VSS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
787600.9351Sulfamethoxazole impact on pollutant removal and microbial community of aerobic granular sludge with filamentous bacteria. In this study, sulfamethoxazole (SMX) was employed to investigate its impact on the process of aerobic granule sludge with filamentous bacteria (FAGS). FAGS has shown great tolerance ability. FAGS in a continuous flow reactor (CFR) could keep stable with 2 μg/L of SMX addition during long-term operation. The NH(4)(+), chemical oxygen demand (COD), and SMX removal efficiencies kept higher than 80%, 85%, and 80%, respectively. Both adsorption and biodegradation play important roles in SMX removal for FAGS. The extracellular polymeric substances (EPS) might play important role in SMX removal and FAGS tolerance to SMX. The EPS content increased from 157.84 mg/g VSS to 328.22 mg/g VSS with SMX addition. SMX has slightly affected on microorganism community. A high abundance of Rhodobacter, Gemmobacter, and Sphaerotilus of FAGS may positively correlate to SMX. The SMX addition has led to the increase in the abundance of the four sulfonamide resistance genes in FAGS.202336871701
52310.9282Sulfide-carbonate-mineralized functional bacterial consortium for cadmium removal in flue gas. Sulfide-carbonate-mineralized functional bacterial consortium was constructed for flue gas cadmium biomineralization. A membrane biofilm reactor (MBfR) using the bacterial consortium containing sulfate reducing bacteria (SRB) and denitrifying bacteria (DNB) was investigated for flue gas cadmium (Cd) removal. Cadmium removal efficiency achieved 90%. The bacterial consortium containing Citrobacter, Desulfocurvus and Stappia were dominated for cadmium resistance-nitrate-sulfate reduction. Under flue gas cadmium stress, ten cadmium resistance genes (czcA, czcB, czcC, czcD, cadA, cadB, cadC, cueR, copZ, zntA), and seven genes related to sulfate reduction, increased in abundance; whereas others, nine genes related to denitrification, decreased, indicating that cadmium stress was advantageous to sulfate reduction in the competition with denitrification. A bacterial consortium could capable of simultaneously cadmium resistance, sulfate reduction and denitrification. Microbial induced carbonate precipitation (MICP) and biological adsorption process would gradually yield to sulfide-mineralized process. Flue gas cadmium could transform to Cd-EPS, cadmium carbonate (CdCO(3)) and cadmium sulfide (CdS) bioprecipitate. The functional bacterial consortium was an efficient and eco-friendly bifunctional bacterial consortium for sulfide-carbonate-mineralized of cadmium. This provides a green and low-carbon advanced treatment technology using sulfide-carbonate-mineralized functional bacterial consortium for the removal of cadmium or other hazardous heavy metal contaminants in flue gas.202439019186
811220.9274Fate of antibiotic resistance bacteria and genes during enhanced anaerobic digestion of sewage sludge by microwave pretreatment. The fate of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) were investigated during the sludge anaerobic digestion (AD) with microwave-acid (MW-H), microwave (MW) and microwave-H2O2-alkaline (MW-H2O2) pretreatments. Results showed that combined MW pretreatment especially for the MW-H pretreatment could efficiently reduce the ARB concentration, and most ARG concentrations tended to attenuate during the pretreatment. The subsequent AD showed evident removal of the ARB, but most ARGs were enriched after AD. Only the concentration of tetX kept continuous declination during the whole sludge treatment. The total ARGs concentration showed significant correlation with 16S rRNA during the pretreatment and AD. Compared with unpretreated sludge, the AD of MW and MW-H2O2 pretreated sludge presented slightly better ARB and ARGs reduction efficiency.201626970692
787730.9272External circuit loading mode regulates anode biofilm electrochemistry and pollutants removal in microbial fuel cells. This study investigated the effects of different external circuit loading mode on pollutants removal and power generation in microbial fuel cells (MFC). The results indicated that MFC exhibited distinct characteristics of higher maximum power density (P(max)) (named MFC-HP) and lower P(max) (named MFC-LP). And the capacitive properties of bioanodes may affect anodic electrochemistry. Reducing external load to align with the internal resistance increased P(max) of MFC-LP by 54.47 %, without no obvious effect on MFC-HP. However, intermittent external resistance loading (IER) mitigated the biotoxic effects of sulfamethoxazole (SMX) (a persistent organic pollutant) on chemical oxygen demand (COD) and NH(4)(+)-N removal and maintained high P(max) (424.33 mW/m(2)) in MFC-HP. Meanwhile, IER mode enriched electrochemically active bacteria (EAB) and environmental adaptive bacteria Advenella, which may reduce antibiotic resistance genes (ARGs) accumulation. This study suggested that the external circuit control can be effective means to regulate electrochemical characteristics and pollutants removal performance of MFC.202439153696
811340.9270Fate of antibiotic resistance genes in mesophilic and thermophilic anaerobic digestion of chemically enhanced primary treatment (CEPT) sludge. Anaerobic digestion (AD) of chemically enhanced primary treatment (CEPT) sludge and non-CEPT (conventional sedimentation) sludge were comparatively operated under mesophilic and thermophilic conditions. The highest methane yield (692.46±0.46mL CH(4)/g VS(removed) in CEPT sludge) was observed in mesophilic AD of CEPT sludge. Meanwhile, thermophilic conditions were more favorable for the removal of total antibiotic resistance genes (ARGs). In this study, no measurable difference in the fates and removal of ARGs and class 1 integrin-integrase gene (intI1) was observed between treated non-CEPT and CEPT sludge. However, redundancy analysis indicated that shifts in bacterial community were primarily accountable for the variations in ARGs and intI1. Network analysis further revealed potential host bacteria for ARGs and intI1.201728797965
810950.9264The fate of antibiotic resistance genes and their influential factors in swine manure composting with sepiolite as additive. Manures are storages for antibiotic resistance genes (ARGs) entering the environment. This study investigated the effects of adding sepiolite at 0%, 2.5%, 5%, and 7.5% (CK, T1, T2, and T3, respectively) on the fates of ARGs during composting. The relative abundances (RAs) of the total ARGs in CK and T3 decreased by 0.23 and 0.46 logs, respectively, after composting. The RAs of 10/11 ARGs decreased in CK, whereas they all decreased in T3. The reduction in the RA of the total mobile genetic elements (MGEs) was 1.26 times higher in T3 compared with CK after composting. The bacterial community accounted for 47.93% of the variation in the abundances of ARGs. Network analysis indicated that ARGs and MGEs shared potential host bacteria (PHB), and T3 controlled the transmission of ARGs by reducing the abundances of PHB. Composting with 7.5% sepiolite is an effective strategy for reducing the risk of ARGs proliferating.202235063626
774560.9261Iron-modified biochar boosts anaerobic digestion of sulfamethoxazole pharmaceutical wastewater: Performance and microbial mechanism. The accumulation of volatile fatty acids (VFAs) caused by antibiotic inhibition significantly reduces the treatment efficiency of sulfamethoxazole (SMX) wastewater. Few studies have been conducted to study the VFAs gradient metabolism of extracellular respiratory bacteria (ERB) and hydrogenotrophic methanogen (HM) under high-concentration sulfonamide antibiotics (SAs). And the effects of iron-modified biochar on antibiotics are unknown. Here, the iron-modified biochar was added to an anaerobic baffled reactor (ABR) to intensify the anaerobic digestion of SMX pharmaceutical wastewater. The results demonstrated that ERB and HM were developed after adding iron-modified biochar, promoting the degradation of butyric, propionic and acetic acids. The content of VFAs reduced from 1166.0 mg L(-1) to 291.5 mg L(-1). Therefore, chemical oxygen demand (COD) and SMX removal efficiency were improved by 22.76% and 36.51%, and methane production was enhanced by 6.19 times. Furthermore, the antibiotic resistance genes (ARGs) such as sul1, sul2, intl1 in effluent were decreased by 39.31%, 43.33%, 44.11%. AUTHM297 (18.07%), Methanobacterium (16.05%), Geobacter (6.05%) were enriched after enhancement. The net energy after enhancement was 0.7122 kWh m(-3). These results confirmed that ERB and HM were enriched via iron-modified biochar to achieve high efficiency of SMX wastewater treatment.202337030222
805470.9260Effects of nanoscale zero-valent iron on the performance and the fate of antibiotic resistance genes during thermophilic and mesophilic anaerobic digestion of food waste. The effects of nanoscale zero-valent iron (nZVI) on the performance of food waste anaerobic digestion and the fate of antibiotic resistance genes (ARGs) were investigated in thermophilic (TR) and mesophilic (MR) reactors. Results showed that nZVI enhanced biogas production and facilitated ARGs reduction. The maximum CH(4) production was 212.00 ± 4.77 ml/gVS with 5 g/L of nZVI in MR. The highest ARGs removal ratio was 86.64 ± 0.72% obtained in TR at nZVI of 2 g/L. nZVI corrosion products and their contribution on AD performance were analyzed. The abundance of tetracycline genes reduced significantly in nZVI amended digesters. Firmicutes, Chloroflexi, Proteobacteria and Spirochaetes showed significant positive correlations with various ARGs (p < 0.05) in MR and TR. Redundancy analysis indicated that microbial community was the main factor that influenced the fate of ARGs. nZVI changed microbial communities, with decreasing the abundance bacteria belonging to Firmicutes and resulting in the reduction of ARGs.201931505392
810580.9250Refluxing mature compost to replace bulking agents: A low-cost solution for suppressing antibiotic resistance genes rebound in sewage sludge composting. Antibiotic resistance genes (ARGs) rebounding during composting cooling phase is a critical bottleneck in composting technology that increased ARGs dissemination and application risk of compost products. In this study, mature compost (MR) was used as a substitute for rice husk (RH) to mitigate the rebound of ARGs and mobile genetic elements (MGEs) during the cooling phase of sewage sludge composting, and the relationship among ARGs, MGEs, bacterial community and environmental factors was investigated to explore the key factor influencing ARGs rebound. The results showed that aadD, blaCTX-M02, ermF, ermB, tetX and vanHB significantly increased 4.76-32.41 times, and the MGEs rebounded by 38.60% in the cooling phase of RH composting. Conversely, MR reduced aadD, tetM, ermF and ermB concentrations by 59.49-98.58%, and reduced the total abundance of ARGs in the compost product by 49.32% compared to RH, which significantly restrained ARGs rebound. MR promoted secondary high temperature inactivation of potential host bacteria, including Ornithinibacter, Rhizobiales and Caldicoprobacter, which could harbor aadE, blaCTX-M02, and blaVEB. It also reduced the abundance of lignocellulose degrading bacteria of Firmicutes, which were potential hosts of aadD, tetX, ermF and vanHB. Moreover, MR reduced moisture and increased oxidation reduction potential (ORP) that promoted aadE, tetQ, tetW abatement. Furthermore, MR reduced 97.36% of total MGEs including Tn916/1545, IS613, Tp614 and intI3, which alleviated ARGs horizontal transfer. Overall finding proposed mature compost reflux as bulking agent was a simple method to suppress ARGs rebound and horizontal transfer, improve ARGs removal and reduce composting plant cost.202539798649
804990.9249Microalgae simultaneously promote antibiotic removal and antibiotic resistance genes/bacteria attenuation in algal-bacterial granular sludge system. This study investigated the effects of microalgae growth on antibiotic removal and the attenuation of antibiotic resistance genes (ARGs)/ARGs host bacteria in algal-bacterial granular sludge (ABGS) system. In the presence of tetracycline (TC) and sulfadiazine (SDZ) mixture (2-4 mg/L), microalgae could grow on bacterial granular sludge (BGS) to form ABGS, with a chlorophyll-a content of 7.68-8.13 mg/g-VSS being achieved. The removal efficiencies of TC and SDZ by ABGS were as high as 79.0 % and 94.0 %, which were 4.3-5.0 % higher than those by BGS. Metagenomic analysis indicated that the relative abundances of TC/SDZ- related ARGs and mobile genetic elements (MGEs) in BGS were 56.1 % and 22.1 % higher than those in ABGS. A total of 26 ARGs were detected from the granules, and they were identified to associate with 46 host bacteria. 13 out of 26 ARGs and 13 out of 46 hosts were shared ARGs and hosts, respectively. The total relative abundance of host bacteria in BGS was 30.8 % higher than that in ABGS. Scenedesmus and Chlorella were the dominant microalgae that may reduce the diversity of ARGs hosts. Overall, ABGS is a promising biotechnology for antibiotic-containing wastewater treatment.202235777142
7881100.9247Bacterial community shift and antibiotics resistant genes analysis in response to biodegradation of oxytetracycline in dual graphene modified bioelectrode microbial fuel cell. This study explored the biodegradation mechanisms of oxytetracycline (OTC/O) and electrochemical characteristics from the perspective of bacterial community shift and OTC resistance genes in dual graphene modified bioelectrode microbial fuel cell (O-D-GM-BE MFC). In phylum level, Proteobacteria was accounted to 95.04% in O-GM-BA, Proteobacteria and Bacteroidetes were accounted to 59.13% and 20.52% in O-GM-BC, which were beneficial for extracellular electron transport (EET) process and OTC biodegradation. In genus level, the most dominant bacteria in O-GM-BA were Salmonella and Trabulsiella, accounting up to 83.04%, moreover, representative exoelectrogens (Geobacter) were enriched, which contributed to OTC biodegradation and electrochemical performances; abundant degrading bacteria (Moheibacter, Comamonas, Pseudomonas, Dechloromonas, Nitrospira, Methylomicrobium, Pseudorhodoferax, Thiobacillus, Mycobacterium) were enriched in O-GM-BC, which contributed to the maximum removal efficiency of OTC; coding resistance genes of efflux pump, ribosome protective protein and modifying or passivating were all found in O-GM-BE, and this explained the OTC removal mechanisms from gene level.201930640017
7940110.9247Microplastics affect the ammonia oxidation performance of aerobic granular sludge and enrich the intracellular and extracellular antibiotic resistance genes. Microplastics (MPs) and antibiotic resistance genes (ARGs), as emerging pollutants, are frequently detected in wastewater treatment plants, and their threats to the environment have received extensive attentions. However, the effects of MPs on the nitrification of aerobic granular sludge (AGS) and the spread patterns of intracellular and extracellular ARGs (iARGs and eARGs) in AGS were still unknown. In this study, the responses of AGS to the exposure of 1, 10 and 100 mg/L of typical MPs (polyvinyl chloride (PVC), polyamide (PA), polystyrene (PS) and polyethylene (PE)) and tetracycline were focused on in 3 L nitrifying sequencing batch reactors. 10 mg/L MPs decreased the nitrification function, but nitrification could recover. Furthermore, MPs inhibited ammonia-oxidizing bacteria and enriched nitrite-oxidizing bacteria, leading partial nitrification to losing stability. PVC, PA and PS stimulated the secretion of extracellular polymeric substances and reactive oxygen species. PE had less negative effect on AGS than PVC, PA and PS. The abundances of iARGs and eARGs (tetW, tetE and intI1) increased significantly and the intracellular and extracellular microbial communities obviously shifted in AGS system under MPs stress. Potential pathogenic bacteria might be the common hosts of iARGs and eARGs in AGS system and were enriched in AGS and MPs biofilms.202133387747
8050120.9243Effects of antibiotics on corncob supported solid-phase denitrification: Denitrification and antibiotics removal performance, mechanism, and antibiotic resistance genes. Solid-phase denitrification (SPD) has been used in wastewater treatment plant effluent to enhance nitrate removal, and antibiotics co-existing in the effluent is a common environmental problem. In this study, it was systematically investigated the effect of single trace sulfamethoxazole (SMX)/trimethoprim (TMP) and their mixture on microbial denitrification performance, the antibiotics removal, and antibiotics resistance genes (ARGs) in corncob supported SPD system. The average denitrification rate was improved by 46.90% or 61.09% with single 50 µg/L SMX or TMP, while there was no significant inhibition with mixed SMX and TMP. The abundance of dominant denitrifiers (Comamonadaceae family and Azospia) and fermentation bacteria (Ancalomicrobium) were consistent with the denitrification performance of different antibiotics groups. Single SMX and TMP achieved relatively higher denitrification gene and enzyme abundance. Mixed SMX and TMP improved the denitrification gene copies, but they reduced the key denitrification enzymes except for EC 1.7.7.2. Additionally, the removal efficiency of TMP (56.70% ± 3.18%) was higher than that of SMX (25.44% ± 2.62%) in single antibiotic group, and the existence of other antibiotics (i.e. SMX or TMP) had no significant impact on the TMP or SMX removal performance. Biodegradation was the main removal mechanism of SMX and TMP, while sludge and corncob adsorption contributed a little to their removal. SMX had the risk of sulfanilamide resistance genes (SRGs) dissemination. Furthermore, network analysis indicated that Niveibacterium and Bradyrhizobium were the potential hosts of SRGs, which promoted the horizontal transmission of ARGs.202337032040
7886130.9241Resistance of anammox granular sludge to copper nanoparticles and oxytetracycline and restoration of performance. Nanoparticles and antibiotics, the two most frequently detected emerging pollutants from different wastewater sources, are eventually discharged into wastewater treatment plants. In this study, the widely used materials CuNPs and oxytetracycline (OTC) were selected as target pollutants to investigate their joint effects on anaerobic ammonium oxidation (anammox). The results indicated that the environmental concentration slightly inhibited the performance of the reactors, while the performance rapidly deteriorated within a week under high-level combined shocks (5.0 mg L(-1) CuNPs and 2.0 mg L(-1) OTC). After the second shock (2.5 mg L(-1) CuNPs and 2.0 mg L(-1) OTC), the resistance of anammox bacteria was enhanced, with an elevated relative abundance of Candidatus Kuenenia and absolute abundance of hzsA, nirS, and hdh. Moreover, the extracellular polymeric substance (EPS) content and specific anammox activity (SAA) showed corresponding changes. Improved sludge resistance was observed with increasing CuNP and OTC doses, which accelerated the recovery of performance.202032244076
7747140.9238Hydrothermal pre-treatment followed by anaerobic digestion for the removal of tylosin and antibiotic resistance agents from poultry litter. Hydrothermal pretreatment (HPT) followed by anaerobic digestion (AD) is an alternative for harvesting energy and removing organic contaminants from sewage sludge and animal manure. This study investigated the use, in an energetically sustainable way, of HPT and AD, alone or combined, to produce methane and remove tylosin and antimicrobial resistance genes (ARG) from poultry litter (PL). The results showed that HPT at 80 °C (HPT80), followed by single-stage AD (AD-1S), led to the production of 517.9 ± 4.7 NL CH(4) kg VS(-1), resulting in 0.11 kWh kg PL(-1) of electrical energy and 0.75 MJ kg PL(-1) of thermal energy, thus supplying 33.6% of the energy spent on burning firewood at a typical farm. In this best-case scenario, the use of HPT alone reduced tylosin concentration from PL by 23.6%, while the process involving HPT followed by AD-1S led to the removal of 91.6% of such antibiotic. The combined process (HPT80 + AD-1S), in addition to contributing to reduce the absolute and relative abundances of ARG ermB (2.13 logs), intI1 (0.39 logs), sul1 (0.63 logs), and tetA (0.74 logs), led to a significant removal in the relative abundance of tylosin-resistant bacteria present in the poultry litter.202336648713
7888150.9238Microecology of aerobic denitrification system construction driven by cyclic stress of sulfamethoxazole. The construction of aerobic denitrification (AD) systems in an antibiotic-stressed environment is a serious challenge. This study investigated strategy of cyclic stress with concentration gradient (5-30 mg/L) of sulfamethoxazole (SMX) in a sequencing batch reactor (SBR), to achieve operation of AD. Total nitrogen removal efficiency of system increased from about 10 % to 95 %. Original response of abundant-rare genera to antibiotics was changed by SMX stress, particularly conditionally rare or abundant taxa (CRAT). AD process depends on synergistic effect of heterotrophic nitrifying aerobic denitrification bacteria (Paracoccus, Thauera, Hypomicrobium, etc). AmoABC, napA, and nirK were functionally co-expressed with multiple antibiotic resistance genes (ARGs) (acrR, ereAB, and mdtO), facilitating AD process. ARGs and TCA cycling synergistically enhance the antioxidant and electron transport capacities of AD process. Antibiotic efflux pump mechanism played an important role in operation of AD. The study provides strong support for regulating activated sludge to achieve in situ AD function.202438710419
7883160.9237Anammox biofilm system under the stress of Hg(II): Nitrogen removal performance, microbial community dynamic and resistance genes expression. The existence of heavy metals in wastewater has obtained more attention due to its high toxicity and non-degradability. In this study, we investigated the changes of anaerobic ammonium oxidation (Anammox) system under long-term invasion of Hg(Ⅱ). The results indicated that the total nitrogen removal efficiency (TNRE) dropped to around 55 % as Hg(Ⅱ) concentration went up to 20 mg L(-1). But the functional bacteria rapidly developed some resistant abilities and maintained a stable TNRE of 65 % till the end of test. The maximum relative expression fold change of merA, merB, merD and merR were 468.8476, 23.7383, 5.0321 and 15.2514 times, respectively. The high positive correlation between the expression abundance of metal resistance genes and the concentrations of Hg(Ⅱ) revealed the resistant mechanisms of microorganisms to heavy metals. Moreover, the protective strategy based on extracellular polymeric substances also contributed to the stability of Anammox system.202032315795
7922170.9237Simultaneous removal and high tolerance of norfloxacin with electricity generation in microbial fuel cell and its antibiotic resistance genes quantification. Norfloxacin (NFLX) is a synthetic antibiotic widely used in the treatment of infectious diseases. In this work, the performance of microbial fuel cells (MFCs) toward NFLX degradation, electricity production and the antibiotics resistances genes (ARGs) generation was investigated. NFLX degradation efficiency and COD removal reached 65.5% and 94.5% respectively. The increase in NFLX concentration (128 mg/L) had no significant influence on NFLX degradation efficiency, COD removal and MFCs voltage output while the electricity was successfully generated. The quantitative polymerase chain reaction (qPCR) indicated low absolute abundances of ARGs (mdtk, mdtm, and pmra) compared with the traditional wastewater treatment plants (WWTPs). Anodic bacteria can survive in the presence of high NFLX concentration and sustain its degradation and electricity production. In terms of NFLX degradation, COD removal, diminished ARGs generation and simultaneous energy production, MFC seems to be a promising technology for antibiotics wastewater treatment with a potential to overcome the ARGs challenge.202032097778
8055180.9237Effects of nano-zerovalent iron on antibiotic resistance genes during the anaerobic digestion of cattle manure. This study investigated the effects of adding nano-zerovalent iron (nZVI) at three concentrations (0, 80, and 160 mg/L) on the methane yield and the fate of antibiotic resistance genes (ARGs) during the anaerobic digestion (AD) of cattle manure. The addition of nZVI effectively enhanced the methane yield, where it significantly increased by 6.56% with 80 mg/L nZVI and by 6.43% with 160 mg/L nZVI. The reductions in the abundances of ARGs and Tn916/1545 were accelerated by adding 160 mg/L nZVI after AD. Microbial community analysis showed that nZVI mainly increased the abundances of bacteria with roles in hydrolysis and acidogenesis, whereas it reduced the abundance of Acinetobacter. Redundancy analysis indicated that the changes in mobile genetic elements made the greatest contribution to the fate of ARGs. The results suggest that 160 mg/L nZVI is a suitable additive for reducing the risks due to ARGs in AD.201931247529
7880190.9236The synergistic mechanism of β-lactam antibiotic removal between ammonia-oxidizing microorganisms and heterotrophs. Nitrifying system is an effective strategy to remove numerous antibiotics, however, the contribution of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and heterotrophs for antibiotic removal are still unclear. In this study, the mechanism of β-lactam antibiotic (cefalexin, CFX) removal was studied in a nitrifying sludge system. Results showed that CFX was synergistically removed by AOB (Nitrosomonas, played a major role) and AOA (Candidatus_Nitrososphaera) through ammonia monooxygenase-mediated co-metabolism, and by heterotrophs (Pseudofulvimonas, Hydrogenophaga, RB41, Thauera, UTCFX1, Plasticicumulans, Phaeodactylibacter) through antibiotic resistance genes (ARGs)-encoded β-lactamases-mediated hydrolysis. Regardless of increased archaeal and heterotrophic CFX removal with the upregulation of amoA in AOA and ARGs, the system exhibited poorer CFX removal performance at 10 mg/L, mainly due to the inhibition of AOB. This study provides new reference for the important roles of heterotrophs and ARGs, opening the possibilities for the application of ARGs in antibiotic biodegradation.202336174754