# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1392 | 0 | 0.9762 | High prevalence of bla(CTX-M-15) type extended-spectrum beta-lactamases in Gambian hooded vultures (Necrosyrtes monachus): A threatened species with substantial human interaction. One hundred fecal samples from hooded vultures in the Gambia (Banjul area) were investigated for the presence of bacteria with extended-spectrum cephalosporin- (ESBL/AmpC), carbapenemases, and colistin resistance. No Enterobacteriales carrying carbapenemases or resistance against colistin were detected. Fifty-four ESBL-producing Escherichia coli and five ESBL-producing Klebsiella pneumoniae isolates were identified in 52 of the samples, of which 52 E. coli and 4 K. pneumoniae yielded passed sequencing results. Fifty of the E. coli had ESBL phenotype and genotype harboring bla(CTX-M) genes, of which 88.5% (n = 46) were the bla(CTX-M-15) gene, commonly found on the African continent. Furthermore, the genetic context around bla(CTX-M-15) was similar between isolates, being colocalized with ISKpn19. In contrast, cgMLST analysis of the E. coli harboring ESBL genes revealed a genetic distribution over a large fraction of the currently known existing E. coli populations in the Gambia. Hooded vultures in the Gambia thus have a high ESBL E. coli-prevalence (>50%) with low diversity regarding key resistance genes. Furthermore, given the urban presence and frequent interactions between hooded vultures and humans, data from this study implies hooded vultures as potential vectors contributing to the further dissemination of antibiotic-resistance genes. | 2023 | 37186228 |
| 1386 | 1 | 0.9752 | ESBL/pAmpC-producing Enterobacterales in common leopard geckos (Eublepharis macularius) and central bearded dragons (Pogona vitticeps) from Portugal. Common leopard geckos (Eublepharis macularius) and central bearded dragon (Pogona vitticeps) are widely kept as pets but can harbor pathogenic bacteria, including antimicrobial-resistant (AMR) bacteria. This study aimed to research the frequency of β-lactamase-producing Enterobacterales in these two reptile species. A total of 132 samples were collected from the oral and cloacal cavities of healthy common leopard geckos and central bearded dragons in the Lisbon area, Portugal. Antimicrobial resistance was assessed for third-generation cephalosporin (3GC)-resistant Enterobacterales. The results revealed that 3GC-resistant Enterobacterales were observed in 17.9% (n = 14/78) of the reptiles. The most commonly identified species were: Citrobacter freundii and Klebsiella aerogenes. Furthermore, some isolates produced extended-spectrum β-lactamases (ESBLs) and AmpC β-lactamases (AmpC) encoding genes such as bla (CMY-2), bla (CTX-M-15,) and bla (TEM-1). These findings emphasize the potential role of these reptiles in the spread of AMR bacteria, particularly in urban settings where human- animal interactions are frequent. Given the zoonotic risks, this study emphasizes the importance of continued surveillance and responsible antimicrobial use in both veterinary and human medicine to mitigate the spread of AMR bacteria. | 2025 | 40370835 |
| 1385 | 2 | 0.9743 | GENOMIC CHARACTERIZATION OF MULTIDRUG-RESISTANT EXTENDED-SPECTRUM β-LACTAMASE-PRODUCING ESCHERICHIA COLI AND KLEBSIELLA PNEUMONIAE FROM CHIMPANZEES (PAN TROGLODYTES) FROM WILD AND SANCTUARY LOCATIONS IN UGANDA. Farm and wild animals may serve as reservoirs of antimicrobial-resistant bacteria of human health relevance. We investigated the occurrence and genomic characteristics of extended spectrum β-lactamase (ESBL)-producing bacteria in Ugandan chimpanzees (Pan troglodytes) residing in two environments with or without close contact to humans. The ESBL-producing Escherichia coli and Klebsiella pneumoniae were isolated from fecal material of chimpanzees from Budongo Forest and Ngamba Island Chimpanzee Sanctuary in Uganda and were more commonly isolated from chimpanzees in Ngamba Island Chimpanzee Sanctuary, where animals have close contact with humans. Selected ESBL isolates (E. coli n=9, K. pneumoniae n=7) were analyzed by whole-genome sequencing to determine the presence of resistance genes, as well as sequence type and virulence potential; the blaCTX-M-15 gene was present in all strains. Additionally, the ESBL genes blaSHV-11 and blaSHV-12 were found in strains in the study. All strains were found to be multidrug resistant. The E. coli strains belonged to four sequence types (ST2852, ST215, ST405, and ST315) and the K. pneumoniae strains to two sequence types (ST1540 and ST597). Virulence genes did not indicate that strains were of common E. coli pathotype, but strains with the same sequence types as isolated in the current study have previously been reported from clinical cases in Africa. The findings indicate that chimpanzees in close contact with humans may carry ESBL bacteria at higher frequency than those in the wild, indicating a potential anthropogenic transmission. | 2022 | 35255126 |
| 1820 | 3 | 0.9737 | Intensive farming as a source of bacterial resistance to antimicrobial agents in sedentary and migratory vultures: Implications for local and transboundary spread. The role of wild birds in the carriage and transmission of human and food animal bacteria with resistant genotypes has repeatedly been highlighted. However, few studies have focussed on the specific exposure sources and places of acquisition and selection for antimicrobial-resistant bacteria in vultures relying on livestock carcasses across large areas and different continents. The occurrence of bacterial resistance to antimicrobial agents was assessed in the faecal microbiota of sedentary Griffon vultures (Gyps fulvus) and trans-Saharan migratory Egyptian vultures (Neophron percnopterus) in central Spain. High rates (generally >50%) of resistant Escherichia coli and other enterobacteria to amoxicillin, cotrimoxazole and tetracycline were found. About 25-30% of samples were colonised by extended-spectrum beta-lactamases (ESBL) producing bacteria, while 5-17% were positive for plasmid mediated quinolone resistance (PMQR) phenotypes, depending on vulture species and age. In total, nine ESBL types were recorded (7 in griffon vultures and 5 in Egyptian vultures), with CTX-M-1 the most prevalent in both species. The most prevalent PMQR was mediated by qnrS genes. We found no clear differences in the occurrence of antimicrobial resistance in adult vultures of each species, or between nestling and adult Egyptian vultures. This supports the hypothesis that antimicrobial resistance is acquired in the European breeding areas of both species. Bacterial resistance can directly be driven by the regular ingestion of multiple active antimicrobials found in medicated livestock carcasses from factory farms, which should be not neglected as a contributor to the emergence of novel resistance clones. The One Health framework should consider the potential transboundary carriage and spread of epidemic resistance from high-income European to low-income African countries via migratory birds. | 2020 | 32758969 |
| 1750 | 4 | 0.9733 | The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021. Antimicrobial resistance (AMR) data on zoonotic and indicator bacteria from humans, animals and food are collected annually by the EU Member States (MSs) and reporting countries, jointly analysed by EFSA and ECDC and presented in a yearly EU Summary Report. This report provides an overview of the main findings of the 2020-2021 harmonised AMR monitoring in Salmonella spp., Campylobacter jejuni and C. coli in humans and food-producing animals (broilers, laying hens and turkeys, fattening pigs and bovines under 1 year of age) and relevant meat thereof. For animals and meat thereof, indicator E. coli data on the occurrence of AMR and presumptive Extended spectrum β-lactamases (ESBL)-/AmpC β-lactamases (AmpC)-/carbapenemases (CP)-producers, as well as the occurrence of methicillin-resistant Staphylococcus aureus are also analysed. In 2021, MSs submitted for the first time AMR data on E. coli isolates from meat sampled at border control posts. Where available, monitoring data from humans, food-producing animals and meat thereof were combined and compared at the EU level, with emphasis on multidrug resistance, complete susceptibility and combined resistance patterns to selected and critically important antimicrobials, as well as Salmonella and E. coli isolates exhibiting ESBL-/AmpC-/carbapenemase phenotypes. Resistance was frequently found to commonly used antimicrobials in Salmonella spp. and Campylobacter isolates from humans and animals. Combined resistance to critically important antimicrobials was mainly observed at low levels except in some Salmonella serotypes and in C. coli in some countries. The reporting of a number of CP-producing E. coli isolates (harbouring bla (OXA-48), bla (OXA-181), and bla (NDM-5) genes) in pigs, bovines and meat thereof by a limited number of MSs (4) in 2021, requests a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC- producers) showed that encouraging progress have been registered in reducing AMR in food-producing animals in several EU MSs over the last years. | 2023 | 36891283 |
| 2607 | 5 | 0.9731 | A walk on the wild side: Wild ungulates as potential reservoirs of multi-drug resistant bacteria and genes, including Escherichia coli harbouring CTX-M beta-lactamases. Extended-spectrum β-lactamases (ESBL)-producing Enterobacterales have been classified as critical priority pathogens by the World Health Organization (WHO). ESBL are universally distributed and, in 2006, were firstly reported on a wild animal. Understanding the relative contributions of wild animals to ESBL circulation in the environment is urgently needed. In this work, we have conducted a nationwide study in Portugal to investigate the occurrence of bacteria carrying clinically significant antimicrobial resistance genes (ARG), using widely distributed wild ungulates as model species. A total of 151 antimicrobial resistant-Enterobacterales isolates were detected from 181 wild ungulates: 50% (44/88) of isolates from wild boar (Sus scrofa), 40.3% (25/62) from red deer (Cervus elaphus), 41.4% (12/29) from fallow deer (Dama dama) and 100% (2/2) from mouflon (Ovis aries subsp. musimon). Selected isolates showed a diversified resistance profile, with particularly high values corresponding to ampicillin (71.5%) and tetracycline (63.6%). Enterobacterales strains carried bla(TEM), tetA, tetB, sul2, sul1 or dfrA1 ARG genes. They also carried bla(CTX-M)-type genes, which are prevalent in human infections, namely CTX-M-14, CTX-M-15 and CTX-M-98. Strikingly, this is the first report of CTX-M-98 in wildlife. Almost 40% (n = 59) of Enterobacterales were multi-drug resistant. The diversity of plasmids carried by ESBL isolates was remarkable, including IncF, K and P. This study highlights the potential role of wild ungulates as environmental reservoirs of CTX-M ESBL-producing E. coli and in the spill-over of AMR bacteria and their determinants. Our findings suggest that wild ungulates are useful as strategic sentinel species of AMR in terrestrial environments, especially in response to potential sources of anthropogenic pollution, providing early warning of potential risks to human, animal and environmental health. | 2022 | 35489528 |
| 1388 | 6 | 0.9730 | Snapshot Study of Whole Genome Sequences of Escherichia coli from Healthy Companion Animals, Livestock, Wildlife, Humans and Food in Italy. Animals, humans and food are all interconnected sources of antimicrobial resistance (AMR), allowing extensive and rapid exchange of AMR bacteria and genes. Whole genome sequencing (WGS) was used to characterize 279 Escherichia coli isolates obtained from animals (livestock, companion animals, wildlife), food and humans in Italy. E. coli predominantly belonged to commensal phylogroups B1 (46.6%) and A (29%) using the original Clermont criteria. One hundred and thirty-six sequence types (STs) were observed, including different pandemic (ST69, ST95, ST131) and emerging (ST10, ST23, ST58, ST117, ST405, ST648) extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Eight antimicrobial resistance genes (ARGs) and five chromosomal mutations conferring resistance to highest priority critically important antimicrobials (HP-CIAs) were identified (qnrS1, qnrB19, mcr-1, bla(CTX-M1,15,55), bla(CMY-2), gyrA/parC/parE, ampC and pmrB). Twenty-two class 1 integron arrangements in 34 strains were characterized and 11 ARGs were designated as intI1 related gene cassettes (aadA1, aadA2, aadA5, aad23, ant2_Ia, dfrA1, dfrA7, dfrA14, dfrA12, dfrA17, cmlA1). Notably, most intI1 positive strains belonged to rabbit (38%) and poultry (24%) sources. Three rabbit samples carried the mcr-1 colistin resistance gene in association with IS6 family insertion elements. Poultry meat harbored some of the most prominent ExPEC STs, including ST131, ST69, ST10, ST23, and ST117. Wildlife showed a high average number of virulence-associated genes (VAGs) (mean = 10), mostly associated with an ExPEC pathotype and some predominant ExPEC lineages (ST23, ST117, ST648) were identified. | 2020 | 33172096 |
| 2632 | 7 | 0.9730 | Environmental Spread of Extended Spectrum Beta-Lactamase (ESBL) Producing Escherichia coli and ESBL Genes among Children and Domestic Animals in Ecuador. BACKGROUND: There is a significant gap in our understanding of the sources of multidrug-resistant bacteria and resistance genes in community settings where human-animal interfaces exist. OBJECTIVES: This study characterized the relationship of third-generation cephalosporin-resistant Escherichia coli (3GCR-EC) isolated from animal feces in the environment and child feces based on phenotypic antimicrobial resistance (AMR) and whole genome sequencing (WGS). METHODS: We examined 3GCR-EC isolated from environmental fecal samples of domestic animals and child fecal samples in Ecuador. We analyzed phenotypic and genotypic AMR, as well as clonal relationships (CRs) based on pairwise single-nucleotide polymorphisms (SNPs) analysis of 3GCR-EC core genomes. CRs were defined as isolates with fewer than 100 different SNPs. RESULTS: A total of 264 3GCR-EC isolates from children (n = 21), dogs (n = 20), and chickens (n = 18) living in the same region of Quito, Ecuador, were identified. We detected 16 CRs total, which were found between 7 children and 5 domestic animals (5 CRs) and between 19 domestic animals (11 CRs). We observed that several clonally related 3GCR-EC isolates had acquired different plasmids and AMR genes. Most CRs were observed in different homes (n = 14) at relatively large distances. Isolates from children and domestic animals shared the same blaCTX-M allelic variants, and the most prevalent were blaCTX-M-55 and blaCTX-M-65, which were found in isolates from children, dogs, and chickens. DISCUSSION: This study provides evidence of highly dynamic horizontal transfer of AMR genes and mobile genetic elements (MGEs) in the E. coli community and shows that some 3GCR-EC and (extended-spectrum β-lactamase) ESBL genes may have moved relatively large distances among domestic animals and children in semirural communities near Quito, Ecuador. Child-animal contact and the presence of domestic animal feces in the environment potentially serve as important sources of drug-resistant bacteria and ESBL genes. https://doi.org/10.1289/EHP7729. | 2021 | 33617318 |
| 1387 | 8 | 0.9728 | Whole-Genome Characterisation of ESBL-Producing E. coli Isolated from Drinking Water and Dog Faeces from Rural Andean Households in Peru. E. coli that produce extended-spectrum β-lactamases (ESBLs) are major multidrug-resistant bacteria. In Peru, only a few reports have characterised the whole genome of ESBL enterobacteria. We aimed to confirm the identity and antimicrobial resistance (AMR) profile of two ESBL isolates from dog faeces and drinking water of rural Andean households and determine serotype, phylogroup, sequence type (ST)/clonal complex (CC), pathogenicity, virulence genes, ESBL genes, and their plasmids. To confirm the identity and AMR profiles, we used the VITEK(®)2 system. Whole-genome sequencing (WGS) and bioinformatics analysis were performed subsequently. Both isolates were identified as E. coli, with serotypes -:H46 and O9:H10, phylogroups E and A, and ST/CC 5259/- and 227/10, respectively. The isolates were ESBL-producing, carbapenem-resistant, and not harbouring carbapenemase-encoding genes. Isolate 1143 ST5259 harboured the astA gene, encoding the EAST(1) heat-stable toxin. Both genomes carried ESBL genes (bla(EC-15), bla(CTX-M-8), and bla(CTX-M-55)). Nine plasmids were detected, namely IncR, IncFIC(FII), IncI, IncFIB(AP001918), Col(pHAD28), IncFII, IncFII(pHN7A8), IncI1, and IncFIB(AP001918). Finding these potentially pathogenic bacteria is worrisome given their sources and highlights the importance of One-Health research efforts in remote Andean communities. | 2022 | 35625336 |
| 1749 | 9 | 0.9728 | The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2021-2022. This report by the European Food Safety Authority and the European Centre for Disease prevention and Control, provides an overview of the main findings of the 2021-2022 harmonised Antimicrobial Resistance (AMR) monitoring in Salmonella spp., Campylobacter jejuni and C. coli from humans and food-producing animals (broilers, laying hens and fattening turkeys, fattening pigs and cattle under one year of age) and relevant meat thereof. For animals and meat thereof, AMR data on indicator commensal Escherichia coli, presumptive extended-spectrum beta-lactamases (ESBL)-/AmpC beta-lactamases (AmpC)-/carbapenemase (CP)-producing E. coli, and the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) are also analysed. Generally, resistance levels differed greatly between reporting countries and antimicrobials. Resistance to commonly used antimicrobials was frequently found in Salmonella and Campylobacter isolates from humans and animals. In humans, increasing trends in resistance to one of two critically antimicrobials (CIA) for treatment was observed in poultry-associated Salmonella serovars and Campylobacter, in at least half of the reporting countries. Combined resistance to CIA was however observed at low levels except in some Salmonella serovars and in C. coli from humans and animals in some countries. While CP-producing Salmonella isolates were not detected in animals in 2021-2022, nor in 2021 for human cases, in 2022 five human cases of CP-producing Salmonella were reported (four harbouring bla (OXA-48) or bla (OXA-48-like) genes). The reporting of a number of CP-producing E. coli isolates (harbouring bla (OXA-48), bla (OXA-181), bla (NDM-5) and bla (VIM-1) genes) in fattening pigs, cattle under 1 year of age, poultry and meat thereof by a limited number of MSs (5) in 2021 and 2022, requires a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC-producers in E. coli) showed an encouraging progress in reducing AMR in food-producing animals in several EU MSs over the last 7 years. | 2024 | 38419967 |
| 1391 | 10 | 0.9727 | Faecal carriage of extended-spectrum β-lactamase-producing and AmpC β-lactamase-producing bacteria among Danish army recruits. During May and June 2008, 84 Danish army recruits were tested for faecal carriage of extended-spectrum β-lactamase (ESBL)-producing and AmpC β-lactamase-producing bacteria. Three ESBL-producing (CTX-M-14a) Escherichia coli isolates, two AmpC-producing (CMY-2) E. coli isolates and one AmpC-producing (CMY-34) Citrobacter freundii isolate were detected. Two of the CTX-M-14a E. coli isolates had similar pulsed-field gel electrophoresis and multilocus sequence typing profiles, indicating the same origin or transmission between the two army recruits. The bla(CTX-M-14a) genes were transferable to an E. coli recipient. These commensal bacteria therefore constitute a reservoir of resistance genes that can be transferred to other pathogenic bacteria in the intestine. | 2011 | 20718802 |
| 1496 | 11 | 0.9727 | Plasmid-Mediated Co-Occurrence of mcr-1.1 in Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli Isolated From the Indigenous Seminomadic Community in Malaysia. The growing prevalence of commensal antibiotic resistant Escherichia coli poses a significant concern for the global spread of antibiotic resistance. Stool samples (n = 35) from a seminomadic indigenous community in Malaysia, the Jehai, were screened for multidrug-resistant bacteria, specifically the extended-spectrum β-lactamase (ESBL) producers. Subsequently, whole-genome sequencing was used to provide genomic insights into eight ESBL-producing E. coli that colonised eight individuals. The ESBL E. coli isolates carry resistance genes from various antibiotic classes such as the β-lactams (bla (TEM), bla (CTX-M-15) and bla (CTX-M-55)), quinolones (gyrA, qnrS and qnrS1) and aminoglycosides (aph(3')-Ia, aph(6)-Id and aac(3)-IId). Three concerning convergence of ESBL, colistin and metal resistance determinants, with three plasmids from H-type lineage harbouring bla (CTX-M) and mcr-1.1 genes were identified. Using the Oxford Nanopore Technology (ONT) Native Barcoding Kit (SQK-NBD114.24) in conjunction with the R10.4.1 flow cell, which achieved an average read accuracy (Q > 10) of 99.84%, we further characterised the mcr-1.1-bearing plasmids, ranging in size from 25 to 28 kb, from three strains of E. coli. This report represents the first whole genome analysis of multidrug-resistant bacteria, specifically those resistant to colistin, found within the indigenous population in Malaysia. It strongly indicates that the pertinent issue of colistin resistance in the country is far more significant than previously estimated. | 2024 | 40303148 |
| 1081 | 12 | 0.9724 | Chromosome-Borne CTX-M-65 Extended-Spectrum β-Lactamase-Producing Salmonella enterica Serovar Infantis, Taiwan. A CTX-M-65‒producing Salmonella enterica serovar Infantis clone, probably originating in Latin America and initially reported in the United States, has emerged in Taiwan. Chicken meat is the most likely primary carrier. Four of the 9 drug resistance genes have integrated into the chromosome: bla(CTX-M-65), tet(A), sul1, and aadA1. | 2023 | 37486207 |
| 942 | 13 | 0.9724 | Occurrence of multidrug resistant Gram-negative bacteria and resistance genes in semi-aquatic wildlife - Trachemys scripta, Neovison vison and Lutra lutra - as sentinels of environmental health. Emergence of antimicrobial resistance (AMR) in bacterial pathogens has been recognized as a major public health concern worldwide. In the present study, antimicrobial resistant Gram-negative bacteria (AMRGNB) and AMR genes were assessed in semi-aquatic wild animals from a highly populated and intensive farming region of Spain, Catalonia. Cloacal/rectal swab samples were collected from 241 animals coming from invasive species Trachemys scripta (n = 91) and Neovison vison (n = 131), and endangered-protected species Lutra lutra (n = 19). Accordingly, 133 (55.2%) isolates were identified as AMRGNB. Escherichia coli and Pseudomonas fluorescens were among the bacteria most frequently isolated in all animal species, but other nosocomial agents such as Klebsiella pneumoniae, Salmonella spp. or Citrobacter freundii, were also prevalent. The phenotypic susceptibility testing showed the highest resistance to β-lactams (91%). Molecular analysis showed 25.3% of turtles (15.4% ESBL/Ampc genes), 21% of Eurasian otters (10.5% ESBL/Ampc genes) and 14.5% of American minks (8.4% ESBL/Ampc genes) were positive to AMR genes. The genotyping frequency was tetM (20.6%), blaCMY-2 (13%), ermB (6.1%), blaCMY-1 (4.6%), blaCTX-M-15 (3.1%) and mcr-4 (0.8%). Turtles had a larger prevalence of AMRGNB and AMR genes than mustelids, but American mink carried mcr-4 colistin-resistance gene. Moreover, cluster analysis of AMR gene distribution revealed that an ESBL/AmpC cluster in a highly populated area comprising big metropolitan regions, and another tetM/emrB cluster in an expended area with highly intensive livestock production. Although the mcr-4 positive case was not included in those clusters, that case was found in a county with a high pig farm density. In conclusion, semi-aquatic wild animals are a good sentinel for environmental contamination with AMRGNB and AMR genes. Therefore, One Health Approach is urgently needed in highly populated regions, and with intensive livestock production like Catalonia. | 2022 | 35341839 |
| 1099 | 14 | 0.9723 | Prevalence of Beta-Lactam and Quinolone/Fluoroquinolone Resistance in Enterobacteriaceae From Dogs in France and Spain-Characterization of ESBL/pAmpC Isolates, Genes, and Conjugative Plasmids. Quantitative data on fecal shedding of antimicrobial-resistant bacteria are crucial to assess the risk of transmission from dogs to humans. Our first objective was to investigate the prevalence of quinolone/fluoroquinolone-resistant and beta-lactam-resistant Enterobacteriaceae in dogs in France and Spain. Due to the particular concern about possible transmission of extended-spectrum cephalosporin (ESC)-resistant isolates from dogs to their owners, we characterized the ESBL/pAmpC producers collected from dogs. Rectal swabs from 188 dogs, without signs of diarrhea and that had not received antimicrobials for 4 weeks before the study, were quantified for total and resistant Enterobacteriaceae on selective media alone or containing relevant antibiotic concentrations. Information that might explain antibiotic resistance was collected for each dog. Extended-spectrum cephalosporin-resistant isolates were subjected to bacterial species identification (API20E), genetic lineage characterization (MLST), ESBL/pAmpC genes identification (sequencing), and plasmid characterization (pMLST). Regarding beta-lactam resistance, amoxicillin- (AMX) and cefotaxime- (CTX) resistant Enterobacteriaceae were detected in 70 and 18% of the dogs, respectively, whereas for quinolone/fluoroquinolone-resistance, Nalidixic acid- (NAL) and ciprofloxacin- (CIP) resistant Enterobacteriaceae were detected in 36 and 18% of the dogs, respectively. Medical rather than preventive consultation was a risk marker for the presence of NAL and CIP resistance. CTX resistance was mainly due to a combination of specific ESBL/pAmpC genes and particular conjugative plasmids already identified in human patients: bla (CTX-M-1)/IncI1/ST3 (n = 4), bla (CMY-2)/IncI1/ST12 (n = 2), and bla (CTX-M-15)/IncI1/ST31 (n = 1). bla (SHV-12) (n = 3) was detected in various plasmid lineages (InI1/ST3, IncI1/ST26, and IncFII). ESBL/pAmpC plasmids were located in different genetic lineages of E. coli, with the exception of two strains in France (ST6998) and two in Spain (ST602). Our study highlights dogs as a potential source of Q/FQ-resistant and ESBL/pAmpC-producing bacteria that might further disseminate to humans, and notably a serious risk of future acquisition of CTX-M-1 and CMY-2 plasmids by the owners of dogs. | 2019 | 31544108 |
| 1797 | 15 | 0.9723 | Genetic Characteristics of the Transmissible Locus of Stress Tolerance (tLST) and tLST Harboring Escherichia coli as Revealed by Large-Scale Genomic Analysis. The transmissible locus of stress tolerance (tLST) confers resistance to multiple stresses in E. coli. Utilizing 18,959 E. coli genomes available in the NCBI database, we investigated the prevalence, phylogenetic distribution, and configuration patterns of tLST, and correlations between tLST, and virulence and antimicrobial resistance (AMR) genes in E. coli. Four tLST variants were found in 2.7% of E. coli, with the most prevalent (77.1%) variant being tLST1 followed by tLST2 (8.3%), tLST3b (8.3%) and tLST3a (6.3%). The majority (93%) of those tLST were in E. coli belonging to phylogroup A in which the prevalence was 10.4%. tLST was also found in phylogroup B1 (0.5%) and C (0.5%) but not found in B2 or D-G. An additional 1% of the 18,959 E. coli genomes harbored tLST fragments to various extent. Phylogenetic analysis revealed both intra- and interspecies transmission of both chromosomal and plasmid-borne tLST, with E. coli showing a preference of chromosomal over plasmid-borne tLST. The presence of tLST and virulence genes in E. coli was overall negatively correlated, but tLST was found in all genomes of a subgroup of enterotoxigenic E. coli (ST2332). Of note, no Shiga toxin-producing E. coli (n = 3,492) harbored tLST. The prevalence of tLST and AMR genes showed different temporal trends over the period 1985 to 2019. However, a substantial fraction of tLST positive E. coli harbor AMR genes, posing a threat to public health. In conclusion, this study improves our understanding of the genetic characteristics of tLST and E. coli harboring tLST. IMPORTANCE This study, through a large-scale genomic analysis, demonstrated that the genomic island tLST related to multiple stress resistance (such as extreme heat resistance and oxidative stress tolerance) in E. coli is differentially present in subgroups of E. coli and is strongly associated with certain phylogenetic background of the host strain. The study also shows the transmission mechanisms of tLST in E. coli and other bacterial species. The overall negative association of tLST, and virulence genes and antimicrobial (AMR) genes suggest the selective pressures for the acquisition and transmission of these traits likely differ. Even so, the high prevalence of tLST in the enterotoxigenic E. coli clone ST2332 and co-occurrence of tLST and AMR genes in E. coli are concerning. Thus, the findings better our understanding of tLST evolution and provide information for risk assessment of tLST harboring bacteria. | 2022 | 35285715 |
| 939 | 16 | 0.9722 | Colonization of residents and staff of a long-term-care facility and adjacent acute-care hospital geriatric unit by multiresistant bacteria. Long-term-care facilities (LTCFs) are reservoirs of resistant bacteria. We undertook a point-prevalence survey and risk factor analysis for specific resistance types among residents and staff of a Bolzano LTCF and among geriatric unit patients in the associated acute-care hospital. Urine samples and rectal, inguinal, oropharyngeal and nasal swabs were plated on chromogenic agar; isolates were typed by pulsed-field gel electrophoresis; resistance genes and links to insertion sequences were sought by PCR; plasmids were analysed by PCR, restriction fragment length polymorphism and incompatibility grouping. Demographic data were collected. Of the LTCF residents, 74.8% were colonized with ≥1 resistant organism, 64% with extended-spectrum β-lactamase (ESBL) producers, 38.7% with methicillin-resistant Staphylococcus aureus (MRSA), 6.3% with metallo-β-lactamase (MBL) producers, and 2.7% with vancomycin-resistant enterococci. Corresponding rates for LTCF staff were 27.5%, 14.5%, 14.5%, 1.5% and 0%, respectively. Colonization frequencies for geriatric unit patients were lower than for those in the LTCF. Both clonal spread and plasmid transfer were implicated in the dissemination of MBL producers that harboured IncN plasmids bearing bla(VIM-1), qnrS, and bla(SHV-12). Most (44/45) ESBL-producing Escherichia coli isolates had bla(CTX-M) genes of group 1; a few had bla(CTX-M) genes of group 9 or bla(SHV-5); those with bla(CTX-M-15) or bla(SHV-5) were clonal. Risk factors for colonization of LTCF residents with resistant bacteria included age ≥86 years, antibiotic treatment in the previous 3 months, indwelling devices, chronic obstructive pulmonary disease, physical disability, and the particular LTCF unit; those for geriatric unit patients were age and dementia. In conclusion, ESBL-producing and MBL-producing Enterobacteriaceae and MRSA were prevalent among the LTCF residents and staff, but less so in the hospital geriatric unit. Education of LTCF employees and better infection control are proposed to minimize the spread of resistant bacteria in the facility. | 2010 | 19686277 |
| 960 | 17 | 0.9722 | Beta-lactamase genes in bacteria from food animals, retail meat, and human surveillance programs in the United States from 2002 to 2021. The spread of beta-lactamase-producing bacteria is a global public-health concern. This study aimed to explore the distribution of beta-lactamases reported in three sampling sources (cecal, retail meat, and human) collected as part of integrated surveillance in the United States. We retrieved and analyzed data from the United States National Antimicrobial Resistance Monitoring Systems (NARMS) from 2002 to 2021. A total of 115 beta-lactamase genes were detected in E. coli, Salmonella enterica, Campylobacter, Shigella and Vibrio: including 35 genes from cecal isolates, 32 genes from the retail meat isolates, and 104 genes from the human isolates. Three genes in E. coli (bla(CMY-2,)bla(TEM-1A), and bla(TEM-1B)), 6 genes in Salmonella enterica (bla(CARB-2), bla(CMY-2), bla(CTXM-65), bla(TEM-1A), bla(TEM-1B), and bla(HERA-3)), and 2 genes in Campylobacter spp. (bla(OXA-61) and bla(OXA-449)) have been detected across food animals (cattle, chicken, swine, and turkey) and humans over the study period. bla(CTXM-55) has been detected in E. coli isolates from the four food animal sources while bla(CTXM-15) and bla(CTXM-27) were found only in cattle and swine. In Salmonella enterica, bla(CTXM-2), bla(CTXM-9), bla(CTXM-14), bla(CTXM-15), bla(CTXM-27), bla(CTXM-55), and bla(NDM-1) were only detected among human isolates. bla(OXAs) and bla(CARB) were bacteria-specific and the only beta-lactamase genes detected in Campylobacter spp. and Vibrio spp respectively. The proportions of beta-lactamase genes detected varies from bacteria to bacteria. This study provided insights on the beta-lactamase genes detected in bacteria in food animals and humans in the United States. This is necessary for better understanding the molecular epidemiology of clinically important beta-lactamases in one health interface. | 2024 | 38325128 |
| 2640 | 18 | 0.9722 | Enterobacteriaceae Harboring AmpC (bla(CMY)) and ESBL (bla(CTX-M)) in Migratory and Nonmigratory Wild Songbird Populations on Ohio Dairies. Extended-spectrum β-lactamases (ESBLs) confer bacterial resistance to critically important antimicrobials, including extended-spectrum cephalosporins (ESCs). Livestock are important reservoirs for the zoonotic food-borne transmission of ESC-resistant enteric bacteria. Our aim is to describe the potential role of migratory and resident wild birds in the epidemiology of ESBL-mediated bacterial resistance on dairy farms. Using mist nets, we sampled wild migratory and resident birds either immediately adjacent to or 600 ft away from free-stall barns on three Ohio dairy farms during the 2014 and 2015 spring migrations. Individual swabs were used to obtain both a cloacal and external surface swab from each bird. Samples were inoculated into MacConkey broth containing cefotaxime then inoculated onto MacConkey agar with cefoxitin, cefepime, or meropenem to identify the bla(CMY,) bla(CTX-M,) and carbapenemase phenotypes, respectively. Six hundred twenty-three birds were sampled, 19 (3.0%) of which harbored bacteria with bla(CMY) and 32 (5.1%) harbored bacteria with bla(CTX-M) from either their cloacal sample or from their external swab. There was no difference in the prevalence of either gene between migratory and resident birds. Prevalence of bla(CMY) and bla(CTX-M) was higher among birds sampled immediately outside the barns compared with those sampled 600 ft away. Our results suggest that wild birds can serve as mechanical and/or biological vectors for Enterobacteriaceae with resistance to ESCs. Birds live in close contact with dairy cows and their feed, therefore, transmission locally between farms is possible. Finding a similar prevalence in migratory and nonmigratory birds suggests the potential for regional and intercontinental movement of these resistance genes via birds. | 2017 | 28165890 |
| 1238 | 19 | 0.9721 | Lineages, Virulence Gene Associated and Integrons among Extended Spectrum β-Lactamase (ESBL) and CMY-2 Producing Enterobacteriaceae from Bovine Mastitis, in Tunisia. Extended Spectrum Beta-Lactamase (ESBL) Enterobacteriaceae are becoming widespread enzymes in food-producing animals worldwide. Escherichia coli and Klebseilla pneumoniae are two of the most significant pathogens causing mastitis. Our study focused on the characterization of the genetic support of ESBL/pAmpC and antibiotic resistance mechanisms in cefotaxime-resistant (CTXR) and susceptible (CTXS) Enterobacteriaceae isolates, recovered from bovine mastitis in Tunisia, as well as the analyses of their clonal lineage and virulence-associated genes. The study was carried out on 17 ESBL/pAmpC E. coli and K. pneumoniae and 50 CTXS E. coli. Detection of resistance genes and clonal diversity was performed by PCR amplification and sequencing. The following β-lactamase genes were detected: blaCTX-M-15 (n = 6), blaCTX-M-15 + blaOXA-1 (2), bla CTX-M-15 + blaOXA-1 + blaTEM-1b (2), blaCTX-M-15 + blaTEM-1b (4), blaCMY-2 (3). The MLST showed the following STs: ST405 (n = 4 strains); ST58 (n = 3); ST155 (n = 3); ST471 (n = 2); and ST101 (n = 2). ST399 (n = 1) and ST617 (n = 1) were identified in p(AmpC) E. coli producer strains. The phylogroups A and B1 were the most detected ones, followed by the pathogenic phylogroup B2 that harbored the shigatoxin genes stx1/stx2, associated with the cnf, fimA, and aer virulence factors. The qnrA/qnrB, aac(6′)-Ib-cr genes and integrons class 1 with different gene cassettes were detected amongst these CTXR/S isolated strains. The presence of different genetic lineages, associated with resistance and virulence genes in pathogenic bacteria in dairy farms, may complicate antibiotic therapies and pose a potential risk to public health. | 2022 | 36015067 |