# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9076 | 0 | 0.9878 | ResiDB: An automated database manager for sequence data. The amount of publicly available DNA sequence data is drastically increasing, making it a tedious task to create sequence databases necessary for the design of diagnostic assays. The selection of appropriate sequences is especially challenging in genes affected by frequent point mutations such as antibiotic resistance genes. To overcome this issue, we have designed the webtool resiDB, a rapid and user-friendly sequence database manager for bacteria, fungi, viruses, protozoa, invertebrates, plants, archaea, environmental and whole genome shotgun sequence data. It automatically identifies and curates sequence clusters to create custom sequence databases based on user-defined input sequences. A collection of helpful visualization tools gives the user the opportunity to easily access, evaluate, edit, and download the newly created database. Consequently, researchers do no longer have to manually manage sequence data retrieval, deal with hardware limitations, and run multiple independent software tools, each having its own requirements, input and output formats. Our tool was developed within the H2020 project FAPIC aiming to develop a single diagnostic assay targeting all sepsis-relevant pathogens and antibiotic resistance mechanisms. ResiDB is freely accessible to all users through https://residb.ait.ac.at/. | 2021 | 33495705 |
| 8136 | 1 | 0.9877 | Recent progress in CRISPR/Cas9-based genome editing for enhancing plant disease resistance. Nowadays, agricultural production is strongly affected by both climate change and pathogen attacks which seriously threaten global food security. For a long time, researchers have been waiting for a tool allowing DNA/RNA manipulation to tailor genes and their expression. Some earlier genetic manipulation methods such as meganucleases (MNs), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) allowed site directed modification but their successful rate was limited due to lack of flexibility when targeting a 'site-specific nucleic acid'. The discovery of clustered regularly interspaced short palindrome repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has revolutionized genome editing domain in different living organisms during the past 9 years. Based on RNA-guided DNA/RNA recognition, CRISPR/Cas9 optimizations have offered an unrecorded scientific opportunity to engineer plants resistant to diverse pathogens. In this report, we describe the main characteristics of the primary reported-genome editing tools ((MNs, ZFNs, TALENs) and evaluate the different CRISPR/Cas9 methods and achievements in developing crop plants resistant to viruses, fungi and bacteria. | 2023 | 36871676 |
| 8263 | 2 | 0.9868 | CRISPR/Cas9: A Novel Weapon in the Arsenal to Combat Plant Diseases. Plant pathogens like virus, bacteria, and fungi incur a huge loss of global productivity. Targeting the dominant R gene resulted in the evolution of resistance in pathogens, which shifted plant pathologists' attention toward host susceptibility factors (or S genes). Herein, the application of sequence-specific nucleases (SSNs) for targeted genome editing are gaining more importance, which utilize the use of meganucleases (MN), zinc finger nucleases (ZFNs), transcription activator-like effector-based nucleases (TALEN) with the latest one namely clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). The first generation of genome editing technologies, due to their cumbersome nature, is becoming obsolete. Owing to its simple and inexpensive nature the use of CRISPR/Cas9 system has revolutionized targeted genome editing technology. CRISPR/Cas9 system has been exploited for developing resistance against virus, bacteria, and fungi. For resistance to DNA viruses (mainly single-stranded DNA viruses), different parts of the viral genome have been targeted transiently and by the development of transgenic plants. For RNA viruses, mainly the host susceptibility factors and very recently the viral RNA genome itself have been targeted. Fungal and bacterial resistance has been achieved mainly by targeting the host susceptibility genes through the development of transgenics. In spite of these successes CRISPR/Cas9 system suffers from off-targeting. This and other problems associated with this system are being tackled by the continuous discovery/evolution of new variants. Finally, the regulatory standpoint regarding CRISPR/Cas9 will determine the fate of using this versatile tool in developing pathogen resistance in crop plants. | 2018 | 30697226 |
| 9072 | 3 | 0.9866 | PanGeT: Pan-genomics tool. A decade after the concept of Pan-genome was first introduced; research in this field has spread its tentacles to areas such as pathogenesis of diseases, bacterial evolutionary studies and drug resistance. Gene content-based differentiation of virulent and a virulent strains of bacteria and identification of pathogen specific genes is imperative to understand their physiology and gain insights into the mechanism of genome evolution. Subsequently, this will aid in identifying diagnostic targets and in developing and selecting vaccines. The root of pan-genomic studies, however, is to identify the core genes, dispensable genes and strain specific genes across the genomes belonging to a clade. To this end, we have developed a tool, "PanGeT - Pan-genomics Tool" to compute the 'pan-genome' based on comparisons at the genome as well as the proteome levels. This automated tool is implemented using LaTeX libraries for effective visualization of overall pan-genome through graphical plots. Links to retrieve sequence information and functional annotations have also been provided. PanGeT can be downloaded from http://pranag.physics.iisc.ernet.in/PanGeT/ or https://github.com/PanGeTv1/PanGeT. | 2017 | 27851981 |
| 8135 | 4 | 0.9866 | Harnessing Genome Editing Techniques to Engineer Disease Resistance in Plants. Modern genome editing (GE) techniques, which include clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) system, transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs) and LAGLIDADG homing endonucleases (meganucleases), have so far been used for engineering disease resistance in crops. The use of GE technologies has grown very rapidly in recent years with numerous examples of targeted mutagenesis in crop plants, including gene knockouts, knockdowns, modifications, and the repression and activation of target genes. CRISPR/Cas9 supersedes all other GE techniques including TALENs and ZFNs for editing genes owing to its unprecedented efficiency, relative simplicity and low risk of off-target effects. Broad-spectrum disease resistance has been engineered in crops by GE of either specific host-susceptibility genes (S gene approach), or cleaving DNA of phytopathogens (bacteria, virus or fungi) to inhibit their proliferation. This review focuses on different GE techniques that can potentially be used to boost molecular immunity and resistance against different phytopathogens in crops, ultimately leading to the development of promising disease-resistant crop varieties. | 2019 | 31134108 |
| 9075 | 5 | 0.9865 | CamPype: an open-source workflow for automated bacterial whole-genome sequencing analysis focused on Campylobacter. BACKGROUND: The rapid expansion of Whole-Genome Sequencing has revolutionized the fields of clinical and food microbiology. However, its implementation as a routine laboratory technique remains challenging due to the growth of data at a faster rate than can be effectively analyzed and critical gaps in bioinformatics knowledge. RESULTS: To address both issues, CamPype was developed as a new bioinformatics workflow for the genomics analysis of sequencing data of bacteria, especially Campylobacter, which is the main cause of gastroenteritis worldwide making a negative impact on the economy of the public health systems. CamPype allows fully customization of stages to run and tools to use, including read quality control filtering, read contamination, reads extension and assembly, bacterial typing, genome annotation, searching for antibiotic resistance genes, virulence genes and plasmids, pangenome construction and identification of nucleotide variants. All results are processed and resumed in an interactive HTML report for best data visualization and interpretation. CONCLUSIONS: The minimal user intervention of CamPype makes of this workflow an attractive resource for microbiology laboratories with no expertise in bioinformatics as a first line method for bacterial typing and epidemiological analyses, that would help to reduce the costs of disease outbreaks, or for comparative genomic analyses. CamPype is publicly available at https://github.com/JoseBarbero/CamPype . | 2023 | 37474912 |
| 9074 | 6 | 0.9863 | BacAnt: A Combination Annotation Server for Bacterial DNA Sequences to Identify Antibiotic Resistance Genes, Integrons, and Transposable Elements. Whole genome sequencing (WGS) of bacteria has become a routine method in diagnostic laboratories. One of the clinically most useful advantages of WGS is the ability to predict antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs) in bacterial sequences. This allows comprehensive investigations of such genetic features but can also be used for epidemiological studies. A plethora of software programs have been developed for the detailed annotation of bacterial DNA sequences, such as rapid annotation using subsystem technology (RAST), Resfinder, ISfinder, INTEGRALL and The Transposon Registry. Unfortunately, to this day, a reliable annotation tool of the combination of ARGs and MGEs is not available, and the generation of genbank files requires much manual input. Here, we present a new webserver which allows the annotation of ARGs, integrons and transposable elements at the same time. The pipeline generates genbank files automatically, which are compatible with Easyfig for comparative genomic analysis. Our BacAnt code and standalone software package are available at https://github.com/xthua/bacant with an accompanying web application at http://bacant.net. | 2021 | 34367079 |
| 8139 | 7 | 0.9863 | TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA-targeting proteins. Transcription activator-like (TAL) effectors are transcription factors injected into plant cells by pathogenic bacteria of the genus Xanthomonas. They function as virulence factors by activating host genes important for disease, or as avirulence factors by turning on genes that provide resistance. DNA-binding specificity is encoded by polymorphic repeats in each protein that correspond one-to-one with different nucleotides. This code has facilitated target identification and opened new avenues for engineering disease resistance. It has also enabled TAL effector customization for targeted gene control, genome editing, and other applications. This article reviews the structural basis for TAL effector-DNA specificity, the impact of the TAL effector-DNA code on plant pathology and engineered resistance, and recent accomplishments and future challenges in TAL effector-based DNA targeting. | 2013 | 23707478 |
| 9179 | 8 | 0.9860 | A detailed landscape of CRISPR-Cas-mediated plant disease and pest management. Genome editing technology has rapidly evolved to knock-out genes, create targeted genetic variation, install precise insertion/deletion and single nucleotide changes, and perform large-scale alteration. The flexible and multipurpose editing technologies have started playing a substantial role in the field of plant disease management. CRISPR-Cas has reduced many limitations of earlier technologies and emerged as a versatile toolbox for genome manipulation. This review summarizes the phenomenal progress of the use of the CRISPR toolkit in the field of plant pathology. CRISPR-Cas toolbox aids in the basic studies on host-pathogen interaction, in identifying virulence genes in pathogens, deciphering resistance and susceptibility factors in host plants, and engineering host genome for developing resistance. We extensively reviewed the successful genome editing applications for host plant resistance against a wide range of biotic factors, including viruses, fungi, oomycetes, bacteria, nematodes, insect pests, and parasitic plants. Recent use of CRISPR-Cas gene drive to suppress the population of pathogens and pests has also been discussed. Furthermore, we highlight exciting new uses of the CRISPR-Cas system as diagnostic tools, which rapidly detect pathogenic microorganism. This comprehensive yet concise review discusses innumerable strategies to reduce the burden of crop protection. | 2022 | 35835393 |
| 8155 | 9 | 0.9859 | Gut bacteria enable prostate cancer growth. Testosterone-synthetizing gut bacteria drive resistance to therapy. | 2021 | 34618567 |
| 9985 | 10 | 0.9859 | Identification of the First Gene Transfer Agent (GTA) Small Terminase in Rhodobacter capsulatus and Its Role in GTA Production and Packaging of DNA. Genetic exchange mediated by viruses of bacteria (bacteriophages) is the primary driver of rapid bacterial evolution. The priority of viruses is usually to propagate themselves. Most bacteriophages use the small terminase protein to identify their own genome and direct its inclusion into phage capsids. Gene transfer agents (GTAs) are descended from bacteriophages, but they instead package fragments of the entire bacterial genome without preference for their own genes. GTAs do not selectively target specific DNA, and no GTA small terminases are known. Here, we identified the small terminase from the model Rhodobacter capsulatus GTA, which then allowed prediction of analogues in other species. We examined the role of the small terminase in GTA production and propose a structural basis for random DNA packaging.IMPORTANCE Random transfer of any and all genes between bacteria could be influential in the spread of virulence or antimicrobial resistance genes. Discovery of the true prevalence of GTAs in sequenced genomes is hampered by their apparent similarity to bacteriophages. Our data allowed the prediction of small terminases in diverse GTA producer species, and defining the characteristics of a "GTA-type" terminase could be an important step toward novel GTA identification. Importantly, the GTA small terminase shares many features with its phage counterpart. We propose that the GTA terminase complex could become a streamlined model system to answer fundamental questions about double-stranded DNA (dsDNA) packaging by viruses that have not been forthcoming to date. | 2019 | 31534034 |
| 8256 | 11 | 0.9858 | Revolutionizing Tomato Cultivation: CRISPR/Cas9 Mediated Biotic Stress Resistance. Tomato (Solanum lycopersicon L.) is one of the most widely consumed and produced vegetable crops worldwide. It offers numerous health benefits due to its rich content of many therapeutic elements such as vitamins, carotenoids, and phenolic compounds. Biotic stressors such as bacteria, viruses, fungi, nematodes, and insects cause severe yield losses as well as decreasing fruit quality. Conventional breeding strategies have succeeded in developing resistant genotypes, but these approaches require significant time and effort. The advent of state-of-the-art genome editing technologies, particularly CRISPR/Cas9, provides a rapid and straightforward method for developing high-quality biotic stress-resistant tomato lines. The advantage of genome editing over other approaches is the ability to make precise, minute adjustments without leaving foreign DNA inside the transformed plant. The tomato genome has been precisely modified via CRISPR/Cas9 to induce resistance genes or knock out susceptibility genes, resulting in lines resistant to common bacterial, fungal, and viral diseases. This review provides the recent advances and application of CRISPR/Cas9 in developing tomato lines with resistance to biotic stress. | 2024 | 39204705 |
| 9180 | 12 | 0.9858 | Novel genes for disease-resistance breeding. Plant disease control is entering an exciting period during which transgenic plants showing improved resistance to pathogenic viruses, bacteria, fungi and insects are being developed. This review summarizes the first successful attempts to engineer fungal resistance in crops, and highlights two promising approaches. Biotechnology provides the promise of new integrated disease management strategies that combine modern fungicides and transgenic crops to provide effective disease control for modern agriculture. | 2000 | 10712959 |
| 9077 | 13 | 0.9858 | The PLSDB 2025 update: enhanced annotations and improved functionality for comprehensive plasmid research. Plasmids are extrachromosomal DNA molecules in bacteria and archaea, playing critical roles in horizontal gene transfer, antibiotic resistance, and pathogenicity. Since its first release in 2018, our database on plasmids, PLSDB, has significantly grown and enhanced its content and scope. From 34 513 records contained in the 2021 version, PLSDB now hosts 72 360 entries. Designed to provide life scientists with convenient access to extensive plasmid data and to support computer scientists by offering curated datasets for artificial intelligence (AI) development, this latest update brings more comprehensive and accurate information for plasmid research, with interactive visualization options. We enriched PLSDB by refining the identification and classification of plasmid host ecosystems and host diseases. Additionally, we incorporated annotations for new functional structures, including protein-coding genes and biosynthetic gene clusters. Further, we enhanced existing annotations, such as antimicrobial resistance genes and mobility typing. To accommodate these improvements and to host the increase plasmid sets, the webserver architecture and underlying data structures of PLSDB have been re-reconstructed, resulting in decreased response times and enhanced visualization of features while ensuring that users have access to a more efficient and user-friendly interface. The latest release of PLSDB is freely accessible at https://www.ccb.uni-saarland.de/plsdb2025. | 2025 | 39565221 |
| 9182 | 14 | 0.9857 | Harnessing CRISPR/Cas9 in engineering biotic stress immunity in crops. There is significant potential for CRISPR/Cas9 to be used in developing crops that can adapt to biotic stresses such as fungal, bacterial, viral, and pest infections and weeds. The increasing global population and climate change present significant threats to food security by putting stress on plants, making them more vulnerable to diseases and productivity losses caused by pathogens, pests, and weeds. Traditional breeding methods are inadequate for the rapid development of new plant traits needed to counteract this decline in productivity. However, modern advances in genome-editing technologies, particularly CRISPR/Cas9, have transformed crop protection through precise and targeted modifications of plant genomes. This enables the creation of resilient crops with improved resistance to pathogens, pests, and weeds. This review examines various methods by which CRISPR/Cas9 can be utilized for crop protection. These methods include knocking out susceptibility genes, introducing resistance genes, and modulating defense genes. Potential applications of CRISPR/Cas9 in crop protection involve introducing genes that confer resistance to pathogens, disrupting insect genes responsible for survival and reproduction, and engineering crops that are resistant to herbicides. In conclusion, CRISPR/Cas9 holds great promise for advancing crop protection and ensuring food security in the face of environmental challenges and increasing population pressures. The most recent advancements in CRISPR technology for creating resistance to bacteria, fungi, viruses, and pests are covered here. We wrap up by outlining the most pressing issues and technological shortcomings, as well as unanswered questions for further study. | 2025 | 40663257 |
| 9219 | 15 | 0.9857 | Knowing and Naming: Phage Annotation and Nomenclature for Phage Therapy. Bacteriophages, or phages, are viruses that infect bacteria shaping microbial communities and ecosystems. They have gained attention as potential agents against antibiotic resistance. In phage therapy, lytic phages are preferred for their bacteria killing ability, while temperate phages, which can transfer antibiotic resistance or toxin genes, are avoided. Selection relies on plaque morphology and genome sequencing. This review outlines annotating genomes, identifying critical genomic features, and assigning functional labels to protein-coding sequences. These annotations prevent the transfer of unwanted genes, such as antimicrobial resistance or toxin genes, during phage therapy. Additionally, it covers International Committee on Taxonomy of Viruses (ICTV)-an established phage nomenclature system for simplified classification and communication. Accurate phage genome annotation and nomenclature provide insights into phage-host interactions, replication strategies, and evolution, accelerating our understanding of the diversity and evolution of phages and facilitating the development of phage-based therapies. | 2023 | 37932119 |
| 9184 | 16 | 0.9856 | Unlocking the potential of phages: Innovative approaches to harnessing bacteriophages as diagnostic tools for human diseases. Phages, viruses that infect bacteria, have been explored as promising tools for the detection of human disease. By leveraging the specificity of phages for their bacterial hosts, phage-based diagnostic tools can rapidly and accurately detect bacterial infections in clinical samples. In recent years, advances in genetic engineering and biotechnology have enabled the development of more sophisticated phage-based diagnostic tools, including those that express reporter genes or enzymes, or target specific virulence factors or antibiotic resistance genes. However, despite these advancements, there are still challenges and limitations to the use of phage-based diagnostic tools, including concerns over phage safety and efficacy. This review aims to provide a comprehensive overview of the current state of phage-based diagnostic tools, including their advantages, limitations, and potential for future development. By addressing these issues, we hope to contribute to the ongoing efforts to develop safe and effective phage-based diagnostic tools for the detection of human disease. | 2023 | 37770168 |
| 9212 | 17 | 0.9855 | Review of knockout technology approaches in bacterial drug resistance research. Gene knockout is a widely used method in biology for investigating gene function. Several technologies are available for gene knockout, including zinc-finger nuclease technology (ZFN), suicide plasmid vector systems, transcription activator-like effector protein nuclease technology (TALEN), Red homologous recombination technology, CRISPR/Cas, and others. Of these, Red homologous recombination technology, CRISPR/Cas9 technology, and suicide plasmid vector systems have been the most extensively used for knocking out bacterial drug resistance genes. These three technologies have been shown to yield significant results in researching bacterial gene functions in numerous studies. This study provides an overview of current gene knockout methods that are effective for genetic drug resistance testing in bacteria. The study aims to serve as a reference for selecting appropriate techniques. | 2023 | 37605748 |
| 9200 | 18 | 0.9854 | Application of the CRISPR/Cas System for Generation of Pathogen-Resistant Plants. The use of the CRISPR/Cas9 prokaryotic adaptive immune system has led to a breakthrough in targeted genome editing in eukaryotes. The CRISPR/Cas technology allows to generate organisms with desirable characteristics by introducing deletions/insertions into selected genome loci resulting in the knockout or modification of target genes. This review focuses on the current state of the CRISPR/Cas use for the generation of plants resistant to viruses, bacteria, and parasitic fungi. Resistance to DNA- and RNA-containing viruses is usually provided by expression in transgenic plants of the Cas endonuclease gene and short guide RNAs (sgRNAs) targeting certain sites in the viral or the host plant genomes to ensure either direct cleavage of the viral genome or modification of the plant host genome in order to decrease the efficiency of virus replication. Editing of plant genes involved in the defense response to pathogens increases plants resistance to bacteria and pathogenic fungi. The review explores strategies and prospects of the development of pathogen-resistant plants with a focus on the generation of non-transgenic (non-genetically modified) organisms, in particular, by using plasmid (DNA)-free systems for delivery of the Cas/sgRNA editing complex into plant cells. | 2018 | 30878030 |
| 8264 | 19 | 0.9854 | Anti-CRISPR Phages Cooperate to Overcome CRISPR-Cas Immunity. Some phages encode anti-CRISPR (acr) genes, which antagonize bacterial CRISPR-Cas immune systems by binding components of its machinery, but it is less clear how deployment of these acr genes impacts phage replication and epidemiology. Here, we demonstrate that bacteria with CRISPR-Cas resistance are still partially immune to Acr-encoding phage. As a consequence, Acr-phages often need to cooperate in order to overcome CRISPR resistance, with a first phage blocking the host CRISPR-Cas immune system to allow a second Acr-phage to successfully replicate. This cooperation leads to epidemiological tipping points in which the initial density of Acr-phage tips the balance from phage extinction to a phage epidemic. Furthermore, both higher levels of CRISPR-Cas immunity and weaker Acr activities shift the tipping points toward higher initial phage densities. Collectively, these data help elucidate how interactions between phage-encoded immune suppressors and the CRISPR systems they target shape bacteria-phage population dynamics. | 2018 | 30033365 |