# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3180 | 0 | 0.9938 | Residential urban stormwater runoff: A comprehensive profile of microbiome and antibiotic resistance. Non-point stormwater runoff is a major contamination source of receiving waterbodies. Heightened incidence of waterborne disease outbreaks related to recreational use and source water contamination is associated with extreme rainfall events. Such extreme events are predicted to increase in some regions due to climate change. Consequently, municipal separate storm sewer systems (MS4s) conveying pathogens to receiving waters are a growing public health concern. In addition, the spread of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria in various environmental matrices, including urban runoff, is an emerging threat. The resistome and microbiota profile of MS4 discharges has yet to be fully characterized. To address this knowledge gap, we first analyzed the relationship between rainfall depth and intensity and E. coli densities (fecal indicator) in stormwater from four MS4 outflows in Columbus, Ohio, USA during the spring and summer of 2017. Microbial source tracking (MST) was conducted to examine major fecal contamination sources in the study sewersheds. A subset of samples was analyzed for microbial and resistome profiles using a metagenomic approach. The results showed a significant positive relationship between outflow E. coli density and rainfall intensity. MST results indicate prevalent fecal contamination from ruminant populations in the study sites (91% positive among the samples tested). Protobacteria and Actinobacteria were two dominant bacteria at a phylum level. A diverse array of ARGs and potentially pathogenic bacteria (e.g. Salmonella enterica Typhimurium), fungi (e.g. Scedosporium apiospermum), and protists (e.g. Acanthamoeba palestinensis) were found in urban stormwater outflows that discharge into adjacent streams. The most prevalent ARGs among samples were β-lactam resistance genes and the most predominant virulence genes within bacterial community were related with Staphylococcus aureus. A comprehensive contamination profile indicates a need for sustainable strategies to manage urban stormwater runoff amid increasingly intense rainfall events to protect public and environmental health. | 2020 | 32392682 |
| 3183 | 1 | 0.9934 | The microbiome, resistome, and their co-evolution in sewage at a hospital for infectious diseases in Shanghai, China. The emergence of antibiotic-resistant bacteria (ARB) caused by the overuse of antibiotics severely threatens human health. Hospital sewage may be a key transmission hub for ARB. However, the complex link between the microbiome and resistomeresistance in hospital sewage remains unclear. In this study, metagenomic assembly and binning methods were used to investigate the microbial community, resistome, and association of antibiotic resistance genes (ARGs) with ARB in sewage from 10 representative sites (outpatient building, surgery building, internal medicine buildings [IMB1-4], staff dormitory, laboratory animal building, tuberculosis building [TBB], and hospital wastewater treatment plant) of a hospital in Shanghai from June 2021 to February 2022. A total of 252 ARG subtypes, belonging to 17 antibiotic classes, were identified. The relative abundance of KPC-2 was higher at IMBs and TBB than at other sites. Of the ARG-carrying contigs, 47.3%-62.6% were associated with mobile genetic elements, and the proportion of plasmid-associated ARGs was significantly higher than that of chromosome-associated ARGs. Although a similar microbiome composition was shared, certain bacteria were enriched at different sites. Potential pathogens Enterococcus B faecium and Klebsiella pneumoniae were primarily enriched in IMB2 and IMB4, respectively. The same ARGs were identified in diverse bacterial hosts (especially pathogenic bacteria), and accordingly, the latter possessed multiple ARGs. Furthermore, gene flow was frequently observed in the sewage of different buildings. The results provide crucial information on the characterization profiles of resistomes in hospital sewage in Shanghai.IMPORTANCEEnvironmental antibiotic resistance genes (ARGs) play a critical role in the emergence and spread of antimicrobial resistance, which poses a global health threat. Wastewater from healthcare facilities serves as a significant reservoir for ARGs. Here, we characterized the microbial community along with the resistome (comprising all antibiotic resistance genes) in wastewater from a specialized hospital for infectious diseases in Shanghai. Potential pathogenic bacteria (e.g., Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Enterococcus B faecium) were frequently detected in hospital wastewater and carried multiple ARGs. A complex link between microbiome and resistome was observed in the wastewater of this hospital. The monitoring of ARGs and antibiotic-resistant bacteria (ARB) in hospital wastewater might be of great significance for preventing the spread of ARB. | 2024 | 38132570 |
| 3179 | 2 | 0.9932 | Deciphering the mobility, pathogenic hosts, and co-selection of antibiotic resistance genes in untreated wastewater from three different hospitals. OBJECTIVE: Antibiotic resistance genes (ARGs) in hospital wastewater pose significant environmental and public health risks, yet the co-selection mechanisms involving metal/biocide resistance genes (MRGs/BRGs) and the role of mobile genetic elements (MGEs) remain poorly characterized. This study aimed to comprehensively assess the abundance, mobility, pathogenic hosts, and co-selection patterns of ARGs, MRGs, and BRGs in untreated wastewater from three types of hospitals. METHODS: Untreated wastewater samples from nine sources across three hospital types (general, traditional Chinese medicine, and dental) were analyzed using metagenomic sequencing and assembly. ARGs, MRGs, and BRGs were identified via the SARG and BacMet databases. ARG hosts, mobility, and MGE co-occurrence were analyzed using PlasFlow and MOB-suite, with risk levels evaluated alongside pathogenic bacteria databases. RESULTS: A total of 1911 ARGs (222 subtypes), 1662 MRGs (167 subtypes), and 916 BRGs (139 subtypes) were detected. Tetracycline, multidrug, and β-lactam resistance genes were predominant, with 46.43 % of ARGs being plasmid-associated. Key pathogens including Klebsiella pneumoniae and Enterococcus spp. harbored high-risk ARGs such as KPC-2 and NDM-1. Notably, 76.2 % of ARGs in traditional Chinese medicine hospital wastewater were classified as high-risk. Significant co-occurrence of ARGs with MGEs (e.g., DDE recombinases) and MRGs/BRGs was observed, underscoring the role of horizontal gene transfer and co-selection. CONCLUSION: Untreated hospital wastewater represents a significant reservoir of ARGs, with risks exacerbated by pathogenic hosts, MGE-mediated HGT, and metal/biocide co-selection. These findings underscore the urgent need for optimized wastewater treatment strategies to curb the spread of antibiotic resistance and inform future intervention efforts. | 2025 | 41067299 |
| 6525 | 3 | 0.9932 | The Role of Water as a Reservoir for Antibiotic-Resistant Bacteria. Water systems serve as multifaceted environmental pools for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs), influencing human, animal, and ecosystem health. This review synthesizes current understanding of how antibiotics, ARB, and ARGs enter surface, ground, and drinking waters via wastewater discharge, agricultural runoff, hospital effluents, and urban stormwater. We highlight key mechanisms of biofilm formation, horizontal gene transfer, and co-selection by chemical stressors that facilitate persistence and spread. Case studies illustrate widespread detection of clinically meaningful ARB (e.g., Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) and mobile ARGs (e.g., sul1/2, tet, bla variants) in treated effluents, recycled water, and irrigation return flows. The interplay between treatment inefficiencies and environmental processes underscores the need for advanced treatment technologies, integrated monitoring, and policy interventions. Addressing these challenges is critical to curbing the environmental dissemination of resistance and protecting human and ecosystem health. | 2025 | 40867958 |
| 3173 | 4 | 0.9932 | Antibiotic-resistant bacteria in marine productive zones of the eastern Arabian Sea: Implications for human and environmental health. The increasing threat of antibiotic resistance is a major global concern affecting human and environmental health. Marine environments, though underexplored, are emerging as significant reservoirs for antibiotic resistance genes (ARGs). This study provides genome-resolved shotgun metagenomic insights into the seasonal and spatial dynamics of ARGs in the chlorophyll maximum zones of the eastern Arabian Sea, focusing on bacterial communities from coastal (30 m) and offshore (600 m) depths. Using a shotgun metagenomic approach, 31 potential ARGs were identified across both non-monsoon and monsoon seasons, with higher abundance observed in offshore stations during the non-monsoon season. Multidrug resistance genes such as blaEFM-1, catB2 and mexK, conferring resistance to carbapenems, chloramphenicol and multiple antibiotics, were prevalent in taxa like Staphylococcus sp., Qipengyuania sp. and Alcanivorax sp. Clinically relevant taxa, including Pseudomonas sp. and Staphylococcus sp., harbored ARGs, which may raise concerns regarding potential seafood-mediated ARG transmission. The significant enrichment and co-localization of mobile genetic elements (MGEs) with ARGs suggest enhanced horizontal gene transfer among native marine bacteria in the offshore environments. However, the limited distribution of ARGs and the absence of associated MGEs during the monsoon season may result from dilution caused by freshwater influx. Comparative functional analysis revealed stress-related functional enrichment in ARG-carrying metagenomic assembled genomes, suggesting environmental stress may enhance the spread of ARGs within offshore microbial communities. These findings challenge the coastal-centric view of marine antibiotic resistance by identifying offshore waters as underrecognized ARG reservoirs. Establishing a genomic baseline for One Health ARG surveillance, this study underscores the urgent need to integrate offshore regions into global monitoring frameworks to protect marine ecosystems and safeguard public health. | 2025 | 40633655 |
| 3080 | 5 | 0.9932 | Antibiotic-resistant bacteria in the Bang Yai Canal and Phuket Bay in Phuket Province, Thailand. Antimicrobial resistance (AMR) represents a critical public health challenge, with surface waters serving as reservoirs for antibiotic-resistant bacteria (ARB). Among these, gram-negative enteric bacteria (GNEB) are recognized as major carriers of resistance genes and frequent causes of human infections. As a major tourism destination in Thailand, Phuket Province is likely to face increasing AMR-related issues. This study investigates water quality and the prevalence of ARB in the Bang Yai Canal, a key urban waterway in Phuket, and its transition into Phuket Bay. Water samples were collected from nine stations during the dry and rainy seasons of 2024. Total heterotrophic bacterial counts and GNEB resistant to amoxicillin, tetracycline, norfloxacin, and meropenem were examined in relation to water quality parameters. Results revealed significant spatial variation, with urban areas contributing substantially to ARB prevalence. Amoxicillin-resistant bacteria were the most prevalent, particularly among GNEB, while meropenem-resistant bacteria were consistently detected at most stations despite their low abundance. Seasonal variations indicated higher bacterial abundance upstream during the dry season and downstream during the rainy season, potentially driven by tourism and runoff dynamics. The coastal station exhibited a notably high proportion of antibiotic-resistant marine heterotrophic bacteria. Redundancy analysis identified turbidity and dissolved oxygen as significant factors influencing bacterial counts. Cluster analysis grouped stations based on water quality, with upstream and coastal sites exhibiting distinct profiles. This study underscores the critical role of urban activities in ARB dissemination and highlights the environmental and public health implications of ARB in coastal ecosystems, necessitating targeted mitigation and monitoring strategies. | 2025 | 40976823 |
| 7176 | 6 | 0.9931 | Significant higher airborne antibiotic resistance genes and the associated inhalation risk in the indoor than the outdoor. Inhalation of airborne antibiotic resistance genes (ARGs) can lead to antimicrobial resistance and potential health risk. In modern society, increasing individuals stay more indoors, however, studies regarding the exposure to airborne ARGs in indoor environments and the associated risks remain limited. Here, we compared the variance of aerosol-associated ARGs, bacterial microbiomes, and their daily intake (DI) burden in dormitory, office, and outdoor environments in a university in Tianjin. The results indicated that compared to outdoor aerosols, indoors exhibited significantly higher absolute abundance of both ARG subtypes and mobile genetic elements (MGEs) (1-7 orders of magnitude), 16S rRNA genes (2-3 orders), and total culturable bacteria (1-3 orders). Furthermore, we observed that significantly different airborne bacterial communities are the major drivers contributing to the variance of aerosol-associated ARGs in indoor and outdoor aerosols. Notably, the high abundances of total bacteria, potential pathogenic genera, and ARGs (particularly those harbored by pathogens) in indoor and outdoor aerosols, especially in indoors, may pose an increased exposure risk via inhalation. The successful isolation of human pathogens such as Elizabethkingia anopheles, Klebsiella pneumonia, and Delftia lacustris resistant to the "last-resort" antibiotics carbapenems and polymyxin B from indoor aerosols further indicated an increased exposure risk in indoors. Together, this study highlights the potential risks associated with ARGs and their inhalation to human health in indoor environments. | 2021 | 33120141 |
| 3300 | 7 | 0.9931 | Sewage treatment effluents in Delhi: A key contributor of β-lactam resistant bacteria and genes to the environment. Rapid emergence of antibiotic resistance (AR) in developing countries is posing a greater health risk and increasing the global disease burden. Lack of access to safe drinking water, poor sanitation and inadequate sewage treatment facilities in these countries are fueling the problem associated with emergence of AR. Rapid proliferation of AR mediated by treated and untreated discharges from sewage treatment plants (STPs) is a prime public health concern. This study aims to understand the occurrence, fate, and routes of proliferation of carbapenem (KPC) and extended spectrum β-lactam (ESBL) resistant bacteria, and selected resistant genes in the samples collected from different unit operations in 12 STPs in New Delhi over two seasons. Strong correlation observed between faecal coliform levels and KPC (R = 0.95, p = 0.005, n = 60) and ESBL (R = 0.94, p = 0.004, n = 60) resistant bacteria levels indicates possible association of resistant bacteria with faecal matter. Different unit operations in STPs proved inefficient in treating resistant bacteria and genes present in the wastewater. However, inclusion of tertiary treatment (chlorination) unit and anaerobic digester in the present STPs resulted in better removal of AR. Significant correlations between antibiotic resistant genes (ARGs) and integron levels indicates a potential for higher rate of AR proliferation in the environment. Microbial culturing indicated the presence of clinically significant drug-resistant pathogens such as Escherichia coli, Pseudomonas putida, Pseudomonas aeruginosa, Enterobacter cloacae, Klebsiella pneumoniae, Klebsiella oxytoca, Acinetobacter baumannii, Shigella dysentery and Aeromonas caviae in the STP effluents. The emergence and spread of resistant bacteria through STP effluents poses exposure risk for the residents of the city. | 2017 | 28886559 |
| 7333 | 8 | 0.9931 | Metagenomics unveils the role of hospitals and wastewater treatment plants on the environmental burden of antibiotic resistance genes and opportunistic pathogens. Antimicrobial resistance (AMR) is a global health challenge, with hospitals and wastewater treatment plants (WWTPs) serving as significant pathways for the dissemination of antibiotic resistance genes (ARGs). This study investigates the potential of wastewater-based epidemiology (WBE) as an early warning system for assessing the burden of AMR at the population level. In this comprehensive year-long study, effluent was collected weekly from three large hospitals, and treated and untreated wastewater were collected monthly from three associated community WWTPs. Metagenomic analysis revealed a significantly higher relative abundance and diversity of ARGs in hospital wastewater than in WWTPs. Notably, ARGs conferring resistance to clinically significant antibiotics such as β-lactams, aminoglycosides, sulfonamides, and tetracyclines were more prevalent in hospital effluents. Conversely, resistance genes associated with rifampicin and MLS (macrolides-lincosamide-streptogramin) were more commonly detected in the WWTPs, particularly in the treated effluent. Network analysis identified the potential bacterial hosts, which are the key carriers of these ARGs. The study further highlighted the variability in ARG removal efficiencies across the WWTPs, with none achieving complete elimination of ARGs or a significant reduction in bacterial diversity. Additionally, ARG profiles remained relatively consistent in hospital and community wastewater throughout the study, indicating a persistent release of a baseload of ARGs and pathogenic bacteria into surface waters, potentially polluting aquatic environments and entering the food chain. The study underscores the need for routine WBE surveillance, enhanced wastewater treatment strategies, and hospital-level source control measures to mitigate AMR dissemination into the environment. | 2025 | 39798461 |
| 6576 | 9 | 0.9930 | Wastewater-based AMR surveillance associated with tourism on a Caribbean island (Guadeloupe). OBJECTIVES: Antimicrobial resistance (AMR) is a major public health concern worldwide. International travel is a risk factor for acquiring antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs). Therefore, understanding the transmission of ARB and ARGs is instrumental in tackling AMR. This longitudinal study aimed to assess the benefit of wastewater monitoring in Guadeloupe to evaluate the role of tourism in the spread of AMR. METHODS: A wastewater-based surveillance (WBS) study was conducted to monitor AMR in Guadeloupe in 2022 during dry and wet seasons. We characterized the resistome, microbiome and exposome of water samples collected in wastewater treatment facilities of two cities with different levels of tourism activities, in the content of aircraft toilets, and the pumping station receiving effluents from hotels. RESULTS: The results show that the WBS approach facilitates the differentiation of various untreated effluents concerning exposome, microbiome, and resistome, offering insights into AMR dissemination. Additionally, the findings reveal that microbiome and exposome are comparable across sites and seasons, while resistome characterisation at specific locations may be pertinent for health surveillance. The microbiome of aircraft was predominantly composed of anaerobic bacteria from human intestinal microbiota, whereas the other locations exhibited a blend of human and environmental bacteria. Notably, individuals arriving by air have not introduced clinically significant resistance genes. Exposome compounds have been shown to influence the resistome's variance. CONCLUSIONS: Clear differences were seen between the aircraft and the local sampling sites, indicating that the contribution of tourism to the observed resistance in Guadeloupe is not significant. | 2025 | 40154781 |
| 7087 | 10 | 0.9930 | Antibiotic resistance in shellfish and major inland pollution sources in the drainage basin of Kamak Bay, Republic of Korea. Shellfish-growing areas in marine environments are affected by pollutants that mainly originate from land, including streams, domestic wastewater, and the effluents of wastewater treatment plants (WWTPs), which may function as reservoirs of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs). The objective of this study was to identify the occurrence and distribution of antibiotic resistance at five oyster sampling sites and 11 major inland pollution sources in the drainage basin of Kamak Bay, Republic of Korea. Culture-based methods were used to estimate the diversity and abundance of antibiotic-resistant Escherichia coli strains isolated from oysters and major inland pollution sources. The percentages of ARB and multiple antibiotic resistance index values were significantly high in discharge water from small fishing villages without WWTPs. However, the percentages of antibiotic-resistant E. coli isolates from oysters were low, as there was no impact from major inland pollutants. Fourteen ARGs were also quantified from oysters and major inland pollution sources. Although most ARGs except for quinolones were widely distributed in domestic wastewater discharge and effluent from WWTPs, macrolide resistance genes (ermB and msrA) were detected mainly from oysters in Kamak Bay. This study will aid in tracking the sources of antibiotic contamination in shellfish to determine the correlation between shellfish and inland pollution sources. | 2021 | 34226964 |
| 3202 | 11 | 0.9930 | Cockroach Microbiome Disrupts Indoor Environmental Microbial Ecology with Potential Public Health Implications. Cockroaches pose a significant global public health concern. However, besides the well-recognized cockroach-induced allergy, the potential impact of the cockroach microbiome on human health through various means is not yet fully elucidated. This study aimed to clarify the health impacts of cockroaches by investigating the microbial interactions among cockroaches, the indoor environment, and humans. We simultaneously collected cockroach, indoor environment (indoor air and floor dust), and human (exhaled breath condensate and skin) samples from residential areas in five cities representing distinct climate zones in China. The 16S rDNA sequencing results revealed that cockroaches harbor diverse bacterial populations that vary across different cities. The prevalence of potential pathogenic bacteria (PPB) in cockroaches ranged from 1.1% to 58.9%, with dominant resistance genes conferring resistance to tetracycline, macrolide, and beta-lactam. The relationships between the cockroach microbiome and the associated environmental and human microbiomes were explored by using fast expectation-maximization microbial source tracking (FEAST). The potential contribution of cockroach bacteria to the floor dust-borne microbiome and indoor airborne microbiome was estimated to be 5.6% and 1.3%, respectively. Similarly, the potential contribution of cockroach PPB to the floor dust-borne microbiome and indoor airborne microbiome was calculated to be 4.0% and 1.2%, respectively. In residences with cockroach infestations, the contribution of other sources to the indoor environment was slightly increased. Collectively, the role of cockroaches in the transmission of microorganisms, particularly pathogenic bacteria and antibiotic resistance genes, cannot be overlooked. | 2025 | 40270532 |
| 3072 | 12 | 0.9930 | Faecal microbiota and antibiotic resistance genes in migratory waterbirds with contrasting habitat use. Migratory birds may have a vital role in the spread of antimicrobial resistance across habitats and regions, but empirical data remain scarce. We investigated differences in the gut microbiome composition and the abundance of antibiotic resistance genes (ARGs) in faeces from four migratory waterbirds wintering in South-West Spain that differ in their habitat use. The white stork Ciconia ciconia and lesser black-backed gull Larus fuscus are omnivorous and opportunistic birds that use highly anthropogenic habitats such as landfills and urban areas. The greylag goose Anser anser and common crane Grus grus are herbivores and use more natural habitats. Fresh faeces from 15 individuals of each species were analysed to assess the composition of bacterial communities using 16S rRNA amplicon-targeted sequencing, and to quantify the abundance of the Class I integron integrase gene (intI1) as well as genes encoding resistance to sulfonamides (sul1), beta-lactams (bla(TEM), bla(KPC) and bla(NDM)), tetracyclines (tetW), fluoroquinolones (qnrS), and colistin (mcr-1) using qPCR. Bacterial communities in gull faeces were the richest and most diverse. Beta diversity analysis showed segregation in faecal communities between bird species, but those from storks and gulls were the most similar, these being the species that regularly feed in landfills. Potential bacterial pathogens identified in faeces differed significantly between bird species, with higher relative abundance in gulls. Faeces from birds that feed in landfills (stork and gull) contained a significantly higher abundance of ARGs (sul1, bla(TEM), and tetW). Genes conferring resistance to last resort antibiotics such as carbapenems (bla(KPC)) and colistin (mcr-1) were only observed in faeces from gulls. These results show that these bird species are reservoirs of antimicrobial resistant bacteria and suggest that waterbirds may disseminate antibiotic resistance across environments (e.g., from landfills to ricefields or water supplies), and thus constitute a risk for their further spread to wildlife and humans. | 2021 | 33872913 |
| 3274 | 13 | 0.9930 | Integrative metagenomic dissection of last-resort antibiotic resistance genes and mobile genetic elements in hospital wastewaters. Hospital wastewater is a critical source of antimicrobial resistance (AMR), which facilitates the proliferation and spread of clinically significant antimicrobial resistance genes (ARGs) and pathogenic bacteria. This study utilized metagenomic approaches, including advanced binning techniques, such as MetaBAT2, MaxBin2, and CONCOCT, which offer significant improvements in accuracy and completeness over traditional binning methods. These methods were used to comprehensively assess the dynamics and composition of resistomes and mobilomes in untreated wastewater samples taken from two general hospitals and one cancer hospital. This study revealed a diverse bacterial landscape, largely consisting of Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, with notable variations in microbial composition among hospitals. Analysis of the top 15 genera showed unique microbial pattern distribution in each hospital: Aeromonas was predominant in 1stHWTS (49.39 %), Acidovorax in the CAHWTS at 16.85 %, and Escherichia and Bacteroides in the 2ndHWTS at 11.44 % and 11.33 %, respectively. A total of 114 pathogenic bacteria were identified, with drug-resistant Aeromonas caviae and Escherichia coli being the most prevalent. The study identified 34 types and 1660 subtypes of ARGs, including important last-resort antibiotic resistance genes (LARGs), such as bla(NDM), mcr, and tet(X). Using metagenomic binning, this study uncovered distinct patterns of host-resistance associations, particularly with Proteobacteria and Firmicutes. Network analysis highlighted the complex interactions among ARGs, mobile genetic elements (MGEs), and bacterial species, all contributing to the dissemination of AMR. These findings emphasize the intricate nature of AMR in hospital wastewater and the influence of hospital-specific factors on microbial resistance patterns. This study provides support for implementing integrated management strategies, including robust surveillance, advanced wastewater treatment, and strict antibiotic stewardship, to control the dissemination of AMR. Understanding the interplay among bacterial communities, ARGs, and MGEs is important for developing effective public health measures against AMR. | 2024 | 39067608 |
| 3498 | 14 | 0.9930 | Comparative study on the bacterial diversity and antibiotic resistance genes of urban landscape waters replenished by reclaimed water and surface water in Xi'an, China. Pathogenic bacteria and antibiotic resistance genes (ARGs) in urban landscape waters may pose a potential threat to human health. However, the investigation of their occurrence in the urban landscape waters replenished by reclaimed water (RW) and surface water (SW) is still insufficient. The water samples collected from six urban landscape waters replenished by RW or SW were used to analyze bacterial diversity using high-throughput sequencing of 16S rRNA gene and to detect 18 ARGs and 2 integron-integrase genes by means of quantitative PCR array. Results indicated that Proteobacteria was the dominant phylum in all six urban landscape waters. The bacterial species richness was lower in urban landscape waters replenished by RW than that by SW. Sulfonamide resistance genes (sulI and sulIII) were the major ARGs in these urban landscape waters. No significant difference in the relative abundance of sulfonamide resistance genes, tetracycline resistance genes, and most of beta-lactam resistance genes was observed between RW-replenished and SW-replenished urban landscape waters. By contrast, the relative abundance of bla(ampC) gene and qnrA gene in RW-replenished urban landscape waters was significantly higher than that in SW-replenished urban landscape waters (p < 0.05), which suggested that use of RW may increase the amount of specific ARGs to urban landscape waters. Interestingly, among six urban landscape waters, RW-replenished urban landscape waters had a relatively rich variety of ARGs (12-15 of 18 ARGs) but a low relative abundance of ARGs (458.90-1944.67 copies/16S × 10(6)). The RW replenishment was found to have a certain impact on the bacterial diversity and prevalence of ARGs in urban landscape waters, which provide new insight into the effect of RW replenishment on urban landscape waters. | 2021 | 33786766 |
| 6537 | 15 | 0.9930 | Antibiotic Abuse in Ornamental Fish: An Overlooked Reservoir for Antibiotic Resistance. Ornamental fish represent a significant aquaculture sector with notable economic value, yet their contribution to antibiotic residues and resistance remains underrecognized. This review synthesizes evidence on widespread and often unregulated antibiotic use-including tetracyclines and fluoroquinolones-in ornamental fish production, transportation, and retail, primarily targeting bacterial diseases such as aeromonosis and vibriosis. Pathogenic microorganisms including Edwardsiella, Flavobacterium, and Shewanella spp. cause diseases like hemorrhagic septicemia, fin rot, skin ulcers, and exophthalmia, impairing fish health and marketability. Prophylactic and therapeutic antibiotic applications elevate antibiotic residues in fish tissues and carriage water, thereby selecting for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). These resistant elements pose significant risks to fish health, human exposure via direct contact and bioaerosols, and environmental health through contamination pathways. We emphasize the urgent need for a holistic One Health approach, involving enhanced surveillance, stringent regulatory oversight, and adoption of alternative antimicrobial strategies, such as probiotics and advanced water treatments. Coordinated global actions are crucial to effectively mitigate antibiotic resistance within the ornamental fish industry, ensuring sustainable production, safeguarding public health, and protecting environmental integrity. | 2025 | 40284775 |
| 6547 | 16 | 0.9930 | An overview on the prevalence and potential impact of antimicrobials and antimicrobial resistance in the aquatic environment of India. India at present is one of the leading countries in antimicrobial drug production and use, leading to increasing antimicrobial resistance (AMR) and public health problems. Attention has mainly been focused on the human and food animals' contribution to AMR neglecting the potential contribution of the perceptibly degraded aquatic environment in India. The paper reviews the available published literature in India on the prevalence of antimicrobial residues and their dissemination pathways in wastewater of pharmaceutical industries, sewage treatment plants, hospitals, riverine, community pond water, and groundwater. The prevalence of antimicrobial residue concentration, pathogenic and non-pathogenic bacteria antimicrobial resistant bacteria (ARB), their drug resistance levels, and their specific antimicrobial resistant genes (ARGs) occurring in various water matrices of India have been comprehensively depicted from existing literature. The concentration of some widely used antimicrobials recorded from the sewage treatment plants and hospital wastewater and rivers in India has been compared with other countries. The ecotoxicological risk posed by these antimicrobials in the various water matrices in India indicated high hazard quotient (HQ) values for pharmaceutical effluents, hospital effluents, and river water. The degraded aquatic environment exhibited the selection of a wide array of co-existent resistant genes for antibiotics and metals. The review revealed improper use of antibiotics and inadequate wastewater treatment as major drivers of AMR contaminating water bodies in India and suggestion for containing the challenges posed by AMR in India has been proposed. | 2023 | 37530878 |
| 3206 | 17 | 0.9930 | High pollution and health risk of antibiotic resistance genes in rural domestic sewage in southeastern China: A study combining national-scale distribution and machine learning. Rural domestic sewage has emerged as an important reservoir of antibiotic resistance genes (ARGs) under rapid urbanization, while the national-scale geographical patterns and risks of ARGs remaining unclear. We investigated ARG pollution in rural domestic sewage across 39 sites in 22 Chinese provinces using metagenomic sequencing, identifying 702 ARG subtypes across 21 types. Multidrug resistance genes were predominant in the shared ARGs, accounting for 58.96 % of the total ARG abundance. Host bacteria analysis revealed Klebsiella pneumoniae and Escherichia coli were the main pathogenic-resistant bacteria. Southeastern China exhibited the highest level of ARG pollution in rural domestic sewage, followed by south-central, northern, and western. This ARG pollution was primarily caused by human/animal feces based on ARG indicators. Partial least-squares path model and partial redundancy analysis highlighted antibiotics as the primary driver, explaining 24.16 % of ARG variation, with sulfamethazine, norfloxacin, and ofloxacin identified as priority control targets. Risk assessment by calculating the risk index indicated 24.58 % of detected ARGs posed potential health threats, particularly multidrug resistance. Machine learning models predicted higher ARG risks in rural domestic sewage from southeastern China with intensive human activity. This study underscores the crucial impact of antibiotics in ARG proliferation and risk in rural domestic sewage. | 2025 | 40701495 |
| 3069 | 18 | 0.9929 | The hospital sink drain biofilm resistome is independent of the corresponding microbiota, the environment and disinfection measures. In hospitals, the transmission of antibiotic-resistant bacteria (ARB) may occur via biofilms present in sink drains, which can lead to infections. Despite the potential role of sink drains in the transmission of ARB in nosocomial infections, routine surveillance of these drains is lacking in most hospitals. As a result, there is currently no comprehensive understanding of the transmission of ARB and the dissemination of antimicrobial resistance genes (ARGs) and associated mobile genetic elements (MGEs) via sink drains. This study employed a multifaceted approach to monitor the total aerobic bacteria as well as the presence of carbapenemase-producing Enterobacterales (CPEs), the microbiota and the resistome of sink drain biofilms (SDBs) and hospital wastewater (WW) of two separate intensive care units (ICUs) in the same healthcare facility in France. Samples of SDB and WW were collected on a monthly basis, from January to April 2023, in the neonatal (NICU) and the adult (AICU) ICUs of Grenoble Alpes University Hospital. In the NICU, sink drain disinfection with surfactants was performed routinely. In the AICU, routine disinfection is not carried out. Culturable aerobic bacteria were quantified on non-selective media, and CPEs were screened using two selective agars. Isolates were identified by MALDI-TOF MS, and antibiotic susceptibility testing (AST) was performed on Enterobacterales and P. aeruginosa. The resistome was analyzed by high-throughput qPCR targeting >80 ARGs and MGEs. The overall bacterial microbiota was assessed via full-length 16S rRNA sequencing. No CPEs were isolated from SDBs in either ICU by bacterial culture. Culture-independent approaches revealed an overall distinct microbiota composition of the SDBs in the two ICUs. The AICU SDBs were dominated by pathogens containing Gram-negative bacterial genera including Pseudomonas, Stenotrophomona, Klebsiella, and Gram-positive Staphylococcus, while the NICU SDBs were dominated by the Gram-negative genera Achromobacter, Serratia, and Acidovorax, as well as the Gram-positive genera Weisella and Lactiplantibacillus. In contrast, the resistome of the SDBs exhibited no significant differences between the two ICUs, indicating that the abundance of ARGs and MGEs is independent of microbiota composition and disinfection practices. The AICU WW exhibited more distinct aerobic bacteria than the NICU WW. In addition, the AICU WW yielded 15 CPEs, whereas the NICU WW yielded a single CPE. All the CPEs were characterized at the species level. The microbiota of the NICU and AICU WW samples differed from their respective SDBs and exhibited distinct variations over the four-month period:the AICU WW contained a greater number of genes conferring resistance to quinolones and integron integrase genes, whereas the NICU WW exhibited a higher abundance of streptogramin resistance genes. Our study demonstrated that the resistome of the hospital SDBs in the two ICUs of the investigated healthcare institute is independent of the microbiota, the environment, and the local disinfection measures. However, the prevalence of CPEs in the WW pipes collecting the waste from the investigated drains differed. These findings offer valuable insights into the resilience of resistance genes in SDBs in ICUs, underscoring the necessity for innovative strategies to combat antimicrobial resistance in clinical environments. | 2025 | 40483807 |
| 7344 | 19 | 0.9929 | Antibiotic resistance genes in municipal wastewater treatment systems and receiving waters in Arctic Canada. Domestic wastewater discharges may adversely impact arctic ecosystems and local indigenous people, who rely on being able to hunt and harvest food from their local environment. Therefore, there is a need to develop efficient wastewater treatment plants (WWTPs), which can be operated in remote communities under extreme climatic conditions. WWTPs have been identified as reservoirs of antibiotic resistance genes (ARGs). The objective of this work was to quantify the presence of nine different ARG markers (int1, sul1, sul2, tet(O), erm(B), mecA, bla(CTX-M), bla(TEM), and qnr(S)) in two passive systems (waste stabilization ponds [WSPs]) and one mechanical filtration plant operating in two smaller and one large community, respectively, in Nunavut, Canada. Measurement of water quality parameters (carbonaceous oxygen demand, ammonia, total suspended solids, Escherichia coli and total coliforms) showed that the WWTPs provided only primary treatment. Low levels of the ARGs (2logcopies/mL) were observed in the effluent, demonstrating that bacteria residing in three northern WWTPs harbour ARGs conferring resistance to multiple clinically-relevant classes of antibiotics. Our results indicate that long-term storage in WSPs benefitted removal of organic material and some ARGs. However, one WSP system showed evidence of the enrichment of sul1, sul2, mecA, tet(O) and qnr(S). Further research is needed to fully understand if these ARG releases pose a risk to human health, especially in the context of traditional hunting and fishing activities. | 2017 | 28482456 |