# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7276 | 0 | 0.9916 | Antibiotic resistance in urban and hospital wastewaters and their impact on a receiving freshwater ecosystem. The main objective of this study was to investigate the antibiotic resistance (AR) levels in wastewater (WW) and the impact on the receiving river. Samples were collected once per season over one year in the WW of a hospital, in the raw and treated WW of two wastewater treatment plants (WWTPs), as well as upstream and downstream from the release of WWTPs effluents into the Zenne River (Belgium). Culture-dependent methods were used to quantify Escherichia coli and heterotrophic bacteria resistant to amoxicillin, sulfamethoxazole, nalidixic acid and tetracycline. Six antibiotic resistance genes (ARGs) were quantified in both particle-attached (PAB) and free-living (FLB) bacteria. Our results showed that WWTPs efficiently removed antibiotic resistant bacteria (ARB) regardless of its AR profile. The ARGs levels were the highest in the hospital WW and were significantly reduced in both WWTPs. However, ARB and ARGs abundances significantly increased into the Zenne River downstream from the WWTPs outfalls. The variation in the relative abundance of ARGs through WW treatment differed depending on the WWTP, fraction, and gene considered. The sul1 and sul2 genes in PAB fraction showed significantly higher relative abundances in the effluent compared to the influent of both WWTPs. This study demonstrated that WWTPs could be hotspots for AR spread with significant impacts on receiving freshwater ecosystems. This was the first comprehensive study investigating at the same time antibiotics occurrence, fecal bacteria indicators, heterotrophic bacterial communities, and ARGs (distinguishing PAB and FLB) to assess AR levels in WW and impacts on the receiving river. | 2018 | 29730567 |
| 7088 | 1 | 0.9914 | Small-scale wastewater treatment plants as a source of the dissemination of antibiotic resistance genes in the aquatic environment. Wastewater treatment plants (WWTPs) are significant source of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which can spread further in the environment by reaching rivers together with effluents discharged from WWTPs. In this study untreated and treated wastewater (UWW, TWW), upstream and downstream river water (URW, DRW) were collected from 4 WWTPs, in the winter and autumn seasons. The occurrence of ARB resistant to beta-lactams and tetracyclines as well as the presence of antibiotics from these classes were analysed in water and wastewater samples. Additionally, the amounts of 12 ARGs, 2 genes of mobile genetic elements (MGEs), gene uidA identifying E. coli and 16S rRNA were also determined. Resistance to beta-lactams prevailed among ARB in water and wastewater samples (constituting 82-88% of total counts of bacteria). The dominant genes in water and wastewater samples were bla(TEM), tetA, sul1. The gene bla(OXA) demonstrated high variability of its concentration in samples collected in both seasons. Despite the high per cent reduction of ARB and ARGs concentration observed during the wastewater treatment processes, their large quantities are still transmitted into the environment. The research focuses on WWTPs' role in the dissemination of ARGs and MGEs in the aquatic environment. | 2020 | 31561123 |
| 7215 | 2 | 0.9913 | High-throughput qPCR profiling of antimicrobial resistance genes and bacterial loads in wastewater and receiving environments. Wastewater treatment plants (WWTPs) are hot spots for the acquisition and spread of antimicrobial resistance (AMR). This regional-based study quantified antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and bacteria in hospital and community-derived wastewater and receiving environments, using high-throughput qPCR (HT-qPCR). This is the first study to apply Resistomap's Antibiotic Resistance Gene Index (ARGI) as a standardised metric to find the overall AMR level across different WWTPs. ARGI of WWTPs ranged from 2.0 to 2.3, indicating higher relative ARG levels than the mean European ARGI of 2.0, but lower than the global mean of 2.4. The highest diversity and abundance of ARGs were observed in untreated hospital and community wastewater. The reduction of total ARGs during wastewater treatment (0.2-2 logs) and bacteria (0.3-1.5 logs) varied spatio-temporally across the WWTPs. Despite a decrease in ARG and bacterial abundance in treated effluents, substantial loads were still released into receiving environments. Notably, ARG levels in coastal sediments were comparable to those in untreated wastewater, and most ARGs were shared between wastewater and receiving environments, highlighting the impact of wastewater discharge on these ecosystems. Sewage outfall exposure increased ARGs in shellfish, emphasising risks to shellfish hygiene. This study provides evidence to inform policymaking, emphasising advanced wastewater treatment methods and combined sewer overflow (CSO) management to mitigate ARG release, protecting water users and the food chain. | 2025 | 40127809 |
| 7781 | 3 | 0.9912 | Untreated HWWs Emerged as Hotpots for ARGs. Hospital wastewaters (HWWs) are reported to be hotspots for antibiotics and antibiotic-resistant bacteria. However, limited information involves the impact of these effluents on dissemination of antibiotic-resistance genes (ARGs). In this study, therefore, seasonally collected HWWs were monitored for overall bacterial load and seven ARGs aadA, tetA, cmlA, sul1, qnrS, ermB and bla (CTX-M )by using quantitative polymerase chain reaction method. Overall bacterial 16S rRNA copy number was found to be the lowest in winter with 10(3 )copy number/mL, while the highest copy number, with 10(5 )copy number/mL, was observed in both summer and spring. All hospitals tested displayed similar seasonal ARG copy number profile of aadA > tetA > cmlA ≈ sul1 > ermB ≈ qnrS > bla (CTX-M). The results indicated that untreated HWWs were hotspots for ARGs and required attention before discharging into public sewer. | 2020 | 31965225 |
| 7277 | 4 | 0.9912 | Occurrence and persistence of carbapenemases genes in hospital and wastewater treatment plants and propagation in the receiving river. This study aims to investigate the prevalence of clinically relevant carbapenemases genes (bla(KPC), bla(NDM) and bla(OXA-48)) in water samples collected over one-year period from hospital (H), raw and treated wastewater of two wastewater treatment plants (WWTPs) as well as along the Zenne River (Belgium). The genes were quantified in both particle-attached (PAB) and free-living (FLB) bacteria. Our results showed that absolute abundances were the highest in H waters. Although absolute abundances were significantly reduced in WWTP effluents, the relative abundance (normalized per 16S rRNA) was never lowered through wastewater treatment. Particularly, for the PAB the relative abundances were significantly higher in the effluents respect to the influents of both WWTPs for all the genes. The absolute abundances along the Zenne River increased from upstream to downstream, peaking after the release of WWTPs effluents, in both fractions. Our results demonstrated that bla(KPC), bla(NDM) and bla(OXA-48) are widely distributed in the Zenne as a consequence of chronic discharge from WWTPs. To conclude, the levels of carbapenemases genes are significantly lower than other genes conferring resistance to more widely used antibiotics (analyzed in previous studies carried out at the same sites), but could raise up to the levels of high prevalent resistance genes. | 2018 | 29960932 |
| 7087 | 5 | 0.9911 | Antibiotic resistance in shellfish and major inland pollution sources in the drainage basin of Kamak Bay, Republic of Korea. Shellfish-growing areas in marine environments are affected by pollutants that mainly originate from land, including streams, domestic wastewater, and the effluents of wastewater treatment plants (WWTPs), which may function as reservoirs of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs). The objective of this study was to identify the occurrence and distribution of antibiotic resistance at five oyster sampling sites and 11 major inland pollution sources in the drainage basin of Kamak Bay, Republic of Korea. Culture-based methods were used to estimate the diversity and abundance of antibiotic-resistant Escherichia coli strains isolated from oysters and major inland pollution sources. The percentages of ARB and multiple antibiotic resistance index values were significantly high in discharge water from small fishing villages without WWTPs. However, the percentages of antibiotic-resistant E. coli isolates from oysters were low, as there was no impact from major inland pollutants. Fourteen ARGs were also quantified from oysters and major inland pollution sources. Although most ARGs except for quinolones were widely distributed in domestic wastewater discharge and effluent from WWTPs, macrolide resistance genes (ermB and msrA) were detected mainly from oysters in Kamak Bay. This study will aid in tracking the sources of antibiotic contamination in shellfish to determine the correlation between shellfish and inland pollution sources. | 2021 | 34226964 |
| 7755 | 6 | 0.9910 | Anthropogenic impacts on sulfonamide residues and sulfonamide resistant bacteria and genes in Larut and Sangga Besar River, Perak. The environmental reservoirs of sulfonamide (SA) resistome are still poorly understood. We investigated the potential sources and reservoir of SA resistance (SR) in Larut River and Sangga Besar River by measuring the SA residues, sulfamethoxazole resistant (SMX(r)) in bacteria and their resistance genes (SRGs). The SA residues measured ranged from lower than quantification limits (LOQ) to 33.13 ng L(-1) with sulfadiazine (SDZ), sulfadimethoxine (SDM) and SMX as most detected. Hospital wastewater effluent was detected with the highest SA residues concentration followed by the slaughterhouse and zoo wastewater effluents. The wastewater effluents also harbored the highest abundance of SMX(r)-bacteria (10(7) CFU mL(-1)) and SRGs (10(-1)/16S copies mL(-1)). Pearson correlation showed only positive correlation between the PO(4) and SMX(r)-bacteria. In conclusion, wastewater effluents from the zoo, hospital and slaughterhouse could serve as important sources of SA residues that could lead to the consequent emergence of SMX(r)-bacteria and SRGs in the river. | 2019 | 31726563 |
| 3498 | 7 | 0.9910 | Comparative study on the bacterial diversity and antibiotic resistance genes of urban landscape waters replenished by reclaimed water and surface water in Xi'an, China. Pathogenic bacteria and antibiotic resistance genes (ARGs) in urban landscape waters may pose a potential threat to human health. However, the investigation of their occurrence in the urban landscape waters replenished by reclaimed water (RW) and surface water (SW) is still insufficient. The water samples collected from six urban landscape waters replenished by RW or SW were used to analyze bacterial diversity using high-throughput sequencing of 16S rRNA gene and to detect 18 ARGs and 2 integron-integrase genes by means of quantitative PCR array. Results indicated that Proteobacteria was the dominant phylum in all six urban landscape waters. The bacterial species richness was lower in urban landscape waters replenished by RW than that by SW. Sulfonamide resistance genes (sulI and sulIII) were the major ARGs in these urban landscape waters. No significant difference in the relative abundance of sulfonamide resistance genes, tetracycline resistance genes, and most of beta-lactam resistance genes was observed between RW-replenished and SW-replenished urban landscape waters. By contrast, the relative abundance of bla(ampC) gene and qnrA gene in RW-replenished urban landscape waters was significantly higher than that in SW-replenished urban landscape waters (p < 0.05), which suggested that use of RW may increase the amount of specific ARGs to urban landscape waters. Interestingly, among six urban landscape waters, RW-replenished urban landscape waters had a relatively rich variety of ARGs (12-15 of 18 ARGs) but a low relative abundance of ARGs (458.90-1944.67 copies/16S × 10(6)). The RW replenishment was found to have a certain impact on the bacterial diversity and prevalence of ARGs in urban landscape waters, which provide new insight into the effect of RW replenishment on urban landscape waters. | 2021 | 33786766 |
| 7271 | 8 | 0.9907 | Identification of critical control points for antibiotic resistance discharge in sewers. Disrupting the spread of clinically relevant antibiotic resistance genes (ARGs) is one of the key components for the success of the One Health strategy. While waste water treatment plants (WWTPs) represent a final control point for daily discharges of antibiotic resistance genes (ARGs) to the aquatic environment, a decentralized upstream monitoring of wastewater feeds of selected urban drainage areas for bla(CTX-M32), bla(CTX-M15), bla(OXA48), bla(CMY-2), mecA, bla(NDM-1), bla(KPC3), vanA, and mcr-1 representing clinically relevant ARGs has been performed. Besides hospitals, also retirement homes were found to be responsible for high levels of ARG discharges compared to housing area sewer systems. The monitoring combines qPCR-based quantifications, flow volume-based analyses, and multiple antibiotic resistance analyses of isolates. As result of the study, local actions at identified critical control points could help to prevent contaminations of larger volumes of wastewaters. This strategy will support a more cost-effective treatment compared to central actions at WWTPs, only. A polluter-pays principle should be applied by this monitoring strategy. | 2022 | 35051461 |
| 7331 | 9 | 0.9907 | Metagenomics analysis of probable transmission of determinants of antibiotic resistance from wastewater to the environment - A case study. During mechanical-biological treatment, wastewater droplets reach the air with bioaerosols and pose a health threat to wastewater treatment plant (WWTP) employees and nearby residents. Microbiological pollutants and antimicrobial resistance determinants are discharged to water bodies with treated wastewater (TWW), which poses a potential global epidemiological risk. In the present study, the taxonomic composition of microorganisms was analyzed, and the resistome profile and mobility of genes were determined by metagenomic next-generation sequencing in samples of untreated wastewater (UWW), wastewater collected from an activated sludge (AS) bioreactor, TWW, river water collected upstream and downstream from the wastewater discharge point, and in upper respiratory tract swabs collected from WWTP employees. Wastewater and the emitted bioaerosols near WWTP's facilities presumably contributed to the transmission of microorganisms, in particular bacteria of the phylum Actinobacteria and the associated antibiotic resistance genes (ARGs) (including ermB, ant(2″)-I, tetM, penA and cfxA2) to the upper respiratory tract of WWTP employees. The discharged wastewater increased the taxonomic diversity of microorganisms and the concentrations of various ARGs (including bacA, emrE, sul1, sul2 and tetQ) in river water. This study fills in the knowledge gap on the health risks faced by WWTP employees. The study has shown that microbiological pollutants and antimicrobial resistance determinants are also in huge quantities discharged to rivers with TWW, posing a potential global epidemiological threat. | 2022 | 35259375 |
| 5334 | 10 | 0.9907 | Monitoring and comparison of antibiotic resistant bacteria and their resistance genes in municipal and hospital wastewaters. BACKGROUND: Human exposure to antibiotic resistant bacteria (ARB) is a public health concern which could occur in a number of ways. Wastewaters seem to play an important role in the dissemination of bacteria and antibiotic resistant genes (ARGs) in our environment. The aim of this study was to evaluate the occurrence of three groups of ARB and their resistance genes in hospital and municipal wastewaters (MWs) as possible sources. METHODS: A total of 66 samples were collected from raw MWs and hospital wastewaters (HWs) and final effluents of related wastewater treatment plants (WWTPs). Samples were analyzed for the detection of three groups of ARB including gentamicin (GM), chloramphenicol (CHL) and ceftazidime resistant bacteria and their ARGs (aac (3)-1, cmlA1 and ctx-m-32, respectively). RESULTS: The mean concentration of GM, CHL and ceftazidime resistant bacteria in raw wastewater samples was 1.24 × 10(7), 3.29 × 10(7) and 5.54 × 10(7) colony forming unit/100 ml, respectively. There is a variation in prevalence of different groups of ARB in MWs and HWs. All WWTPs decreased the concentration of ARB. However, high concentration of ARB was found in the final effluent of WWTPs. Similar to ARB, different groups of ARGs were found frequently in both MWs and HWs. All genes also detected with a relative high frequency in effluent samples of MWs WWTPs. CONCLUSIONS: Discharge of final effluent from conventional WWTPs is a potential route for dissemination of ARB and ARGs into the natural environment and poses a hazard to environmental and public health. | 2014 | 25105001 |
| 7327 | 11 | 0.9906 | Exploring the microbiome, antibiotic resistance genes, mobile genetic element, and potential resistant pathogens in municipal wastewater treatment plants in Brazil. Wastewater treatment plants (WWTPs) have been widely investigated in Europe, Asia and North America regarding the occurrence and fate of antibiotic resistance (AR) elements, such as antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and antibiotic resistant bacteria and pathogens. However, monitoring data about AR elements in municipal WWTPs in Brazil are scarce. This study investigated the abundance of intI1, five ARGs (sul1, tetA, blaTEM, ermB and qnrB) and 16S rRNA in raw and treated wastewater of three WWTPs, using different sewage treatments named CAS (Conventional activated sludge), UASB/BTF (UASB followed by biological trickling filter) and MAS/UV (modified activated sludge with UV disinfection stage). Bacterial diversity and the presence of potentially pathogenic groups were also evaluated, and associations between genetic markers and the bacterial populations were presented. All WWTPs decreased the loads of genetic markers finally discharged to receiving water bodies and showed no evidence of being hotspots for antimicrobial resistance amplification in wastewater, since the abundances of intI1 and ARGs within the bacterial population were not increased in the treated effluents. UASB/BTF showed a similar performance to that of the CAS and MAS/UV, reinforcing the sanitary and environmental advantages of this biological treatment, widely applied for wastewater treatment in warm climate regions. Bacterial diversity and richness increased after treatments, and bacterial communities in wastewater samples differed due to catchment areas and treatment typologies. Potential pathogenic population underwent considerable decrease after the treatments; however, strong significant correlations with intI1 and ARGs revealed potential multidrug-resistant pathogenic bacteria (Aeromonas, Arcobacter, Enterobacter, Escherichia-Shigella, Stenotrophomonas and Streptococcus) in the treated effluents, although in reduced relative abundances. These are contributive results for understanding the fate of ARGs, MGEs and potential pathogenic bacteria after wastewater treatments, which might support actions to mitigate their release into Brazilian aquatic environments in the near future. | 2022 | 35724791 |
| 7228 | 12 | 0.9906 | Proliferation of antibiotic resistance genes in coastal recirculating mariculture system. The abuse of antibiotics has caused the propagation of antibiotic resistance genes (ARGs) in aquaculture systems. Although the recirculating systems have been considered as a promising approach for preventing the coastal water pollution of antibiotics and ARG, rare information is available on the distribution and proliferation of ARGs in the recirculating mariculture system. This study firstly investigated the proliferation of ARGs in coastal recirculating mariculture systems. Ten subtypes of ARGs including tet (tetB, tetG, tetX), sul (sul1, sul2), qnr (qnrA, qnrB, qnrS), and erm (ermF, ermT) were detected. The absolute abundances of the ARGs detected in the mariculture farm were more than 1 × 10(4) copies/mL. The sulfonamide resistance genes (sul1 and sul2) were the most abundant ARGs with the abundance of 3.5 × 10(7)-6.5 × 10(10) copies/mL. No obvious correlation existed between the antibiotics and ARGs. Some bacteria were positively correlated with two or more ARGs to indicate the occurrence of multidrug resistance. The fluidized-bed biofilter for wastewater treatment in the recirculating system was the main breeding ground for ARGs while the UV sterilization process could reduce the ARGs. The highest flux of ARGs (6.5 × 10(21) copies/d) indicated that the discharge of feces and residual baits was the main gateway for ARGs in the recirculating mariculture system to enter the environments. | 2019 | 30826609 |
| 7233 | 13 | 0.9906 | Distribution, sources, and potential risks of antibiotic resistance genes in wastewater treatment plant: A review. Irrational use of antibiotics produces a large number of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Wastewater treatment plants (WWTPs) act as important sources and sinks of ARGs, and play an important role in their generation, treatment, and dissemination. This study summarizes the types, concentrations, and factors of ARGs in WWTPs, investigates the sources of ARGs in wastewater, compares the removal efficiencies of different treatment processes on ARGs, and analyzes the potential risks of ARGs accumulation in effluent, sludge and their emission into the air. The results show that the main ARGs detected in the influent of WWTPs are the genes resistant to macrolides (ermB, ermF), tetracyclines (tetW, tetA, tetC), sulfonamides (sul1, sul2), and β-lactams (bla(OXA), bla(TEM)). The concentrations of ARGs in the influent of the WWTPs are 2.23 × 10(2)-3.90 × 10(9) copies/mL. Wastewater quality and microbial community are the dominant factors that affect the distribution characteristics of ARGs. The accumulation of ARGs in effluent, sludge, and aerosols pose potential risks to the regional ecological environment and human health. Based on these results, research trends with respect to ARGs in WWTPs are also prospected. | 2022 | 35921944 |
| 7143 | 14 | 0.9906 | Simulated discharge of treated landfill leachates reveals a fueled development of antibiotic resistance in receiving tidal river. Around 350 million tons of solid waste is disposed of in landfills every year globally, with millions of cubic meters of landfill leachates released into neighboring environment. However, to date, little is known about the variations of antimicrobial resistance (AMR) in on-site leachate treatment systems and its development in leachate-receiving water environment. Here, we quantified 7 subtypes of antibiotic resistance genes (ARGs), 3 types of culturable antibiotic resistant bacteria (ARB) and 6 subtypes of mobile genetic elements (MGEs) in the effluents from a combined leachate treatment process, including biological treatment (MBR), physical separation (UF), ultraviolet (UV) disinfection and advanced oxidation process (AOP). The contents of ARGs, ARB and MGEs were generally enriched by the MBR, but then decreased significantly along with the tertiary treatment process. However, in the effluent-receiving water samples, the abundance of dominant ARGs (i.e. ermB, sul1, bla(TEM)) increased by 1.5 orders of magnitude within 96 h, alongside a general increase of MGEs (~10.0 log(10)(copies/mL) and total ARB (~1100 CFU/mL). Structural correlation analyses reveal that target ARGs were closely associated with MGEs, particularly in effluent-receiving samples (Procrustes test; M(2) = 0.49, R = 0.71, P = 0.001); and occurrences of ARB were majorly affected by ARG's distribution and environmental conditions (e.g. nitrogen speciation) in effluent and recipient groups, respectively. This study indicates that current treatment technologies and operation protocols are not feasible in countering the development of AMR in effluent-receiving water environment, particularly in tidal rivers that are capable of retaining contaminants for a long residence time. | 2018 | 29501852 |
| 7133 | 15 | 0.9905 | Prevalence of antibiotic resistance genes in bacterial communities associated with Cladophora glomerata mats along the nearshore of Lake Ontario. The alga Cladophora glomerata can erupt in nuisance blooms throughout the lower Great Lakes. Since bacterial abundance increases with the emergence and decay of Cladophora, we investigated the prevalence of antibiotic resistance (ABR) in Cladophora-associated bacterial communities up-gradient and down-gradient from a large sewage treatment plant (STP) on Lake Ontario. Although STPs are well-known sources of ABR, we also expected detectable ABR from up-gradient wetland communities, since they receive surface run-off from urban and agricultural sources. Statistically significant differences in aquatic bacterial abundance and ABR were found between down-gradient beach samples and up-gradient coastal wetland samples (ANOVA, Holm-Sidak test, p < 0.05). Decaying and free-floating Cladophora sampled near the STP had the highest bacterial densities overall, including on ampicillin- and vancomycin-treated plates. However, quantitative polymerase chain reaction analysis of the ABR genes ampC, tetA, tetB, and vanA from environmental communities showed a different pattern. Some of the highest ABR gene levels occurred at the 2 coastal wetland sites (vanA). Overall, bacterial ABR profiles from environmental samples were distinguishable between living and decaying Cladophora, inferring that Cladophora may control bacterial ABR depending on its life-cycle stage. Our results also show how spatially and temporally dynamic ABR is in nearshore aquatic bacteria, which warrants further research. | 2017 | 28192677 |
| 7234 | 16 | 0.9905 | Urban and agriculturally influenced water contribute differently to the spread of antibiotic resistance genes in a mega-city river network. The widespread of water borne antibiotic resistance genes (ARGs) represents a growing threat to the health of millions of people. Our study detected the relative abundances of 10 ARG subtypes in the Shanghai river network, where the major ARG components were strB, sul1, and ermB. These ARGs were significantly enriched by the combined sewage, tail water from urban wastewater treatment plant and runoff from agricultural areas, which reached the Suzhou (SZ), Dianpu (DP), and Huangpu (HP) River, respectively (one-way ANOVA, P < 0.01). The target ARGs were distributed in varying patterns across different rivers. bla(CTX-M) and bla(TEM) contributed to the increase of total ARGs in the rivers influenced by urban sources, particularly in the SZ River, whose distribution of ARGs was significantly related to that of the confluence of the whole river network (Mantel test, P < 0.01). The bacterial community was closely structured with ARGs and potential pathogenic bacteria's association with target ARGs became significant in downstream samples (Procrustes test, P = 0.03). Water near urban wastewater fallouts was observed to have the highest content of intl1 in the DP River, whose downstream samples' intl -ARG relationship fitted the same regression model as that of the network confluence (R = 0.84, P < 0.001). The amelioration of river water quality does not reduce ARGs, but may affect their distributional patterns in the river network in Shanghai. | 2019 | 31009830 |
| 7270 | 17 | 0.9905 | Dynamics of Genotypic and Phenotypic Antibiotic Resistance in a Conventional Wastewater Treatment Plant in 2 Years. Wastewater treatment plants (WWTPs) are considered a sink and a source of antibiotic resistance. In this study, we applied both culture-dependent and SmartChip-based culture-independent approaches for the investigation of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) at Jungnang (JN), located in the Han River, Seoul, South Korea, for 2 years, i.e., 2017 and 2018. The JN WWTP reduced the diversity and abundance of ARB and ARGs but was not sufficient for removing them all. Interestingly, through the treatment process in the JN WWTP, the composition of diverse multidrug-resistant (MDR) bacteria was concentrated mainly into some genera of the Gammaproteobacteria class (Citrobacter, Escherichia-Shigella, and Stenotrophomonas), which could be key carriages to spread ARGs into the environments. In addition, SmartChip analyses showed that the relative abundance and the number of ARGs were significantly decreased from the influents to the effluents in both 2017 and 2018. SmartChip analyses for 2 years also allowed to notify the core ARGs in the influents and the effluents with the presence of clinically relevant core ARGs, such as vanC, bla (OXA) , and bla (NDM) , which persisted in the treatment process. Considering diverse bacterial mechanisms for exchanging and transferring ARGs, the occurrence of MDR bacteria and core ARGs could be a source for the blooming of the antibiotic resistome in the WWTP and nearby environments. | 2022 | 36033841 |
| 5338 | 18 | 0.9905 | Characterisation of microbial communities and quantification of antibiotic resistance genes in Italian wastewater treatment plants using 16S rRNA sequencing and digital PCR. The spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in humans, animals and environment is a growing threat to public health. Wastewater treatment plants (WWTPs) are crucial in mitigating the risk of environmental contamination by effectively removing contaminants before discharge. However, the persistence of ARB and ARGs even after treatment is a challenge for the management of water system. To comprehensively assess antimicrobial resistance dynamics, we conducted a one-year monitoring study in three WWTPs in central Italy, both influents and effluents. We used seasonal sampling to analyze microbial communities by 16S rRNA, as well as to determine the prevalence and behaviour of major ARGs (sul1, tetA, bla(TEM), bla(OXA-48), bla(CTX-M-1 group), bla(KPC)) and the class 1 Integron (int1). Predominant genera included in order: Arcobacter, Acinetobacter, Flavobacterium, Pseudarcobacter, Bacteroides, Aeromonas, Trichococcus, Cloacibacterium, Pseudomonas and Streptococcus. A higher diversity of bacterial communities was observed in the effluents compared to the influents. Within these communities, we also identified bacteria that may be associated with antibiotic resistance and pose a significant threat to human health. The mean concentrations (in gene copies per liter, gc/L) of ARGs and int1 in untreated wastewater (absolute abundance) were as follows: sul1 (4.1 × 10(9)), tetA (5.2 × 10(8)), bla(TEM) (1.1 × 10(8)), bla(OXA-48) (2.1 × 10(7)), bla(CTX-M-1 group) (1.1 × 10(7)), bla(KPC) (9.4 × 10(5)), and int1 (5.5 × 10(9)). The mean values in treated effluents showed reductions ranging from one to three log. However, after normalizing to the 16S rRNA gene (relative abundance), it was observed that in 37.5 % (42/112) of measurements, the relative abundance of ARGs increased in effluents compared to influents. Furthermore, correlations were identified between ARGs and bacterial genera including priority pathogens. This study improves our understanding of the dynamics of ARGs and provides insights to develop more effective strategies to reduce their spread, protecting public health and preserving the future efficacy of antibiotics. | 2024 | 38750766 |
| 7273 | 19 | 0.9905 | Evaluation of antibiotic resistance dissemination by wastewater treatment plant effluents with different catchment areas in Germany. The study quantified the abundances of antibiotic resistance genes (ARGs) and facultative pathogenic bacteria (FPB) as well as one mobile genetic element in genomic DNA via qPCR from 23 different wastewater treatment plant (WWTP) effluents in Germany. 12 clinically relevant ARGs were categorized into frequently, intermediately, and rarely occurring genetic parameters of communal wastewaters. Taxonomic PCR quantifications of five FPB targeting Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, and enterococci were performed. The WWTPs differed in their catchment areas being impacted by hospitals, food processing companies, or housing areas only. The total discharges of the analyzed ARGs and FPB were found to cluster independently of the sizes of the WWTPs with a maximum difference of two log units within one cluster. Initially, quantitative data evaluations revealed no significant difference between ARG categories and WWTP catchment areas. More distinct correlations became obvious with a Pearson correlation approach, where each single taxonomic marker is compared to each ARG target. Here, increased correlation of FPB (i.e. E. coli, K. pneumoniae, P. aeruginosa, and enterococci) with clinically relevant ARGs of the category of rarely occurring resistance genes (bla(NDM-1), vanA) was found in WWTP effluents being influenced by hospital wastewaters. | 2020 | 32488142 |