# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5245 | 0 | 0.9951 | Antimicrobial Resistance in U.S. Retail Ground Beef with and without Label Claims Regarding Antibiotic Use. ABSTRACT: Antibiotics used during food animal production account for approximately 77% of U.S. antimicrobial consumption by mass. Ground beef products labeled as raised without antibiotics (RWA) are perceived to harbor lower levels of antimicrobial-resistant bacteria than conventional (CONV) products with no label claims regarding antimicrobial use. Retail ground beef samples were obtained from six U.S. cities. Samples with an RWA or U.S. Department of Agriculture Organic claim (n = 299) were assigned to the RWA production system. Samples lacking these claims (n = 300) were assigned to the CONV production system. Each sample was cultured for the detection of five antimicrobial-resistant bacteria. Genomic DNA was isolated from each sample, and a quantitative PCR assay was used to determine the abundance of 10 antimicrobial resistance (AMR) genes. Prevalence of tetracycline-resistant Escherichia coli (CONV, 46.3%; RWA, 34.4%; P < 0.01) and erythromycin-resistant Enterococcus (CONV, 48.0%; RWA, 37.5%; P = 0.01) was higher in CONV ground beef. Salmonella was detected in 1.2% of samples. The AMR gene blaCTX-M (CONV, 4.1 log-normalized abundance; RWA, 3.8 log-normalized abundance; P < 0.01) was more abundant in CONV ground beef. The AMR genes mecA (CONV, 4.4 log-normalized abundance; RWA, 4.9 log-normalized abundance; P = 0.05), tet(A) (CONV, 3.9 log-normalized abundance; RWA, 4.5 log-normalized abundance; P < 0.01), tet(B) (CONV, 3.9 log-normalized abundance; RWA, 4.5 log-normalized abundance; P < 0.01), and tet(M) (CONV, 5.4 log-normalized abundance; RWA, 5.8 log-normalized abundance; P < 0.01) were more abundant in RWA ground beef. Although these results suggest that antimicrobial use during U.S. cattle production does not increase human exposure to antimicrobial-resistant bacteria via ground beef, quantitative microbiological risk assessments are required for authoritative determination of the human health impacts of the use of antimicrobial agents during beef production. | 2021 | 33302298 |
| 5247 | 1 | 0.9944 | Similar Levels of Antimicrobial Resistance in U.S. Food Service Ground Beef Products with and without a "Raised without Antibiotics" Claim. U.S. ground beef with "raised without antibiotics" (RWA) label claims are perceived as harboring fewer bacteria with antimicrobial resistance (AMR) than are found in conventional (CONV) ground beef with no such label claim. A total of 370 ground beef samples from CONV ( n = 191) and RWA ( n = 179) production systems were collected over 13 months from three food service suppliers. The following bacteria were cultured: Escherichia coli, tetracycline-resistant (TET(r)) E. coli, third-generation cephalosporin-resistant (3GC(r)) E. coli, Salmonella enterica, TET(r) S. enterica, 3GC(r) S. enterica, nalidixic acid-resistant S. enterica, Enterococcus spp., erythromycin-resistant Enterococcus spp., TET(r) Enterococcus spp., Staphylococcus aureus, and methicillin-resistant S. aureus. TET(r) E. coli was more frequently detected in CONV ground beef (CONV, 54.2%; RWA, 35.2%; P < 0.01), but supplier ( P < 0.01) and production system × suppler interaction ( P < 0.01) effects were also significant. Metagenomic DNA was isolated from each sample, and equal amounts of metagenomic DNA were pooled by supplier, month, and production system for 75 pooled samples (38 CONV, 37 RWA). The abundance of aac(6')-Ie-aph(2″)-Ia, aadA1, bla(CMY-2), bla(CTX-M), bla(KPC-2), erm(B), mecA, tet(A), tet(B), and tet(M) genes was assessed by quantitative PCR. The tet(A) (2.9-log(2)-fold change, P = 0.04) and tet(B) (5.6-log(2)-fold change) ( P = 0.03) genes were significantly more abundant in RWA ground beef. Phylogenetic analyses revealed that ground beef microbiomes differed more by supplier than by production system. These results were consistent with prior research suggesting antimicrobial use in U.S. beef cattle has minimal impact on the AMR of bacteria found in these products. These results should spur a reevaluation of assumptions regarding the impact of antimicrobial use during U.S. beef production on the AMR of bacteria in ground beef. | 2018 | 30476443 |
| 5246 | 2 | 0.9941 | Food Service Pork Chops from Three U.S. Regions Harbor Similar Levels of Antimicrobial Resistance Regardless of Antibiotic Use Claims. Pork products from animals "raised without antibiotics" (RWA) are assumed to harbor lower levels of antimicrobial resistance (AMR) than conventional (CONV) pork products with no claims regarding use of antimicrobial agents during production. A total of 372 pork chop samples from CONV (n = 190) and RWA (n = 182) production systems were collected over 13 months from three food service suppliers. The following bacteria were cultured: Escherichia coli, tetracycline-resistant (TET(r)) E. coli, third-generation cephalosporin-resistant (3GC(r)) E. coli, Salmonella enterica, TET(r) Salmonella, 3GC(r) Salmonella, nalidixic acid-resistant Salmonella, Enterococcus spp., TET(r) Enterococcus, erythromycin-resistant Enterococcus, Staphylococcus aureus, and methicillin-resistant S. aureus. Production system did not significantly impact the detection of cultured bacteria (P > 0.05). Metagenomic DNA was isolated from each sample, and equal amounts of metagenomic DNA were pooled by supplier, month, and production system for 75 pooled samples (38 CONV, 37 RWA). Quantitative PCR was used to assess the abundances of the following 10 AMR genes: aac(6')-Ie-aph(2″)-Ia, aadA1, bla(CMY-2), bla(CTX-M), bla(KPC-2), erm(B), mecA, tet(A), tet(B), and tet(M). For all 10 AMR genes, abundances did not differ significantly (P > 0.05) between production systems. These results suggest that use of antimicrobial agents during swine production minimally impacts the AMR of bacteria in pork chops. | 2019 | 31532250 |
| 828 | 3 | 0.9938 | Screening for Resistant Bacteria, Antimicrobial Resistance Genes, Sexually Transmitted Infections and Schistosoma spp. in Tissue Samples from Predominantly Vaginally Delivered Placentae in Ivory Coast and Ghana. Medical complications during pregnancy have been frequently reported from Western Africa with a particular importance of infectious complications. Placental tissue can either become the target of infectious agents itself, such as, e.g., in the case of urogenital schistosomiasis, or be subjected to contamination with colonizing or infection-associated microorganisms of the cervix or the vagina during vaginal delivery. In the retrospective cross-sectional assessment presented here, the quantitative dimension of infection or colonization with selected resistant or pathogenic bacteria and parasites was regionally assessed. To do so, 274 collected placental tissues from Ivory Coastal and Ghanaian women were subjected to selective growth of resistant bacteria, as well as to molecular screening for beta-lactamase genes, Schistosoma spp. and selected bacterial causative agents of sexually transmitted infections (STI). Panton-Valentine-negative methicillin-resistant Staphylococcus aureus (MRSA) was grown from 1.8% of the tissue samples, comprising the spa types t008 and t688, as well as the newly detected ones, t12101 (n = 2) and t12102. While the culture-based recovery of resistant Enterobacterales and nonfermentative rod-shaped Gram-negative bacteria failed, molecular assessments confirmed beta-lactamase genes in 31.0% of the samples with multiple detections of up to four resistance genes per sample and bla(CTX-M), bla(IMP), bla(GES), bla(VIM), bla(OXA-58)-like, bla(NDM), bla(OXA-23)-like, bla(OXA-48)-like and bla(KPC) occurring in descending order of frequency. The beta-lactamase genes bla(OXA-40/24)-like, bla(NMC_A/IMI), bla(BIC), bla(SME), bla(GIM) and bla(DIM) were not detected. DNA of the urogenital schistosomiasis-associated Schistosoma haematobium complex was recorded in 18.6% of the samples, but only a single positive signal for S. mansoni with a high cycle-threshold value in real-time PCR was found. Of note, higher rates of schistosomiasis were observed in Ghana (54.9% vs. 10.3% in Ivory Coast) and Cesarean section was much more frequent in schistosomiasis patients (61.9% vs. 14.8% in women without Schistosoma spp. DNA in the placenta). Nucleic acid sequences of nonlymphogranuloma-venereum-associated Chlamydia trachomatis and of Neisseria gonorrhoeae were recorded in 1.1% and 1.9% of the samples, respectively, while molecular attempts to diagnose Treponema pallidum and Mycoplasma genitalium did not lead to positive results. Molecular detection of Schistosoma spp. or STI-associated pathogens was only exceptionally associated with multiple resistance gene detections in the same sample, suggesting epidemiological distinctness. In conclusion, the assessment confirmed considerable prevalence of urogenital schistosomiasis and resistant bacterial colonization, as well as a regionally expected abundance of STI-associated pathogens. Continuous screening offers seem advisable to minimize the risks for the pregnant women and their newborns. | 2023 | 37623959 |
| 1253 | 4 | 0.9937 | Phenotypic and Genotypic Assessment of Antibiotic Resistance and Genotyping of vacA, cagA, iceA, oipA, cagE, and babA2 Alleles of Helicobacter pylori Bacteria Isolated from Raw Meat. BACKGROUND: Foodstuffs with animal origins, particularly meat, are likely reservoirs of Helicobacter pylori. PURPOSE: An existing survey was accompanied to assess phenotypic and genotypic profiles of antibiotic resistance and genotyping of vacA, cagA, cagE, iceA, oipA, and babA2 alleles amongst the H. pylori bacteria recovered from raw meat. METHODS: Six-hundred raw meat samples were collected and cultured. H. pylori isolates were tested using disk diffusion and PCR identification of antibiotic resistance genes and genotyping. RESULTS: Fifty-two out of 600 (8.66%) raw meat samples were contaminated with H. pylori. Raw ovine meat (13.07%) had the uppermost contamination. H. pylori bacteria displayed the uppermost incidence of resistance toward tetracycline (82.69%), erythromycin (80.76%), trimethoprim (65.38%), levofloxacin (63.46%), and amoxicillin (63.46%). All H. pylori bacteria had at least resistance toward one antibiotic, even though incidence of resistance toward more than eight antibiotics was 28.84%. Total distribution of rdxA, pbp1A, gyrA, and cla antibiotic resistance genes were 59.61%, 51.92%, 69.23%, and 65.38%, respectively. VacA s1a (84.61%), s2 (76.92%), m1a (50%), m2 (39.13%), iceA1 (38.46%), and cagA (55.76%) were the most generally perceived alleles. S1am1a (63.46%), s2m1a (53.84%), s1am2 (51.92%), and s2m2 (42.30%) were the most generally perceived genotyping patterns. Frequency of cagA-, oipA-, and babA2- genotypes were 44.23%, 73.07%, and 80.76%, respectively. A total of 196 combined genotyping patterns were also perceived. CONCLUSION: The role of raw meat, particularly ovine meat, in transmission of virulent and resistant H. pylori bacteria was determined. VacA and cagA genotypes had the higher incidence. CagE-, babA2-, and oipA- H. pylori bacteria had the higher distribution. Supplementary surveys are compulsory to originate momentous relations between distribution of genotypes, antibiotic resistance, and antibiotic resistance genes. | 2020 | 32099418 |
| 1285 | 5 | 0.9937 | Antimicrobial Resistance Profiles and Genes in Streptococcus uberis Associated With Bovine Mastitis in Thailand. Streptococcus uberis is recognized as an environmental mastitis pathogen in dairy cattle. The varied success rate of antibiotic treatment for S. uberis intramammary infection may be associated with the antimicrobial resistance (AMR) of these bacteria. This observational study aimed to analyze 228 S. uberis strains associated with bovine mastitis in northern Thailand from 2010 to 2017. AMR and AMR genes were determined by the minimum inhibitory concentration (MIC) using a microdilution method and polymerase chain reaction, respectively. The majority of S. uberis strains were resistant to tetracycline (187/228, 82.02%), followed by ceftiofur (44/228, 19.30%), and erythromycin (19/228, 8.33%). The MIC50 and MIC90 of ceftiofur in 2017 were 2-4-fold higher than those in 2010 (P < 0.01). Resistance to tetracycline and ceftiofur significantly increased between 2010 and 2017 (P < 0.05). The most common gene detected in S. uberis was tetM (199/228, 87.28%), followed by ermB (151/228, 66.23 %) and blaZ (15/228, 6.58 %). The association between tetracycline resistance and tetM detection was statistically significant (P < 0.01). The detection rates of tetM significantly increased, while the detection rates of tetO and ermB significantly decreased during 2010-2017. AMR monitoring for bovine mastitis pathogens, especially S. uberis, is necessary to understand the trend of AMR among mastitis pathogens, which can help create an AMR stewardship program for dairy farms in Thailand. | 2021 | 34485432 |
| 1139 | 6 | 0.9937 | Prevalence of Antimicrobial Resistance in Select Bacteria From Retail Seafood-United States, 2019. In 2019, the United States National Antimicrobial Resistance Monitoring System (NARMS) surveyed raw salmon, shrimp, and tilapia from retail grocery outlets in eight states to assess the prevalence of bacterial contamination and antimicrobial resistance (AMR) in the isolates. Prevalence of the targeted bacterial genera ranged among the commodities: Salmonella (0%-0.4%), Aeromonas (19%-26%), Vibrio (7%-43%), Pseudomonas aeruginosa (0.8%-2.3%), Staphylococcus (23%-30%), and Enterococcus (39%-66%). Shrimp had the highest odds (OR: 2.8, CI: 2.0-3.9) of being contaminated with at least one species of these bacteria, as were seafood sourced from Asia vs. North America (OR: 2.7; CI: 1.8-4.7) and Latin America and the Caribbean vs. North America (OR: 1.6; CI: 1.1-2.3) and seafood sold at the counter vs. sold frozen (OR: 2.1; CI: 1.6-2.9). Isolates exhibited pan-susceptibility (Salmonella and P. aeruginosa) or low prevalence of resistance (<10%) to most antimicrobials tested, with few exceptions. Seafood marketed as farm-raised had lower odds of contamination with antimicrobial resistant bacteria compared to wild-caught seafood (OR: 0.4, CI: 0.2-0.7). Antimicrobial resistance genes (ARGs) were detected for various classes of medically important antimicrobials. Clinically relevant ARGs included carbapenemases (bla (IMI-2), bla (NDM-1)) and extended spectrum β-lactamases (ESBLs; bla (CTX-M-55)). This population-scale study of AMR in seafood sold in the United States provided the basis for NARMS seafood monitoring, which began in 2020. | 2022 | 35814688 |
| 2725 | 7 | 0.9936 | Hygiene practices and antibiotic resistance among dental and medical students: a comparative study. PURPOSE: Healthcare students' hand and smartphone hygiene is critical due to potential pathogenic and antibiotic-resistant bacteria transmission. This study evaluates hygiene practices in medical and dental students at Kuwait University, exploring antibiotic resistance gene prevalence. METHODS: Swab samples were collected from the hands and smartphones of 32 medical and 30 dental students. These samples were cultured on Columbia Blood Agar and McConkey Agar plates to quantify bacterial colony-forming units (CFUs). The extracted DNA from these colonies underwent RT-PCR to identify antibiotic resistance genes, including tem-1, shv, blaZ, and mecA. Additionally, a questionnaire addressing hygiene practices was distributed post-sample collection. RESULTS: Medical students exhibited more frequent hand hygiene compared to dental students (P ≤ 0.0001). Although significantly fewer bacterial CFUs were found on medical students' smartphones (mean = 35 ± 53) than dental students' (mean = 89 ± 129) (P ≤ 0.05), no significant differences were observed in CFU counts on their hands (medical: mean = 17 ± 37; dental: mean = 96 ± 229). Detection of at least one of the targeted antibiotic resistance genes on medical (89% hands, 52% smartphones) and dental students' (79% hands, 63% smartphones) was not statistically significant. However, the prevalence of two genes, tem-1 and shv, was significantly higher on medical students' hands (78% and 65%, respectively) than on dental students' hands (32% and 28%, respectively). CONCLUSION: Clinically significant prevalence of antibiotic resistance genes were found on medical and dental students' hands and smartphones, emphasizing the importance of ongoing education regarding hand hygiene and smartphone disinfection. This continuous reinforcement in the curriculum is crucial to minimizing the risk of cross-contamination. | 2024 | 38514584 |
| 1354 | 8 | 0.9936 | The prevalence, antibiotic resistance and multilocus sequence typing of colistin-resistant bacteria isolated from Penaeus vannamei farms in earthen ponds and HDPE film-lined ponds in China. The aquaculture environment, especially the culture ponds and aquaculture products, is considered to be an important reservoir of colistin resistance genes. However, systematic investigations of colistin resistance in Penaeus vannamei farming in different culture modes are scarce. In this study, a total of 93 non-duplicated samples were collected from P. vannamei farms in five cities in China from 2019 to 2021. The prevalence, antibiotic resistance and multilocus sequence typing (MLST) of colistin-resistant bacteria were measured and analysed. The results showed that among the 1601 isolates in P. vannamei and its environmental samples, the pollution of colistin-resistant bacteria was serious (the overall prevalence was 37.3% and 28.8%, respectively), regardless of the earthen pond or high-density polyethylene (HDPE) film-lined pond. Among 533 isolates, the prevalence of mobile colistin resistance (mcr) genes, mcr-1, was the highest (60%, 320/533), followed by mcr-4 (1.5%, 8/533), mcr-8 (0.9%, 5/533), mcr-10 (0.6%, 3/533) and mcr-7 (0.4%, 2/533). The prevalence of mcr-1 in earthen ponds was significantly higher than that in HDPE film-lined ponds (67.5% vs. 49.1%, p < .001). The dominant strain carrying mcr-1 was Bacillus spp. (54.1%, 173/320), followed by Enterobacter spp. (8.1%, 26/320), Staphylococcus spp. (6.3%, 20/320) and Aeromonas spp. (5.3%, 17/320). The antibiotic resistance profiles of 173 Bacillus spp. varied among different sampling locations and culture types. These isolates were highly resistant to cefepime, ceftriaxone, trimethoprim-sulfamethoxazole and ceftiofur (>45%), and multidrug-resistant isolates were common (62.4%, 108/173). Sequence type (ST) 26 (37/66, 56%) was found to be the most prevalent ST in mcr-1-positive Bacillus cereus isolated from the aquaculture environment. In summary, our study pointed out that it is necessary to continuously monitor antibiotic usage and its residues regardless of the pond types, especially with regard to critical drugs such as colistin. | 2022 | 35841601 |
| 2727 | 9 | 0.9935 | Prevalence and Antibiotic Resistance Pattern of Streptococcus, Staphylococcus, Neisseria meningitidis and Enterobacteriaceae in Two Reference Hospitals of Yaoundé: An Overview before and during COVID-19 Pandemic Era. The COVID-19 pandemic led to tremendously use of antimicrobial due to the lack of proper treatment strategies, raising concerns about emergence of antimicrobial resistance (AMR). This study aimed at determining the prevalence and antibiotic resistance pattern of selected bacteria isolates in 02 referral health facilities in Yaoundé before and during the COVID-19 pandemic era. We conducted a retrospective study over a period of 03 years (from 1 January 2019 to 31 December 2021) in the bacteriology units of the Central and General Hospitals of Yaoundé, Cameroon. Data on bacteria genera (Streptococcus, Staphylococcus, Neisseria meningitidis and Enterobacteriaceae) as well as their corresponding specifics antibiotics: Cefixime, azythromycin and erythromycin were obtained from laboratory records. The global resistance rate of bacteria as well as their correlation with antibiotics according to COVID-19 pandemic era was determined and compared. For p < 0.05, the difference was statistically significant. In all, 426 bacterial strains were included. It appeared that the highest number of bacteria isolates and lowest rate of bacterial resistance were recorded during the pre-COVID-19 period in 2019 (160 isolates vs. 58.8% resistance rate). Conversely, lower bacteria strains but greater resistance burden were recorded during the pandemic era (2020 and 2021) with the lowest bacteria amount and peak of bacteria resistance registered in 2020, the year of COVID-19 onset (120 isolates vs. 70% resistance in 2020 and 146 isolates vs. 58.9% resistance in 2021). In contrast to almost all others groups of bacteria where the resistance burden was quite constant or decreasing over years, the Enterobacteriaceae exhibited greater resistance rate during the pandemic period [60% (48/80) in 2019 to 86.9% (60/69) in 2020 and 64.5% (61/95) in 2021)]. Concerning antibiotics, unlike erythromycin, azythromycin related resitance increased during the pandemic period and the resistance to Cefixim tends to decrease the year of the pandemic onset (2020) and re-increase one year therafter. A significant association was found between resistant Enterobacteriaceae strains and cefixime (R = 0.7; p = 0.0001) and also, between resistant Staphylococcus strains and erythromycin (R = 0.8; p = 0.0001). These retrospective data showed a herogeneous MDR bacteria rate and antibiotic resistance pattern over time before and during the COVID-19 pandemic era suggesting that antimicrobial resistance needs to be more closely monitored. | 2023 | 37237832 |
| 1252 | 10 | 0.9935 | Fluoroquinolone resistance in bacterial isolates from ocular infections: Trend in antibiotic susceptibility patterns between 2005-2020. PURPOSE: To assess the fluoroquinolone resistance pattern and trends among bacterial isolates from ocular infections over a 16-year period and explore alternative antibiotics in fluoroquinolone-resistant strains. METHODS: In this retrospective, longitudinal study, the microbiology laboratory records of patients with different ocular infections diagnosed at an eye institute in central India from 2005-2020 were reviewed to determine the pattern of fluoroquinolone (ciprofloxacin, ofloxacin, gatifloxacin, and moxifloxacin) resistance. Antibiotic susceptibility testing was done using the Kirby-Bauer disc diffusion method. RESULTS: In 725 Gram-positive bacteria, the resistance of ciprofloxacin, ofloxacin, gatifloxacin, and moxifloxacin was 55.9% (95% confidence interval [CI]: 52.2 - 59.6), 42.7% (95% CI: 39.0 - 46.4), 47.6% (95% CI: 43.9 - 51.3), and 45.6% (95% CI: 41.7-49.5), respectively. In 266 Gram-negative bacteria, the resistance of ciprofloxacin, ofloxacin, gatifloxacin, and moxifloxacin was 57.9% (95% CI: 51.9 - 63.9), 56.0% (95% CI: 49.7 - 62.1), 59.9% (95% CI: 53.8 - 66.0), and 74.3% (95% CI: 68.3 - 80.2), respectively. A declining trend in resistance to ciprofloxacin (P < 0.001), ofloxacin (P < 0.001), and moxifloxacin (P < 0.001) was seen in Gram-positive bacteria, whereas a reduction in resistance to only moxifloxacin (P = 0.04) was seen in Gram-negative bacteria. In fluoroquinolone-resistant Gram-positive bacteria, cefuroxime exhibited the highest susceptibility, whereas in fluoroquinolone-resistant Gram-negative bacteria, colistin exhibited the highest susceptibility. CONCLUSION: Fluoroquinolone resistance was high among bacteria from ocular infections in central India, but a declining trend in resistance to some of the fluoroquinolones was observed in recent times. Cefuroxime and colistin emerged as alternatives in fluoroquinolone-resistant Gram-positive and Gram-negative bacterial infections, respectively. | 2022 | 36453351 |
| 1301 | 11 | 0.9935 | Phenotypic and Genotypic Assessment of Antibiotic Resistance of Staphylococcus aureus Bacteria Isolated from Retail Meat. BACKGROUND: Resistant Staphylococcus aureus (S. aureus) bacteria are determined to be one of the main causes of foodborne diseases. PURPOSE: This survey was done to assess the genotypic and phenotypic profiles of antibiotic resistance of S. aureus bacteria isolated from retail meat. METHODS: Four-hundred and eighty-five retail meat samples were collected and examined. S. aureus bacteria were identified using culture and biochemical tests. The phenotypic profile of antibiotic resistance was examined using the disk diffusion method. The genotypic pattern of antibiotic resistance was determined using the polymerase chain reaction. RESULTS: Forty-eight out of 485 (9.89%) raw retail meat samples were contaminated with S. aureus. Raw retail buffalo meat (16%) had the highest incidence of S. aureus, while raw camel meat (4%) had the lowest. S. aureus bacteria exhibited the uppermost incidence of resistance toward tetracycline (79.16%), penicillin (72.91%), gentamicin (60.41%), and doxycycline (41.666%). The incidence of resistance toward chloramphenicol (8.33%), levofloxacin (22.91%), rifampin (22.91%), and azithromycin (25%) was lower than other examined antibiotics. The most routinely detected antibiotic resistance genes were blaZ (58.33%), tetK (52.08%), aacA-D (33.33%), and ermA (27.08%). Cat1 (4.16%), rpoB (10.41%), msrA (12.50%), grlA (12.50%), linA (14.58%), and dfrA1 (16.66%) had the lower incidence rate. CONCLUSION: Raw meat of animals may be sources of resistant S. aureus which pose a hygienic threat about the consumption of raw meat. Nevertheless, further investigations are essential to understand supplementary epidemiological features of S. aureus in retail meat. | 2020 | 32440171 |
| 940 | 12 | 0.9935 | Acquisition of multidrug-resistant bacteria and colistin resistance genes in French medical students on internships abroad. BACKGROUND: Acquisition of multidrug resistant bacteria (MDR) and colistin resistance genes by international travellers has been demonstrated. Studies conducted in medical students during internships abroad are scant. METHODS: Nasopharyngeal, rectal, and vaginal swabs samples were collected from 382 French medical students before and after travel to investigate the acquisition of MDR bacteria. The bacterial diversity in the samples was assessed by culture on selective media. We also genetically characterised the isolates of MDR bacteria including Extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-E), methicillin-resistant Staphylococcus aureus (MRSA), and Carbapenemase-producing Enterobacteriacae (CPE) using the real-time polymerase chain reaction method. The samples were collected from 293 students and were investigated for mcr colistin-resistance genes using RT-PCR directly on the samples, followed by conventional PCR and sequencing. RESULTS: A proportion of 29.3% (112/382) of the participants had acquired ESBL-E and 2.6% (10/382) had acquired CPE. The most common species and ESBL-E encoding gene were Escherichia coli (125/127 isolates, 98.4%) and bla(CTX-M-A) (121/127, 95.3%), respectively. A proportion of 6.8% (20/293) of the participants had acquired mcr-1 genes, followed by mcr-3 (1/293, 0.3%) and mcr-8 (1/293, 0.3%). We found that taking part in humanitarian missions to orphanages (aRR = 2.01, p < 0.0001), being in contact with children during travel (aRR = 1.78, p = 0.006), the primary destination of travel being Vietnam (aRR = 2.15, p < 0.0001) and north India (aRR = 2.41, p = 0.001), using antibiotics during travel (aRR = 1.77, p = 0.01), and studying in 2018 (aRR = 1.55, p = 0.03) were associated with the acquisition of ESBL-E. When the primary destination of travel was Vietnam (aRR = 2.74, p < 0.0001) and the year of study was 2018 (aRR = 1.93, p < 0.002), this was associated with acquisition of colistin resistance genes. CONCLUSION: Medical students are at a potential risk of acquiring ESBL-E, CPE and colistin resistance genes. A number of risk factors have been identified, which may be used to develop targeted preventive measures. | 2021 | 33248262 |
| 1406 | 13 | 0.9934 | Multicentre study of the burden of multidrug-resistant bacteria in the aetiology of infected diabetic foot ulcers. BACKGROUND: Infected diabetic foot ulcer (IDFU) is a public health issue and the leading cause of non-traumatic limb amputation. Very few published data on IDFU exist in most West African countries. OBJECTIVE: The study investigated the aetiology and antibacterial drug resistance burden of IDFU in tertiary hospitals in Osun state, Nigeria, between July 2016 and April 2017. METHODS: Isolates were cultured from tissue biopsies or aspirates collected from patients with IDFU. Bacterial identification, antibiotic susceptibility testing and phenotypic detection of extended-spectrum beta-lactamase and carbapenemase production were done by established protocols. Specific resistance genes were detected by polymerase chain reaction. RESULTS: There were 218 microorganisms isolated from 93 IDFUs, comprising 129 (59.2%) Gram-negative bacilli (GNB), 59 (27.1%) Gram-positive cocci and 29 (13.3%) anaerobic bacteria. The top five facultative anaerobic bacteria isolated were: Staphylococcus aureus (34; 15.6%), Escherichia coli (23; 10.6%), Pseudomonas aeruginosa (20; 9.2%), Klebsiella pneumoniae (19; 8.7%) and Citrobacter spp. (19; 8.7%). The most common anaerobes were Bacteroides spp. (7; 3.2%) and Peptostreptococcus anaerobius (6; 2.8%). Seventy-four IDFUs (80%) were infected by multidrug-resistant bacteria, predominantly methicillin-resistant S. aureus and GNB producing extended-spectrum β-lactamases, mainly of the CTX-M variety. Only 4 (3.1%) GNB produced carbapenemases encoded predominantly by bla (VIM). Factors associated with presence of multidrug-resistant bacteria were peripheral neuropathy (adjusted odds ratio [AOR] = 4.05, p = 0.04) and duration of foot infection of more than 1 month (AOR = 7.63, p = 0.02). CONCLUSION: Multidrug-resistant facultative anaerobic bacteria are overrepresented as agents of IDFU. A relatively low proportion of the aetiological agents were anaerobic bacteria. | 2021 | 33824857 |
| 5244 | 14 | 0.9934 | Potentially pathogenic bacteria and antimicrobial resistance in bioaerosols from cage-housed and floor-housed poultry operations. BACKGROUND: Antibiotics are used in animal confinement buildings, such as cage-housed (CH) and floor-housed (FH) poultry operations, to lower the likeliness of disease transmission. In FH facilities, antibiotics may also be used at sub-therapeutic levels for growth promotion. Low levels of antibiotic create a selective pressure toward antimicrobial resistance (AMR) in chicken fecal bacteria. OBJECTIVE: The objective of this study was to compare bacteria and AMR genes in bioaerosols from CH and FH poultry facilities. METHODS: Bioaerosols were collected from 15 CH and 15 FH poultry operations, using stationary area samplers as well as personal sampling devices. Bacteria concentrations were determined by genus- or species-specific quantitative polymerase chain reaction (PCR) and AMR genes were detected using endpoint PCR. RESULTS: Enterococcus spp., Escherichia coli, and Staphylococcus spp. were significantly higher in bioaerosols of FH poultry operations than CH bioaerosols (P < 0.001) while Clostridium perfringens was significantly higher in area bioaerosols of CH operations than FH area bioaerosols (P < 0.05). Campylobacter spp. were detected only in bioaerosols of FH facilities. Zinc bacitracin resistance gene, bcrR, erythromycin resistance gene, ermA, and tetracycline resistance gene, tetA/C, were more prevalent in bioaerosols of FH facilities than CH bioaerosols (P < 0.01, P < 0.01, and P < 0.05, respectively). CONCLUSIONS: Most bacteria are more concentrated and most AMR genes are more prevalent in bioaerosols of FH poultry operations, where growth-promoting antibiotics may be used. | 2012 | 22156572 |
| 5257 | 15 | 0.9934 | Removal of fecal indicator bacteria and antibiotic resistant genes in constructed wetlands. Wastewater discharge evidently increased bacterial diversity in the receiving waterbodies. The objective of this study was to evaluate the effectiveness of a constructed wetland in reducing fecal indicator bacteria (FIB) and antibiotic resistant genes (ARGs). We determined the prevalence and attenuation of fecal indicator bacteria including Escherichia coli and enterococci, along with ARGs, and human-associated Bacteroidales (HF183) markers by quantitative polymerase chain reaction (qPCR) method. Three types of water samples (inlet, intermediate, and outlet) from a constructed wetland were collected once a month from May to December in 2013. The overall reduction of E. coli was 50.0% based on culture method. According to the qPCR result, the overall removal rate of E. coli was only 6.7%. Enterococci were found in 62.5% of the wetland samples. HF183 genetic marker was detected in all final effluent samples with concentration ranging from 1.8 to 4.22 log(10) gene copies (GC)/100 ml. Of the ARGs tested, erythromycin resistance genes (ermF) were detected in 79.2% of the wetland samples. The class 1 integrase (intI1) was detected in all water samples with concentration ranging from 0.83 to 5.54 log(10) GC/100 ml. The overall removal rates of enterococci, HF183, intI1, and ermF were 84.0%, 66.6%, 67.2%, and 13.1%, respectively. | 2019 | 30758793 |
| 2101 | 16 | 0.9933 | Antibiotic resistance genes circulating in Nigeria: a systematic review and meta-analysis from the One Health perspective. BACKGROUND: The misuse of antibiotics in developing countries has created serious threats to public healthcare systems and reduced treatment options. Multidrug-resistant bacteria harbour antibiotic resistance genes that help them subdue the effectiveness of several available antibiotics. This review aimed to assess antimicrobial resistance genes circulating in Nigeria via a systematic review and meta-analysis. METHODS: A comprehensive literature search was performed using five electronic databases: PubMed, Web of Science, Scopus, Google Search, and African Journals Online (AJOL). Articles related to antibiotic resistance genes in Nigeria, published between January 1, 2015 and October 31, 2024, were included. The Newcastle-Ottawa scale (NOS) was used to assess the risk of bias. The meta-analysis for random effects was performed to determine the proportions and pooled prevalence of the resistance genes from the various One Health domains, as well as heterogeneity in the data, using R software (Version 4.3.3) and the metaprop package. RESULTS: Of the 762 articles retrieved, 56 (humans [n = 33], animals [n = 8], environment [n = 12], human/animal [n = 1], and human/animal/environment [n = 2]) from the six geopolitical zones in Nigeria met the inclusion criteria. The extended-spectrum beta-lactamase (ESBL) gene with the highest pooled prevalence was blaSHV (24.0% [95% CI: 12.0–44.0]), followed by blaCTX-M (23.0% [95% CI: 14.0–37.0]), and the least was blaTEM (18.0% [95% CI: 8.0–37.0]). Among the carbapenemase genes, blaKPC (33.0% [95% CI: 7.0–76.0]) was the most prevalent, followed by blaNDM (21.0% [95% CI: 9.0–41.0]), blaOXA (11.0% [95% CI: 2.0–46.0]) and the least was blaVIM (9.0% [95% CI: 3.0–26.0]). The mecA gene also had a high pooled prevalence (51.0% [95% CI: 14.0–86.0]). The pooled prevalence of the erm, sul, tet, and qnr genes ranged from 19.0% (95% CI: 8.0–38.0) to 27.0% (95% CI: 13.0–47.0). Some antibiotic resistance genes were shared among the three domains. CONCLUSION: This systematic review and meta-analysis has demonstrated the co-existence of antibiotic resistance genes among bacteria causing infection in Nigeria, via the One Health approach. There is a need for future research on the circulation of antibiotic resistance genes in developing countries using internationally approved approaches to track down this menace. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12920-025-02163-y. | 2025 | 40619397 |
| 1352 | 17 | 0.9933 | Bacterial Diversity and Antimicrobial Resistance of Microorganisms Isolated from Teat Cup Liners in Dairy Farms in Shandong Province, China. Global milk consumption exceeds 800 million tons a year and is still growing. Milk quality and its products are critical to human health. A teat cup makes direct contact with the cow's teats during milking and its cleanliness is very important for the quality of raw milk. In this study, the microorganism from post-milking teat cup liners were collected from six dairy farms in Shandong Province of China, the bacterial species were identified using microbial mass spectrometry, the minimum inhibitory concentrations of the isolated strains against ten antimicrobial agents were determined using the broth microdilution method, and the antimicrobial resistance genes were detected by PCR. The results indicated that the most frequently isolated bacteria in this study were Bacillus licheniformis (39/276, 14.13%), followed by Bacillus pumilus (20/276, 7.25%), Bacillus cereus (17/276, 6.16%), and Bacillus subtili (16/276, 5.80%). The isolates exhibited the highest average resistance to lincomycin (87.37%), followed by sulfadiazine (61.05%) and streptomycin (42.63%); the highest detection rate of resistance genes was Sul1 (55.43%), followed by ant(4') (51.09%), tet(M) (25.36%), bla(KPC) (3.62%) and qnrS (3.62%). These findings imply the necessity for enhanced measures in disinfecting cow udders and milking equipment, highlighting the persistently challenging issue of antimicrobial resistance in Shandong Province. | 2024 | 39123692 |
| 1275 | 18 | 0.9932 | Analysis of the Frequency, Antibiotic Susceptibility, and Related Genes among Foodborne Pathogenic Bacteria Isolated from Hospital Refrigerators in Tehran, Iran. BACKGROUND: Hospital refrigerators as essential food storage can be important source of food contamination. We aimed to investigate the frequency and antibiotic susceptibility of the pathogenic bacteria in three hospital refrigerators in Tehran. METHODS: This study was performed on 254 samples, collected from 60 refrigerators of the various wards of three hospitals, A, B, and C, in Tehran, Iran from 2020 to 2021. Following isolation and identification of isolates, the antibiotic susceptibility pattern was determined. PCR-based assays were used to screen the presence of antibiotic resistance genes of resistant isolates. RESULTS: From 254 collected samples, 236 samples (92.9%) were contaminated. Most strains were isolated from refrigerators with poorly cleaned, temperatures above 8 °C in non-critical wards. Most bacteria belonging to Enterobacteriaceae (68.8%), followed by Staphylococcus (11.9%), and Enterococcus (10.6%), while the frequency of non-Enterobacteriaceae isolates was 8.9%. The highest antibiotic resistant bacteria were in extended spectrum beta-lactamase (ESBL) 9.7%, vancomycin-resistant enterococci (VRE) 5.3%, methicillin-resistant S. epidermidis (MRSE) 0.4%, and methicillin-resistant S. aureus (MRSA) 0.4%, respectively. The bla (OXA-48), bla (CTX), and bcla (TEM) genes were found only in 10% of Enterobacteriaceae isolates. The bla (OXA-51) gene was found in all non-Enterobacteriaceae isolates. The vanA and mecA genes were detected in antibiotic-resistant Enterococcus and Staphylococcus. CONCLUSION: Our findings suggests major concern about cross-contamination and the emergence of antibiotic-resistant isolates as a potential health threat with hospital refrigerators origin. More attention to hospital refrigerators cleaning is necessary to prevent foodborne diseases and nosocomial infections. | 2024 | 38919309 |
| 5260 | 19 | 0.9932 | Occurrence and Abundance of Antibiotic Resistance Genes in Chinese Traditional Pickles. With the widespread application and even misuse of antibiotics, antibiotic resistance genes (ARGs) are extensively present in various environments, from natural environment to fermented foods, posing emerging threat to public and environmental health. The real-time fluorescence quantitative PCR (qPCR) technique is commonly used to detect ARGs of environmental samples such as soil or water. In this study, eight types of pickles were collected from four regions of China and the existence of 13 resistance genes was assessed by qPCR. The results showed that a total of 11 resistance genes were detected in pickles, the blaTEM gene was detected in all samples, and the neo and cat genes were absent. The abundance of resistance genes varied, aada1 (1.09 × 10(5) to 5.94 × 10(6) copies/g), blaTEM (1.48 × 10(5) to 2.2 × 10(6) copies/g), ermc (1.01 × 10(5) to 5.35 × 10(5) copies/g), hyg (1.35 × 10(5) to 1.93 × 10(6) copies/g), aadd (4.46 × 10(5) to 1.60 × 10(6) copies/g), nat1 (1.04 × 10(5) to 5.04 × 10(5) copies/g), nptII (2.17 × 10(4) to 1.69 × 10(5) copies/g), sul1 (2.01 × 10(5) to 4.60 × 10(5) copies/g), tetl (1.23 × 10(5) to 6.18 × 10(5) copies/g), shble (1.68 × 10(4) copies/g), and stra (4.8 × 10(4) to 1.9 × 10(5)copies/g). We also discussed the specificity and sensitivity assessment of qPCR applied to ARGs analysis in pickles, verifying the feasibility and validity of the method. Bacteria were isolated and purified from pickles as well and their antimicrobial resistance was studied. This study is of great significance for the risk assessment of resistance genes in pickles. Effective and preventive solutions were proposed to reduce the spread of resistance genes and protect public dietary health. | 2025 | 40230011 |