# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8007 | 0 | 0.9946 | Distinguishing removal and regrowth potential of antibiotic resistance genes and antibiotic resistant bacteria on microplastics and in leachate after chlorination or Fenton oxidation. The prevalence of antibiotic resistance, as well as microplastics (MPs) as vectors for antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) has attracting growing attention. However, the fate of ARB/ARGs on MPs treated by chlorination and Fenton oxidation were poorly understood. Herein, the removal and regrowth of ARGs/ARB on MPs and in MPs-surrounding landfill leachate (an important reservoir of MPs and ARGs) after chlorination and Fenton oxidation were comparatively analyzed. Target ARGs on MPs were reduced obviously less than that in leachate, with the largest percentages reduction of 34.0-46.3% vs. 54.3-77.6% after chlorination and 92.1-97.3% vs. > 99.9% after Fenton oxidation, and similar removal patterns were observed for ARB. Moreover, a considerable regrowth of ARGs/ARB in leachate were found after 48 h of storage at the end of chlorination (5, 10, 20 and 50 mg/L), and a greater regrowth of ARGs and ARB occurred on MPs with up to 17 and 139 fold, respectively. In contrast, Fenton oxidation achieved a reduced regrowth of target ARGs/ARB. These findings indicated that the removal of ARGs/ARB on MPs were more difficult than that in leachate, and ARGs/ARB in leachate and especially on MPs exhibited a considerable potential for rapid regrowth after chlorination. | 2022 | 35158247 |
| 7934 | 1 | 0.9945 | Mitigated membrane fouling and enhanced removal of extracellular antibiotic resistance genes from wastewater effluent via an integrated pre-coagulation and microfiltration process. Antibiotic resistance genes (ARGs) have been regarded as an emerging pollutant in municipal wastewater treatment plant (WWTP) effluents due to their potential risk to human health and ecological safety when reused for landscape and irrigation. Conventional wastewater treatment processes generally fail to effectively reduce ARGs, especially extracellular ARGs (eARGs), which are persistent in the environment and play an important role in horizontal gene transfer via transformation. Herein, an integrated process of pre-coagulation and microfiltration was developed for removal of ARGs, especially eARGs, from wastewater effluent. Results show that the integrated process could effectively reduce the absolute abundances of total ARGs (tARGs) (>2.9 logs) and eARGs (>5.2 logs) from the effluent. The excellent performance could be mainly attributed to the capture of antibiotic resistant bacteria (ARB) and eARGs by pre-coagulation and co-rejection during subsequent microfiltration. Moreover, the integrated process exhibited a good performance on removing common pollutants (e.g., dissolved organic carbon and phosphate) from the effluent to improve water quality. Besides, the integrated process also greatly reduced membrane fouling compared with microfiltration. These findings suggest that the integrated process of pre-coagulation and microfiltration is a promising advanced wastewater treatment technology for ARGs (especially eARGs) removal from WWTP effluents to ensure water reuse security. | 2019 | 31085389 |
| 7621 | 2 | 0.9943 | Pre-chlorination in source water endows ARB with resistance to chlorine disinfection in drinking water treatment. Chlorine disinfection is widely used to ensure biosafety of drinking water. However, antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) are often detected in treated drinking water. The impact of chlorine disinfection on the abundance of ARGs in drinking water is currently contradictory. Some studies suggested that chlorine disinfection could reduce the abundance of ARGs, while others had found that chlorine disinfection increased the abundance of ARGs. Pre-chlorination is widely applied in raw water to kill the algae cells in source water Pump Station. Different distances between the source water Pump Station and the drinking water treatment plants (DWTPs) resulted in different degrees of residual chlorine decay in the incoming raw water. This study found that the abundance of ARGs in drinking water would be increased during chlorine disinfection when the chlorine concentration in raw water was higher (> 0.2 mg/L). On the contrary, chlorine disinfection would decrease the abundance of ARGs in drinking water when the chlorine concentration in raw water was lower (< 0.09 mg/L). Pre-chlorination in source water with sub-lethal concentration could allow ARB to adapt to the chlorine environment in advance, endowing ARB with chlorine resistance, which resulted in ineffective removal of ARB and increased ARGs abundance during subsequent chlorine disinfection. High abundance of chlorine and antibiotics co-resistance bacteria in raw water was the main reason for the increase in ARGs abundance in chlorine treated drinking water. It should be noticed that, pre-chlorination treatment in source water would increase the difficulty of removing ARGs in subsequent chlorine disinfection process. | 2025 | 40398032 |
| 7215 | 3 | 0.9942 | High-throughput qPCR profiling of antimicrobial resistance genes and bacterial loads in wastewater and receiving environments. Wastewater treatment plants (WWTPs) are hot spots for the acquisition and spread of antimicrobial resistance (AMR). This regional-based study quantified antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and bacteria in hospital and community-derived wastewater and receiving environments, using high-throughput qPCR (HT-qPCR). This is the first study to apply Resistomap's Antibiotic Resistance Gene Index (ARGI) as a standardised metric to find the overall AMR level across different WWTPs. ARGI of WWTPs ranged from 2.0 to 2.3, indicating higher relative ARG levels than the mean European ARGI of 2.0, but lower than the global mean of 2.4. The highest diversity and abundance of ARGs were observed in untreated hospital and community wastewater. The reduction of total ARGs during wastewater treatment (0.2-2 logs) and bacteria (0.3-1.5 logs) varied spatio-temporally across the WWTPs. Despite a decrease in ARG and bacterial abundance in treated effluents, substantial loads were still released into receiving environments. Notably, ARG levels in coastal sediments were comparable to those in untreated wastewater, and most ARGs were shared between wastewater and receiving environments, highlighting the impact of wastewater discharge on these ecosystems. Sewage outfall exposure increased ARGs in shellfish, emphasising risks to shellfish hygiene. This study provides evidence to inform policymaking, emphasising advanced wastewater treatment methods and combined sewer overflow (CSO) management to mitigate ARG release, protecting water users and the food chain. | 2025 | 40127809 |
| 8008 | 4 | 0.9942 | Reductions of bacterial antibiotic resistance through five biological treatment processes treated municipal wastewater. Wastewater treatment plants are hot spots for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). However, limited studies have been conducted to compare the reductions of ARB and ARGs by various biological treatment processes. The study explored the reductions of heterotrophic bacteria resistant to six groups of antibiotics (vancomycin, gentamicin, erythromycin, cephalexin, tetracycline, and sulfadiazine) and corresponding resistance genes (vanA, aacC1, ereA, ampC, tetA, and sulI) by five bench-scale biological reactors. Results demonstrated that membrane bioreactor (MBR) and sequencing batch reactor (SBR) significantly reduced ARB abundances in the ranges of 2.80∼3.54 log and 2.70∼3.13 log, respectively, followed by activated sludge (AS). Biological filter (BF) and anaerobic (upflow anaerobic sludge blanket, UASB) techniques led to relatively low reductions. In contrast, ARGs were not equally reduced as ARB. AS and SBR also showed significant potentials on ARGs reduction, whilst MBR and UASB could not reduce ARGs effectively. Redundancy analysis implied that the purification of wastewater quality parameters (COD, NH4 (+)-N, and turbidity) performed a positive correlation to ARB and ARGs reductions. | 2016 | 27384166 |
| 7143 | 5 | 0.9942 | Simulated discharge of treated landfill leachates reveals a fueled development of antibiotic resistance in receiving tidal river. Around 350 million tons of solid waste is disposed of in landfills every year globally, with millions of cubic meters of landfill leachates released into neighboring environment. However, to date, little is known about the variations of antimicrobial resistance (AMR) in on-site leachate treatment systems and its development in leachate-receiving water environment. Here, we quantified 7 subtypes of antibiotic resistance genes (ARGs), 3 types of culturable antibiotic resistant bacteria (ARB) and 6 subtypes of mobile genetic elements (MGEs) in the effluents from a combined leachate treatment process, including biological treatment (MBR), physical separation (UF), ultraviolet (UV) disinfection and advanced oxidation process (AOP). The contents of ARGs, ARB and MGEs were generally enriched by the MBR, but then decreased significantly along with the tertiary treatment process. However, in the effluent-receiving water samples, the abundance of dominant ARGs (i.e. ermB, sul1, bla(TEM)) increased by 1.5 orders of magnitude within 96 h, alongside a general increase of MGEs (~10.0 log(10)(copies/mL) and total ARB (~1100 CFU/mL). Structural correlation analyses reveal that target ARGs were closely associated with MGEs, particularly in effluent-receiving samples (Procrustes test; M(2) = 0.49, R = 0.71, P = 0.001); and occurrences of ARB were majorly affected by ARG's distribution and environmental conditions (e.g. nitrogen speciation) in effluent and recipient groups, respectively. This study indicates that current treatment technologies and operation protocols are not feasible in countering the development of AMR in effluent-receiving water environment, particularly in tidal rivers that are capable of retaining contaminants for a long residence time. | 2018 | 29501852 |
| 7556 | 6 | 0.9942 | The fate and behavior mechanism of antibiotic resistance genes and microbial communities in anaerobic reactors treating oxytetracycline manufacturing wastewater. In this study, two parallel-operated expanded granular sludge bed (EGSB) reactors, one used to treat oxytetracycline (OTC) manufacturing wastewater with gradual increase of OTC concentration as experimental reactor and the other fed with the same wastewater without OTC as control reactor, were operated to investigate the behavior of antibiotics resistance genes (ARGs) and mobile genetic elements (MGEs) and their possible relationships with bacterial community among influent, sludge and effluent environments. Though the average absolute abundance of ARGs slightly decreased (0.26 - log), the ARGs' relative abundance normalized to 16S-rRNA gene copy numbers showed a significant upward trend in effluent (2 multiples - increase) and the absolute and relative abundances both extremely increased in anaerobic sludge, indicating that anaerobic treatment process cannot reduce ARGs efficiently, inversely can increase the risk of ARGs through the proliferation of antibiotics resistance bacteria (ARB) under the suppression of OTC. MGEs, bacterial communities and OTC concentration mainly impacted the ARGs profiles, which contributed 88.4% to the variation of ARGs. The differences and correlations of hosts in influent, effluent and sludge were further confirmed by network analysis. Overall, this study enhanced the understanding of the prevalence and transfer of ARGs in OTC production effluents during anaerobic treatment. | 2022 | 34740157 |
| 8111 | 7 | 0.9942 | Effect of alkaline-thermal pretreatment on biodegradable plastics degradation and dissemination of antibiotic resistance genes in co-compost system. Biodegradable plastics (BDPs) are an eco-friendly alternative to traditional plastics in organic waste, but their microbial degradation and impact on antibiotic resistance genes (ARGs) transmission during co-composting remain poorly understood. This study examines how alkaline-thermal pretreatment enhances BDPs degradation and influences the fate of ARGs and mobile genetic elements (MGEs) in co-composting. Pretreatment with 0.1 mol/L NaOH at 100℃ for 40 minutes increased the surface roughness and hydrophilicity of BDPs while reducing their molecular weight and thermal stability. Incorporating pretreated BDPs film (8 g/kg-TS) into the compost reduced the molecular weight of the BDPs by 59.70 % during the maturation stage, facilitating compost heating and prolonging the thermophilic stage. However, incomplete degradation of BDPs releases numerous smaller-sized microplastics, which can act as carriers for microorganisms, facilitating the dissemination of ARGs across environments and posing significant ecological and public health risks. Metagenomic analysis revealed that pretreatment enriched plastic-degrading bacteria, such as Thermobifida fusca, on BDPs surfaces and accelerated microbial plastic degradation during the thermophilic stage, but also increased ARGs abundance. Although pretreatment significantly reduced MGEs abundance (tnpA, IS19), the risk of ARGs dissemination remained. Three plastic-degrading bacteria (Pigmentiphaga sp002188465, Bacillus clausii, and Bacillus altitudinis) were identified as ARGs hosts, underscoring the need to address the risk of horizontal gene transfer of ARGs associated with pretreatment in organic waste management. | 2025 | 39970645 |
| 8580 | 8 | 0.9941 | Mitigation of microplastic-associated emerging pollutants by chlorination using field-collected microplastic: Antimicrobial-resistant genes and pathogens. The ubiquity of microplastics (MPs) in aquatic environments has raised significant concerns regarding their roles as vectors for antibiotic-resistance genes (ARGs) and antibiotic-resistant pathogens (ARPs). This study investigated the mitigation of ARGs and ARPs associated with field-collected MPs through chlorination using free available chlorine (FAC) at varying concentrations. FAC effectively reduced the absolute abundance of ARGs on MPs by up to 99.69 %, although the relative abundance of certain ARGs persisted or increased after treatments. Results revealed that the three-dimensional structure of biofilms on MPs significantly influenced FAC efficacy, with interior biofilm bacteria demonstrating greater resistance than outer biofilm. Additionally, FAC induced fragmentation of MPs, particularly increasing the proportion of particles smaller than 100 μm. Notably, ARGs such as sul1 and ermB showed substantial reductions in absolute abundance, whereas ermC and sul2 exhibited less reduction, highlighting the complexity of disinfection in MP-associated biofilms. These findings underscore the need for optimizing disinfection strategies to mitigate ARG dissemination and address environmental risks posed by MPs in wastewater effluents. | 2025 | 40436100 |
| 7577 | 9 | 0.9941 | Microplastics can selectively enrich intracellular and extracellular antibiotic resistant genes and shape different microbial communities in aquatic systems. Microplastics (MPs), as emerging contaminants, are posing potential risks to environment, and animal and human health. The ubiquitous presence of MPs in natural ecosystems provides favorable platform to selectively adsorb antibiotic resistant genes (ARGs) and bacteria (ARB) and bacterial assemblages, especially in wastewater which is hotspot for MPs, ARGs and ARB. In this study, the selective capture of intracellular ARGs (iARGs), extracellular ARGs (eARGs), and bacterial assemblages by MPs with different materials (i.e. polyethylene, polyvinylchloride, and polyethylene terephthalate) and sizes (200 μm and 100 μm) was investigated. The results showed that iARGs (i.e. i-TetA, i-TetC, i-TetO, i-sul1), integron-integrase gene (intI1), and eARGs (i.e. e-TetA and e-bla(TEM)) were selectively enriched on MPs. Relative abundances of i-sul1, i-TetA, and intI1 were generally higher than that of i-TetC and i-TetO on all MPs. Moreover, MPs also have strong effects on the formation of microflora in wastewater, which resulted in different bacterial communities and functions in the wastewater and on the MPs. These findings suggested that MPs could affect the selective enrichment of ARB and ARGs in water environment. | 2022 | 35101514 |
| 7555 | 10 | 0.9941 | Deciphering the factors influencing the discrepant fate of antibiotic resistance genes in sludge and water phases during municipal wastewater treatment. The discrepant fate of antibiotic resistance genes (ARGs) in sludge and water phases was investigated in a municipal wastewater treatment plant, and a lab-scale A(2)O-MBR was operated to provide background value of ARGs. The influencing factors of ARGs including microbial community, co-selection from heavy metals, biomass and horizontal gene transfer were concerned. Results showed that iA(2)O (inversed A(2)O) showed better ARGs reduction, and longer SRT (sludge retention time) increased ARGs relative abundance while reduced the gene copies of ARGs in the effluent, but significantly increased the ARGs in sludge phase. Compared to background value, the most enriched ARG was tetX in water phase, while it was intI1 in sludge phase. There existed higher abundance of multi-resistant bacteria in sludge phase, and microbial community determined the fate of ARGs in both water and sludge phase, while the direct effects from horizontal gene transfer should not be overlooked especially in water phase. | 2018 | 29909361 |
| 7146 | 11 | 0.9941 | Fate of antibiotic resistance genes and bacteria in a coupled water-processing system with wastewater treatment plants and constructed wetlands in coastal eco-industrial parks. In coastal eco-industrial zones, wastewater treatment plants (WWTPs) and constructed wetlands (CWs) can alleviate the challenge of water shortage and the negative effect of sewage discharge, while the problems of antibiotic resistance genes (ARGs) have not attracted enough attention. In this research, the Wafergen SmartChip system was adopted to investigate the ARG profiles in a coupled system combined WWTPs and CWs in a coastal industrial park. Potential risks of antibiotic resistance in chemical industrial wastewater were confirmed due to the higher abundance of target ARGs (> 10(7) copies/mL). General decline with partial enrichment in absolute and relative abundance of ARGs from the WWTPs to CWs revealed the effective removal of ARGs in the coupled system, while the fate of different ARG types varied greatly. Aminoglycoside and sulfonamide ARGs were detected with higher abundance (up to 5.34 ×10(7) and 3.61 ×10(7) copies/mL), especially aac(6')-Ib and sul1. Denitrification, secondary sedimentation, and acid hydrolysis contributed to the removal of aminoglycoside, sulfonamide, β-lactamase, chloramphenicol, and multidrug ARGs. Catalytic ozonation contributed to the removal of tetracycline and MLSB ARGs. Subsurface CWs worked effectively for the removal of sulfonamide, tetracycline, and multidrug ARGs, especially tetX, cphA, tetG, and strB. Close correlations between ARGs and MGEs emphasized the vital roles of anthropogenic pollutants and horizontal gene transfer on the diffusion of ARGs. Actinobacteria, Bacteroidota, and Cyanobacteria were dominant in the CWs, while Proteobacteria, Firmicutes, and Planctomycetota were prevalent in the WWTPs. Redundancy analysis and variance partitioning analysis indicated that transposase and water quality posed greater influences on the distribution of ARGs. Co-occurrence network revealed that potential multiple antibiotic resistant pathogenic bacteria decreased in the CWs. The coupled system has a limited effect on the reduction of ARGs and potential ARG hosts, providing a comprehensive insight into the fate of ARGs in conventional water-processing systems. | 2023 | 36738611 |
| 7755 | 12 | 0.9941 | Anthropogenic impacts on sulfonamide residues and sulfonamide resistant bacteria and genes in Larut and Sangga Besar River, Perak. The environmental reservoirs of sulfonamide (SA) resistome are still poorly understood. We investigated the potential sources and reservoir of SA resistance (SR) in Larut River and Sangga Besar River by measuring the SA residues, sulfamethoxazole resistant (SMX(r)) in bacteria and their resistance genes (SRGs). The SA residues measured ranged from lower than quantification limits (LOQ) to 33.13 ng L(-1) with sulfadiazine (SDZ), sulfadimethoxine (SDM) and SMX as most detected. Hospital wastewater effluent was detected with the highest SA residues concentration followed by the slaughterhouse and zoo wastewater effluents. The wastewater effluents also harbored the highest abundance of SMX(r)-bacteria (10(7) CFU mL(-1)) and SRGs (10(-1)/16S copies mL(-1)). Pearson correlation showed only positive correlation between the PO(4) and SMX(r)-bacteria. In conclusion, wastewater effluents from the zoo, hospital and slaughterhouse could serve as important sources of SA residues that could lead to the consequent emergence of SMX(r)-bacteria and SRGs in the river. | 2019 | 31726563 |
| 7900 | 13 | 0.9940 | Biochar-amended constructed wetlands enhance sulfadiazine removal and reduce resistance genes accumulation in treatment of mariculture wastewater. With the rapid development of mariculture, an increasing amount of antibiotics are being discharged into the marine environment. Effectively removing antibiotics and antibiotic resistance genes (ARGs) in mariculture wastewater with a relatively high salinity and low C/N presents challenges. Biochar-amended constructed wetlands (CWs) can effectively remove antibiotics, However, few studies have compared the impacts of biochar-amended CWs pyrolyzed at different temperatures on the treatment of mariculture wastewater. Thus, this study utilized biochar prepared at three temperatures as substrate for CWs (CW-300, CW-500, and CW-700), aiming to evaluate their efficiency to treat mariculture wastewater containing antibiotic sulfadiazine (SDZ). The results demonstrated that compared to traditional quartz sand-filled CW (NCW), the addition of biochar with a larger specific surface area significantly enhanced the removal efficiency of SDZ by 21.72%-46.96%. Additionally, the addition of biochar effectively reduced the relative abundance of one integron gene (int1) and antibiotic resistance genes (ARGs) including sul1, sul2, and sul3 in both effluent and substrates. The addition of biochar reduced the accumulation of extracellular polymeric substances within the substrate of CWs, thereby mitigating the proliferation and spread of ARGs. The microbial community structure indicated that the addition of biochar increased the abundance of the potential antibiotic-degrading bacteria such as Proteobacteria and Bacteroidota, facilitating the degradation of SDZ and mitigating the accumulation of ARGs. This study demonstrated that biochar can be a promising substrate in CWs for treating mariculture wastewater containing antibiotics. | 2025 | 39986428 |
| 8006 | 14 | 0.9940 | Removal of antibiotic resistant bacteria and antibiotic resistance genes in wastewater effluent by UV-activated persulfate. The emerging antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are increasingly appreciated to be as important as microbial contaminants. This paper focused on UV-activated persulfate (UV/PS), an advanced oxidation process, in removing ARB and ARGs from secondary wastewater effluent. Results showed that the inactivation efficiency of macrolides-resistant bacteria (MRB), sulfonamides-resistant bacteria (SRB), tetracyclines-resistant bacteria (TRB) and quinolones-resistant bacteria (QRB) by UV/PS reached 96.6 %, 94.7 %, 98.0 % and 99.9 % in 10 min, respectively. UV/PS also showed significant removal efficiency on ARGs. The reduction of total ARGs reached 3.84 orders of magnitude in UV/PS which is more than that in UV by 0.56 log. Particularly, the removal of mobile genetic elements (MGE) which might favor the horizontal gene transfer of ARGs among different microbial achieved 76.09 % by UV/PS. High-throughput sequencing revealed that UV/PS changed the microbial community. The proportions of Proteobacteria and Actinobacteria that pose human health risks were 4.25 % and 1.6 % less than UV, respectively. Co-occurrence analyzes indicated that ARGs were differentially contributed by bacterial taxa. In UV/PS system, hydroxyl radical and sulfate radical contributed to the removal of bacteria and ARGs. Our study provided a new method of UV/PS to remove ARGs and ARB for wastewater treatment. | 2020 | 31954307 |
| 8058 | 15 | 0.9940 | Effects of biochars on the fate of antibiotics and their resistance genes during vermicomposting of dewatered sludge. It is currently still difficult to decrease the high contents of antibiotics and their corresponding antibiotic resistance genes (ARGs) in sludge vermicompost. To decrease the environmental risk of vermicompost as a bio-fertilizer, this study investigated the feasibility of biochar addition to decrease the levels of antibiotics and ARGs during vermicomposting of dewatered sludge. To achieve this, 1.25% and 5% of corncob and rice husk biochars, respectively, were added to sludge, which was then vermicomposted by Eisenia fetida for 60 days. The sludge blended with corncob biochar showed increased decomposition and humification of organic matter. Higher biochar concentration promoted both the number and diversity of bacteria, and differed dominant genera. The level of antibiotics significantly decreased as a result of biochar addition (P < 0.05), and tetracycline was completely removed. Relative to the control without addition of biochars, ermF and tetX genes significantly decreased with corncob biochar treatment (P < 0.05). Rice husk biochar (5%) could effectively decrease sul-1 and sul-2 genes in vermicompost (P < 0.05). However, the abundance of the intI-1 gene increased with biochar concentration. This study suggests that biochar addition can lessen the antibiotic and ARG pollution in sludge vermicompost, depending on the type and concentration of biochars. | 2020 | 32388093 |
| 7134 | 16 | 0.9939 | Elevated levels of antibiotic resistance in groundwater during treated wastewater irrigation associated with infiltration and accumulation of antibiotic residues. Treated wastewater irrigation (TWW) releases antibiotics and antibiotic resistance genes (ARGs) into the environment and might thus promote the dissemination of antibiotic resistance in groundwater (GW). We hypothesized that TWW irrigation increases ARG abundance in GW through two potential mechanisms: the contamination of GW with resistant bacteria and the accumulation of antibiotics in GW. To test this, the GW below a real-scale TWW-irrigated field was sampled for six months. Sampling took place before, during and after high-intensity TWW irrigation. Samples were analysed with 16S rRNA amplicon sequencing, qPCR of six ARGs and the class 1 integron-integrase gene intI1, while liquid chromatography tandem mass spectrometry was performed to detect antibiotic and pharmaceutical residues. Absolute abundance of 16S rRNA in GW decreased rather than increased during long-term irrigation. Also, the relative abundance of TWW-related bacteria did not increase in GW during long-term irrigation. In contrast, long-term TWW irrigation increased the relative abundance of sul1 and intI1 in the GW microbiome. Furthermore, GW contained elevated concentrations of sulfonamide antibiotics, especially sulfamethoxazole, to which sul1 confers resistance. Total sulfonamide concentrations in GW correlated with sul1 relative abundance. Consequently, TWW irrigation promoted sul1 and intI1 dissemination in the GW microbiome, most likely due to the accumulation of drug residues. | 2022 | 34555761 |
| 7276 | 17 | 0.9939 | Antibiotic resistance in urban and hospital wastewaters and their impact on a receiving freshwater ecosystem. The main objective of this study was to investigate the antibiotic resistance (AR) levels in wastewater (WW) and the impact on the receiving river. Samples were collected once per season over one year in the WW of a hospital, in the raw and treated WW of two wastewater treatment plants (WWTPs), as well as upstream and downstream from the release of WWTPs effluents into the Zenne River (Belgium). Culture-dependent methods were used to quantify Escherichia coli and heterotrophic bacteria resistant to amoxicillin, sulfamethoxazole, nalidixic acid and tetracycline. Six antibiotic resistance genes (ARGs) were quantified in both particle-attached (PAB) and free-living (FLB) bacteria. Our results showed that WWTPs efficiently removed antibiotic resistant bacteria (ARB) regardless of its AR profile. The ARGs levels were the highest in the hospital WW and were significantly reduced in both WWTPs. However, ARB and ARGs abundances significantly increased into the Zenne River downstream from the WWTPs outfalls. The variation in the relative abundance of ARGs through WW treatment differed depending on the WWTP, fraction, and gene considered. The sul1 and sul2 genes in PAB fraction showed significantly higher relative abundances in the effluent compared to the influent of both WWTPs. This study demonstrated that WWTPs could be hotspots for AR spread with significant impacts on receiving freshwater ecosystems. This was the first comprehensive study investigating at the same time antibiotics occurrence, fecal bacteria indicators, heterotrophic bacterial communities, and ARGs (distinguishing PAB and FLB) to assess AR levels in WW and impacts on the receiving river. | 2018 | 29730567 |
| 8105 | 18 | 0.9939 | Refluxing mature compost to replace bulking agents: A low-cost solution for suppressing antibiotic resistance genes rebound in sewage sludge composting. Antibiotic resistance genes (ARGs) rebounding during composting cooling phase is a critical bottleneck in composting technology that increased ARGs dissemination and application risk of compost products. In this study, mature compost (MR) was used as a substitute for rice husk (RH) to mitigate the rebound of ARGs and mobile genetic elements (MGEs) during the cooling phase of sewage sludge composting, and the relationship among ARGs, MGEs, bacterial community and environmental factors was investigated to explore the key factor influencing ARGs rebound. The results showed that aadD, blaCTX-M02, ermF, ermB, tetX and vanHB significantly increased 4.76-32.41 times, and the MGEs rebounded by 38.60% in the cooling phase of RH composting. Conversely, MR reduced aadD, tetM, ermF and ermB concentrations by 59.49-98.58%, and reduced the total abundance of ARGs in the compost product by 49.32% compared to RH, which significantly restrained ARGs rebound. MR promoted secondary high temperature inactivation of potential host bacteria, including Ornithinibacter, Rhizobiales and Caldicoprobacter, which could harbor aadE, blaCTX-M02, and blaVEB. It also reduced the abundance of lignocellulose degrading bacteria of Firmicutes, which were potential hosts of aadD, tetX, ermF and vanHB. Moreover, MR reduced moisture and increased oxidation reduction potential (ORP) that promoted aadE, tetQ, tetW abatement. Furthermore, MR reduced 97.36% of total MGEs including Tn916/1545, IS613, Tp614 and intI3, which alleviated ARGs horizontal transfer. Overall finding proposed mature compost reflux as bulking agent was a simple method to suppress ARGs rebound and horizontal transfer, improve ARGs removal and reduce composting plant cost. | 2025 | 39798649 |
| 7998 | 19 | 0.9939 | Seasonal variation and removal efficiency of antibiotic resistance genes during wastewater treatment of swine farms. The seasonal variation and removal efficiency of antibiotic resistance genes (ARGs), including tetracycline resistance genes (tetG, tetM, and tetX) and macrolide (ermB, ermF, ereA, and mefA), were investigated in two typical swine wastewater treatment systems in both winter and summer. ARGs, class 1 integron gene, and 16S rRNA gene were quantified using real-time polymerase chain reaction assays. There was a 0.31-3.52 log variation in ARGs in raw swine wastewater, and the abundance of ARGs in winter was higher than in summer. tetM, tetX, ermB, ermF, and mefA were highly abundant. The abundance of ARGs was effectively reduced by most individual treatment process and the removal efficiencies of ARGs were higher in winter than in summer. However, when examining relative abundance, the fate of ARGs was quite variable. Anaerobic digestion reduced the relative abundance of tetX, ermB, ermF, and mefA, while lagoon treatment decreased tetM, ermB, ermF, and mefA. Sequencing batch reactor (SBR) decreased tetM, ermB, and ermF, but biofilters and wetlands did not display consistent removal efficiency on ARGs in two sampling seasons. As far as the entire treatment system is concerned, ermB and mefA were effectively reduced in both winter and summer in both total and relative abundance. The relative abundances of tetG and ereA were significantly correlated with intI1 (p < 0.01), and both tetG and ereA increased after wastewater treatment. This may pose a great threat to public health. | 2017 | 26715413 |