments, influencing the selection and spread of antimicrobial resistance. This research characterized MP and natural organic particle (NOP) bacterial communities and resistomes in the Tyrrhenian Sea, a region impacted by plastic pollution and climate change. MP and NOP bacterial communities were similar but different from the free-living planktonic communities. Likewise, MP and NOP ARG abundances were similar but different (higher) from the planktonic communities. MP and NOP metagenome-assembled genomes contained ARGs associated with mobile genetic elements and exhibited co-occurrence with metal resistance genes. Overall, these findings show that MPs and NOPs harbor potential pathogenic and antimicrobial resistant bacteria, which can aid in the spread of antimicrobial resistance. Further, petroleum-based MPs do not represent novel ecological niches for allochthonous bacteria; rather, they synergize with NOPs, collectively facilitating the spread of antimicrobial resistance in marine ecosystems. | 2024 | 38759465 |
| 7650 | 17 | 0.9617 | Contamination of hay and haylage with enteric bacteria and selected antibiotic resistance genes following fertilization with dairy manure or biosolids. The present study evaluated if enteric bacteria or antibiotic resistance genes carried in fecal amendments contaminate the hay at harvest, representing a potential route of exposure to ruminants that consume the hay. In the field experiments, dairy manure was applied to a hay field for three successive growing seasons, and biosolids were applied to a hay field for one growing season. Various enteric bacteria in the amendments were enumerated by viable plate count, and selected gene targets were quantified by qPCR. Key findings include the following: at harvest, hay receiving dairy manure or biosolids did not carry more viable enteric bacteria than hay from unamended control plots. The fermentation of hay did not result in a detectable increase in viable enteric bacteria. The application of dairy manure or biosolids resulted in a few gene targets being more abundant in hay during the first harvest. Fermentation of hay resulted in an increase in the abundance of gene targets, but this occurred with hay from both the amended and control plots. Overall, the application of fecal amendments resulted in an increase in the abundance of some gene targets associated with antibiotic resistance in the first cut hay. | 2022 | 35020524 |
| 3080 | 18 | 0.9617 | Antibiotic-resistant bacteria in the Bang Yai Canal and Phuket Bay in Phuket Province, Thailand. Antimicrobial resistance (AMR) represents a critical public health challenge, with surface waters serving as reservoirs for antibiotic-resistant bacteria (ARB). Among these, gram-negative enteric bacteria (GNEB) are recognized as major carriers of resistance genes and frequent causes of human infections. As a major tourism destination in Thailand, Phuket Province is likely to face increasing AMR-related issues. This study investigates water quality and the prevalence of ARB in the Bang Yai Canal, a key urban waterway in Phuket, and its transition into Phuket Bay. Water samples were collected from nine stations during the dry and rainy seasons of 2024. Total heterotrophic bacterial counts and GNEB resistant to amoxicillin, tetracycline, norfloxacin, and meropenem were examined in relation to water quality parameters. Results revealed significant spatial variation, with urban areas contributing substantially to ARB prevalence. Amoxicillin-resistant bacteria were the most prevalent, particularly among GNEB, while meropenem-resistant bacteria were consistently detected at most stations despite their low abundance. Seasonal variations indicated higher bacterial abundance upstream during the dry season and downstream during the rainy season, potentially driven by tourism and runoff dynamics. The coastal station exhibited a notably high proportion of antibiotic-resistant marine heterotrophic bacteria. Redundancy analysis identified turbidity and dissolved oxygen as significant factors influencing bacterial counts. Cluster analysis grouped stations based on water quality, with upstream and coastal sites exhibiting distinct profiles. This study underscores the critical role of urban activities in ARB dissemination and highlights the environmental and public health implications of ARB in coastal ecosystems, necessitating targeted mitigation and monitoring strategies. | 2025 | 40976823 |
| 6795 | 19 | 0.9617 | Interplay of xenobiotic-degrading and antibiotic-resistant microorganisms among the microbiome found in the air, handrail, and floor of the subway station. Investigating the quality of the subway environment, especially regarding antibiotic resistance genes (ARGs) and xenobiotics, conveys ecological and health impacts. In this study, compositions and relations of microorganisms harboring ARGs and xenobiotic degradation and metabolism genes (XDGs) in the Sukhumvit subway station (MRT-SKV) in Bangkok was assessed by analyzing the taxonomic and genetic diversity of the microbiome in the air and on the surfaces of floor and handrail. The major bacteria in the MRT-SKV (including Moraxella, which was abundant in the bioaerosol and handrail samples, and Staphylococcus, which was abundant in the bioaerosol samples) were found to contain both ARGs and XDGs. The co-abundance correlation network revealed notable relationships among bacteria harboring antibiotic resistance genes (ARGs) and xenobiotic degradation genes (XDGs). Significant associations were observed between ARGs linked to glycopeptide and fluoroquinolone resistance and genes associated with benzoate, styrene, and atrazine degradation pathways, as well as between ARGs related to cephamycin, cephalosporin, and MLS resistance and XDGs associated with the cytochrome P450-dependent drug metabolism pathway. These correlations suggested that selective pressure exerted by certain xenobiotics and antibiotics can simultaneously affect both ARGs and XDGs in the environment and should favor correlations and co-survival among ARG- and XDG-containing bacteria in the environments. The correlations may occur via shared mechanisms of resistance to both xenobiotics and antibiotics. Finally, different correlation pairs were seen in different niches (air, handrail, floor) of the subway environment or different geolocations. Thus, the relationship between ARG and XDG pairs most likely depends on the unique characteristics of the niches and on the prominent types of xenobiotics and antibiotics in the subway environment. The results indicated that interactions and connections between microbial communities can impact how they function. These microorganisms can have profound effects on accumulation of xenobiotics and ARGs in the MRT-SKV. | 2024 | 38246293 |