VISUAL - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
506800.9819Ultrasensitive Label-Free Detection of Unamplified Multidrug-Resistance Bacteria Genes with a Bimodal Waveguide Interferometric Biosensor. Infections by multidrug-resistant bacteria are becoming a major healthcare emergence with millions of reported cases every year and an increasing incidence of deaths. An advanced diagnostic platform able to directly detect and identify antimicrobial resistance in a faster way than conventional techniques could help in the adoption of early and accurate therapeutic interventions, limiting the actual negative impact on patient outcomes. With this objective, we have developed a new biosensor methodology using an ultrasensitive nanophotonic bimodal waveguide interferometer (BiMW), which allows a rapid and direct detection, without amplification, of two prevalent and clinically relevant Gram-negative antimicrobial resistance encoding sequences: the extended-spectrum betalactamase-encoding gene blaCTX-M-15 and the carbapenemase-encoding gene blaNDM-5 We demonstrate the extreme sensitivity and specificity of our biosensor methodology for the detection of both gene sequences. Our results show that the BiMW biosensor can be employed as an ultrasensitive (attomolar level) and specific diagnostic tool for rapidly (less than 30 min) identifying drug resistance. The BiMW nanobiosensor holds great promise as a powerful tool for the control and management of healthcare-associated infections by multidrug-resistant bacteria.202033086716
506910.9812MC-PRPA-HLFIA Cascade Detection System for Point-of-Care Testing Pan-Drug-Resistant Genes in Urinary Tract Infection Samples. Recently, urinary tract infection (UTI) triggered by bacteria carrying pan-drug-resistant genes, including carbapenem resistance gene bla(NDM) and bla(KPC), colistin resistance gene mcr-1, and tet(X) for tigecycline resistance, have been reported, posing a serious challenge to the treatment of clinical UTI. Therefore, point-of-care (POC) detection of these genes in UTI samples without the need for pre-culturing is urgently needed. Based on PEG 200-enhanced recombinase polymerase amplification (RPA) and a refined Chelex-100 lysis method with HRP-catalyzed lateral flow immunoassay (LFIA), we developed an MCL-PRPA-HLFIA cascade assay system for detecting these genes in UTI samples. The refined Chelex-100 lysis method extracts target DNA from UTI samples in 20 min without high-speed centrifugation or pre-incubation of urine samples. Following optimization, the cascade detection system achieved an LOD of 10(2) CFU/mL with satisfactory specificity and could detect these genes in both simulated and actual UTI samples. It takes less than an hour to complete the process without the use of high-speed centrifuges or other specialized equipment, such as PCR amplifiers. The MCL-PRPA-HLFIA cascade assay system provides new ideas for the construction of rapid detection methods for pan-drug-resistant genes in clinical UTI samples and provides the necessary medication guidance for UTI treatment.202337047757
221420.9808Development of multiplex recombinase polymerase amplification for the rapid detection of five carbapenemase (bla(KPC), bla(NDM), bla(OXA-48)-like, bla(IMP), and bla(VIM)) and 10 mcr (mcr-1 to mcr-10) genes in blood cultures. The emergence of plasmid-encoded carbapenemase and mobile colistin resistance (mcr) genes poses a significant challenge in controlling the spread of multidrug-resistant Gram-negative bacteria. Addressing this issue requires the development of rapid, accurate, and cost-effective tools for gene detection. For the first time, this study reports three multiplex recombinase polymerase amplification (RPA) assays, each designed to detect five resistance genes: carbapenemase (bla(KPC), bla(NDM), bla(OXA-48)-like, bla(IMP), and bla(VIM)), mcr-1 to mcr-5, and mcr-6 to mcr-10. Using agarose gel electrophoresis, all 15 target genes were successfully amplified by the three assays, demonstrating the potential of these assays for integration with rapid reporting platforms. To increase their applicability, the assays were combined with SYBR(Ⓡ) Green I for visual identification of all 15 target genes and with lateral flow immunoassays (LFIAs) for detection of two carbapenemase (bla(NDM) and bla(OXA-48)-like) and two mcr genes (mcr-1 and mcr-3) genes. Specificity testing showed that RPA-SYBR(Ⓡ) Green I and RPA-LFIAs produced no cross-reactivity among the target genes. The limit of detection for RPA-SYBR(Ⓡ) Green I, for all genes, ranged from 2 × 10(0) to 2 × 10(2) CFU/reaction, and for RPA-LFIAs from 2 × 10(0) to 2 × 10(3) CFU/reaction. The developed RPA-SYBR(Ⓡ) Green I and RPA-LFIAs successfully detected 15 and four target genes, from positive haemoculture bottles. These assays offer a promising approach for point-of-care testing. Providing a valuable tool for antimicrobial resistance surveillance and timely guidance for effective antibiotic intervention.202540618792
907630.9805ResiDB: An automated database manager for sequence data. The amount of publicly available DNA sequence data is drastically increasing, making it a tedious task to create sequence databases necessary for the design of diagnostic assays. The selection of appropriate sequences is especially challenging in genes affected by frequent point mutations such as antibiotic resistance genes. To overcome this issue, we have designed the webtool resiDB, a rapid and user-friendly sequence database manager for bacteria, fungi, viruses, protozoa, invertebrates, plants, archaea, environmental and whole genome shotgun sequence data. It automatically identifies and curates sequence clusters to create custom sequence databases based on user-defined input sequences. A collection of helpful visualization tools gives the user the opportunity to easily access, evaluate, edit, and download the newly created database. Consequently, researchers do no longer have to manually manage sequence data retrieval, deal with hardware limitations, and run multiple independent software tools, each having its own requirements, input and output formats. Our tool was developed within the H2020 project FAPIC aiming to develop a single diagnostic assay targeting all sepsis-relevant pathogens and antibiotic resistance mechanisms. ResiDB is freely accessible to all users through https://residb.ait.ac.at/.202133495705
507340.9800Parallel Detection of the Unamplified Carbapenem Resistance Genes bla(NDM-1) and bla(OXA-1) Using a Plasmonic Nano-Biosensor with a Field-Portable DNA Extraction Method. Antimicrobial resistance (AMR) is a rapidly growing global concern resulting from the overuse of antibiotics in agricultural and clinical settings. The challenge is exacerbated by the lack of rapid surveillance for resistant bacteria in clinical, environmental, and food supply settings. The increasing resistance to carbapenems, an important sub-class of beta-lactam antibiotics, is a major concern in the healthcare community. Carbapenem resistance (CR) has been found in the environment and food supply chain, where it has the potential to spread to pathogens, animals, and humans through direct or indirect contact. Rapid detection for preventative and control measures should be developed. This study utilized a gold nanoparticle-based plasmonic biosensor for the parallel detection of the CR genes bla(NDM-1) and bla(OXA-1). To explore the field portability, DNA was extracted using two methods: a commercial extraction kit and a boiling method. The results were compared between the two methods using a spectrophotometer and a cellphone application for RGB values to quantify the visual results. The results showed that the boiling method of extraction was more effective than extraction with a commercial kit for this analysis. The parallel detection of unamplified genes extracted via the boiling method is novel. When combined with other portable testing equipment, the approach has the potential to be an inexpensive, rapid, and simple on-site CR gene detection protocol.202539997014
507250.9800Integrated Sample to Detection of Carbapenem-Resistant Bacteria Extracted from Water Samples Using a Portable Gold Nanoparticle-Based Biosensor. Antimicrobial resistance (AMR) is a significant global threat and is driven by the overuse of antibiotics in both clinical and agricultural settings. This issue is further complicated by the lack of rapid surveillance tools to detect resistant bacteria in clinical, environmental, and food systems. Of particular concern is the rise in resistance to carbapenems, a critical class of beta-lactam antibiotics. Rapid detection methods are necessary for prevention and surveillance effort. This study utilized a gold nanoparticle-based plasmonic biosensor to detect three CR genes: bla(KPC-3), bla(NDM-1), and bla(OXA-1). Optical signals were analyzed using both a spectrophotometer and a smartphone app that quantified visual color changes using RGB values. This app, combined with a simple boiling method for DNA extraction and a portable thermal cycler, was used to evaluate the biosensor's potential for POC use. Advantages of the portable bacterial detection device include real time monitoring for immediate decision-making in critical situations, field and on-site testing in resource-limited settings without needing to transport samples to a centralized lab, minimal training required, automatic data analysis, storage and sharing, and reduced operational cost. Bacteria were inoculated into sterile water, river water, and turkey rinse water samples to determine the biosensor's success in detecting target genes from sample matrices. Magnetic nanoparticles were used to capture and concentrate bacteria to avoid time-consuming cultivation and separation steps. The biosensor successfully detected the target CR genes in all tested samples using three gene-specific DNA probes. Target genes were detected with a limit of detection of 2.5 ng/L or less, corresponding to ~10(3) CFU/mL of bacteria.202540942723
908360.9799ARGNet: using deep neural networks for robust identification and classification of antibiotic resistance genes from sequences. BACKGROUND: Emergence of antibiotic resistance in bacteria is an important threat to global health. Antibiotic resistance genes (ARGs) are some of the key components to define bacterial resistance and their spread in different environments. Identification of ARGs, particularly from high-throughput sequencing data of the specimens, is the state-of-the-art method for comprehensively monitoring their spread and evolution. Current computational methods to identify ARGs mainly rely on alignment-based sequence similarities with known ARGs. Such approaches are limited by choice of reference databases and may potentially miss novel ARGs. The similarity thresholds are usually simple and could not accommodate variations across different gene families and regions. It is also difficult to scale up when sequence data are increasing. RESULTS: In this study, we developed ARGNet, a deep neural network that incorporates an unsupervised learning autoencoder model to identify ARGs and a multiclass classification convolutional neural network to classify ARGs that do not depend on sequence alignment. This approach enables a more efficient discovery of both known and novel ARGs. ARGNet accepts both amino acid and nucleotide sequences of variable lengths, from partial (30-50 aa; 100-150 nt) sequences to full-length protein or genes, allowing its application in both target sequencing and metagenomic sequencing. Our performance evaluation showed that ARGNet outperformed other deep learning models including DeepARG and HMD-ARG in most of the application scenarios especially quasi-negative test and the analysis of prediction consistency with phylogenetic tree. ARGNet has a reduced inference runtime by up to 57% relative to DeepARG. CONCLUSIONS: ARGNet is flexible, efficient, and accurate at predicting a broad range of ARGs from the sequencing data. ARGNet is freely available at https://github.com/id-bioinfo/ARGNet , with an online service provided at https://ARGNet.hku.hk . Video Abstract.202438725076
503870.9798Simple and quick detection of extended-spectrum β-lactamase and carbapenemase-encoding genes using isothermal nucleic acid amplification techniques. The spread of plasmid-mediated antibiotic-resistant bacteria must be controlled; to this end, developing kits for simple and rapid detection in food and clinical settings is desirable. This review describes the detection of antibiotic resistance genes in extended-spectrum β-lactamase (ESBL)- and carbapenemase-producing bacteria. Loop-mediated isothermal amplification (LAMP), a technique developed in Japan, is a useful diffusion amplification method that does not require equipment like thermal cyclers, and amplifies the target gene in 30 min at about 65℃. Although most reports targeting ESBL and carbapenemase genes are intended for clinical use, environmental and food samples have also been targeted. Recombinase polymerase amplification (RPA) has recently been developed; in RPA, the reaction proceeds under the human skin with reaction conditions of 30 min at 37℃. Detection of ESBL and carbapenemase-encoding genes in food and clinical samples using RPA has been reported in limited studies. However, research on RPA has just begun, and further development is expected.202338233166
974380.9795Simultaneous Detection of Antibiotic Resistance Genes on Paper-Based Chip Using [Ru(phen)(2)dppz](2+) Turn-on Fluorescence Probe. Antibiotic resistance, the ability of some bacteria to resist antibiotic drugs, has been a major global health burden due to the extensive use of antibiotic agents. Antibiotic resistance is encoded via particular genes; hence the specific detection of these genes is necessary for diagnosis and treatment of antibiotic resistant cases. Conventional methods for monitoring antibiotic resistance genes require the sample to be transported to a central laboratory for tedious and sophisticated tests, which is grueling and time-consuming. We developed a paper-based chip, integrated with loop-mediated isothermal amplification (LAMP) and the "light switch" molecule [Ru(phen)(2)dppz](2+), to conduct turn-on fluorescent detection of antibiotic resistance genes. In this assay, the amplification reagents can be embedded into test spots of the chip in advance, thus simplifying the detection procedure. [Ru(phen)(2)dppz](2+) was applied to intercalate into amplicons for product analysis, enabling this assay to be operated in a wash-free format. The paper-based detection device exhibited a limit of detection (LOD) as few as 100 copies for antibiotic resistance genes. Meanwhile, it could detect antibiotic resistance genes from various bacteria. Noticeably, the approach can be applied to other genes besides antibiotic resistance genes by simply changing the LAMP primers. Therefore, this paper-based chip has the potential for point-of-care (POC) applications to detect various gene samples, especially in resource-limited conditions.201829323478
582690.9795Rapid and accurate sepsis diagnostics via a novel probe-based multiplex real-time PCR system. Sepsis is a critical clinical emergency that requires prompt diagnosis and intervention. Its prevalence has increased due to the aging population and increased antibiotic resistance. Early identification and the use of innovative technologies are crucial for improving patient outcomes. Modern methodologies are needed to minimize the turnaround time for diagnosis and improve outcomes. Rapid diagnostic tests and multiplex PCR are effective but have limitations in identifying a range of pathogens and target genes. Our study evaluated two novel probe-based multiplex real-time PCR systems: the SEPSI ID and SEPSI DR panels. These systems can quickly identify bacterial and fungal pathogens, alongside antibiotic resistance genes. The assays cover 29 microorganisms (gram-negative bacteria, gram-positive bacteria, yeast, and mold species), alongside 23 resistance genes and four virulence factors. A streamlined workflow uses 2 µL of broth from positive blood cultures (BCs) without nucleic acid extraction and provides results in approximately 1 h. We present the results from an evaluation of 228 BCs and 22 isolates previously characterized by whole-genome sequencing. In comparison to the reference methods, the SEPSI ID panel demonstrated a sensitivity of 96.88%, a specificity of 100%, and a PPV of 100%, whereas the SEPSI DR panel showed a sensitivity of 97.8%, a PPV of 89.7%, and a specificity of 96.7%. Both panels also identified additional pathogens and resistance-related targets not detected by conventional methods. This assay shows promise for rapidly and accurately diagnosing sepsis. Future studies should validate its performance in various clinical settings to enhance sepsis management and improve patient outcomes.IMPORTANCEWe present a new diagnostic method that enables the quick and precise identification of pathogens and resistance genes from positive blood cultures, eliminating the need for nucleic acid extraction. This technique can also be used on fresh pathogen cultures. It has the potential to greatly improve treatment protocols, leading to better patient outcomes, more responsible antibiotic use, and more efficient management of healthcare resources.202541025980
5831100.9794Development of a nucleic acid lateral flow immunoassay (NALFIA) for reliable, simple and rapid detection of the methicillin resistance genes mecA and mecC. The gene mecA and its homologue mecC confer methicillin resistance in Staphylococcus aureus and other staphylococci. Methicillin-resistant staphylococci (MRS) are considered resistant to all β-lactam antibiotics. To avoid the use of β-lactam antibiotics for the control of MRS infections, there is an urgent need for a fast and reliable screening assay for mecA and mecC that can easily be integrated in routine laboratory diagnostics. The aim of this study was the development of such a rapid detection method for methicillin resistance based on nucleic acid lateral flow immunoassay (NALFIA) technology. In NALFIA, the target sequences are PCR-amplified, immobilized via antigen-antibody interaction and finally visualized as distinct black bars resulting from neutravidin-labeled carbon particles via biotin-neutravidin interaction. A screening of 60 defined strains (MRS and non-target bacteria) and 28 methicillin-resistant S. aureus (MRSA) isolates from clinical samples was performed with PCR-NALFIA in comparison to PCR with subsequent gel electrophoresis (PCR-GE) and real-time PCR. While all samples were correctly identified with all assays, PCR-NALFIA was superior with respect to limits of detection. Moreover, this assay allowed for differentiation between mecA and mecC by visualizing the two alleles at different positions on NALFIA test stripes. However, since this test system only targets the mecA and mecC genes, it does not allow to determine in which staphylococcal species the mec gene is included. Requiring only a fraction of the time needed for cultural methods (i.e. the gold standard), the PCR-NALFIA presented here is easy to handle and can be readily integrated into laboratory diagnostics.201727569992
5125110.9792Do we still need Illumina sequencing data? Evaluating Oxford Nanopore Technologies R10.4.1 flow cells and the Rapid v14 library prep kit for Gram negative bacteria whole genome assemblies. The best whole genome assemblies are currently built from a combination of highly accurate short-read sequencing data and long-read sequencing data that can bridge repetitive and problematic regions. Oxford Nanopore Technologies (ONT) produce long-read sequencing platforms and they are continually improving their technology to obtain higher quality read data that is approaching the quality obtained from short-read platforms such as Illumina. As these innovations continue, we evaluated how much ONT read coverage produced by the Rapid Barcoding Kit v14 (SQK-RBK114) is necessary to generate high-quality hybrid and long-read-only genome assemblies for a panel of carbapenemase-producing Enterobacterales bacterial isolates. We found that 30× long-read coverage is sufficient if Illumina data are available, and that more (at least 100× long-read coverage is recommended for long-read-only assemblies. Illumina polishing is still improving single nucleotide variants (SNVs) and INDELs in long-read-only assemblies. We also examined if antimicrobial resistance genes could be accurately identified in long-read-only data, and found that Flye assemblies regardless of ONT coverage detected >96% of resistance genes at 100% identity and length. Overall, the Rapid Barcoding Kit v14 and long-read-only assemblies can be an optimal sequencing strategy (i.e., plasmid characterization and AMR detection) but finer-scale analyses (i.e., SNV) still benefit from short-read data.202438354391
5097120.9792Comparing Graph Sample and Aggregation (SAGE) and Graph Attention Networks in the Prediction of Drug-Gene Associations of Extended-Spectrum Beta-Lactamases in Periodontal Infections and Resistance. INTRODUCTION: Gram-negative bacteria exhibit more antibiotic resistance than gram-positive bacteria due to their cell wall structure and composition differences. Porins, or protein channels in these bacteria, can allow small, hydrophilic antibiotics to diffuse, affecting their susceptibility. Mutations in porin protein genes can also impair antibiotic entry. Predicting drug-gene associations of extended-spectrum beta-lactamases (ESBLs) is crucial as they confer resistance to beta-lactam antibiotics, challenging the treatment of infections. This aids clinicians in selecting suitable treatments, optimizing drug usage, enhancing patient outcomes, and controlling antibiotic resistance in healthcare settings. Graph-based neural networks can predict drug-gene associations in periodontal infections and resistance. The aim of the study was to predict drug-gene associations of ESBLs in periodontal infections and resistance. METHODS: The study focuses on analyzing drug-gene associations using probes and drugs. The data was converted into graph language, assigning nodes and edges for drugs and genes. Graph neural networks (GNNs) and similar algorithms were implemented using Google Colab and Python. Cytoscape and CytoHubba are open-source software platforms used for network analysis and visualization. GNNs were used for tasks like node classification, link prediction, and graph-level prediction. Three graph-based models were used: graph convolutional network (GCN), Graph SAGE, and graph attention network (GAT). Each model was trained for 200 epochs using the Adam optimizer with a learning rate of 0.01 and a weight decay of 5e-4. RESULTS: The drug-gene association network has 57 nodes, 79 edges, and a 2.730 characteristic path length. Its structure, organization, and connectivity are analyzed using the GCN and Graph SAGE, which show high accuracy, precision, recall, and an F1-score of 0.94. GAT's performance metrics are lower, with an accuracy of 0.68, precision of 0.47, recall of 0.68, and F1-score of 0.56, suggesting that it may not be as effective in capturing drug-gene relationships. CONCLUSION: Compared to ESBLs, both GCN and Graph SAGE demonstrate excellent performance with accuracy, precision, recall, and an F1-score of 0.94. These results indicate that GCN and Graph SAGE are highly effective in predicting drug-gene associations related to ESBLs. GCN and Graph SAGE outperform GAT in predicting drug-gene associations for ESBLs. Improvements include data augmentation, regularization, and cross-validation. Ethical considerations, fairness, and open-source implementations are crucial for future research in precision periodontal treatment.202439347119
5828130.9791Target-enriched sequencing enables accurate identification of bloodstream infections in whole blood. Bloodstream infections are within the top ten causes of death globally, with a mortality rate of up to 70%. Gold standard blood culture testing is time-consuming, resulting in delayed, but accurate, treatment. Molecular methods, such as RT-qPCR, have limited targets in one run. We present a new Ampliseq detection system (ADS) combining target amplification and next-generation sequencing for accurate identification of bacteria, fungi, and antimicrobial resistance determinants directly from blood samples. In this study, we included removal of human genomic DNA during nucleic acid extraction, optimized the target sequence set and drug resistance genes, performed antimicrobial resistance profiling of clinical isolates, and evaluated mock specimens and clinical samples by ADS. ADS successfully identified pathogens at the species-level in 36 h, from nucleic acid extraction to results. Besides pathogen identification, ADS can also present drug resistance profiles. ADS enabled detection of all bacteria and accurate identification of 47 pathogens. In 20 spiked samples and 8 clinical specimens, ADS detected at least 92.81% of reads mapped to pathogens. ADS also showed consistency with the three culture-negative samples, and correctly identified pathogens in four of five culture-positive clinical blood specimens. This Ampliseq-based technology promises broad coverage and accurate pathogen identification, helping clinicians to accurately diagnose and treat bloodstream infections.202234915067
5827140.9791Duplex dPCR System for Rapid Identification of Gram-Negative Pathogens in the Blood of Patients with Bloodstream Infection: A Culture-Independent Approach. Early and accurate detection of pathogens is important to improve clinical outcomes of bloodstream infections (BSI), especially in the case of drug-resistant pathogens. In this study, we aimed to develop a culture-independent digital PCR (dPCR) system for multiplex detection of major sepsiscausing gram-negative pathogens and antimicrobial resistance genes using plasma DNA from BSI patients. Our duplex dPCR system successfully detected nine targets (five bacteria-specific targets and four antimicrobial resistance genes) through five reactions within 3 hours. The minimum detection limit was 50 ag of bacterial DNA, suggesting that 1 CFU/ml of bacteria in the blood can be detected. To validate the clinical applicability, cell-free DNA samples from febrile patients were tested with our system and confirmed high consistency with conventional blood culture. This system can support early identification of some drug-resistant gram-negative pathogens, which can help improving treatment outcomes of BSI.202134528911
5119150.9789ROCker models for reliable detection and typing of short-read sequences carrying mcr, erm, mph, and lnu antibiotic resistance genes. Quantitative monitoring of emerging antimicrobial resistance genes (ARGs) using short-read sequences remains challenging due to the high frequency of amino acid functional domains and motifs shared with related but functionally distinct (non-target) proteins. To facilitate ARG monitoring efforts using unassembled short reads, we present novel ROCker models for mcr, mph, erm, and lnu ARG families, as well as models for variants of special public health concern within these families, including mcr-1, mphA, ermB, lnuF, lnuB, and lnuG genes. For this, we curated target gene sequence sets for model training and built these models using the recently updated ROCker V2 pipeline (Gerhardt et al., in review). To validate our models, we simulated reads from the whole genome of ARG-carrying isolates spanning a range of common read lengths and used them to challenge the filtering efficacy of ROCker versus common static filtering approaches, such as similarity searches using BLASTx with various e-value thresholds or hidden Markov models. ROCker models consistently showed F1 scores up to 10× higher (31% higher on average) and lower false-positive (by 30%, on average) and false-negative (by 16%, on average) rates based on 250 bp reads compared to alternative methods. The ROCker models and all related reference materials and data are freely available through http://enve-omics.ce.gatech.edu/rocker/models, further expanding the available model collection previously developed for other genes. Their application to short-read metagenomes, metatranscriptomes, and PCR amplicon data should facilitate more accurate classification and quantification of unassembled short-read sequences for these ARG families and specific genes.IMPORTANCEAntimicrobial resistance gene families encoding erm and mph genes confer resistance to the macrolide class of antimicrobials, which are used to treat a wide range of infections. Similarly, the mcr gene family confers resistance to polymyxin E (colistin), a drug of last resort for many serious drug-resistant bacterial infections, and the lnu gene family confers resistance to lincomycin, which is reserved for patients allergic to penicillin or where bacteria have developed resistance to other antimicrobials. Assessing the prevalence of these genes in clinical or environmental samples and monitoring their spread to new pathogens are thus important for quantifying the associated public health risk. However, detecting these and other resistance genes in short-read sequence data is technically challenging. Our ROCker bioinformatic pipeline achieves reliable detection and typing of broad-range target gene sequences in complex data sets, thus contributing toward solving an important problem in ongoing surveillance efforts of antimicrobial resistance.202541143534
9742160.9789BOCS: DNA k-mer content and scoring for rapid genetic biomarker identification at low coverage. A single, inexpensive diagnostic test capable of rapidly identifying a wide range of genetic biomarkers would prove invaluable in precision medicine. Previous work has demonstrated the potential for high-throughput, label-free detection of A-G-C-T content in DNA k-mers, providing an alternative to single-letter sequencing while also having inherent lossy data compression and massively parallel data acquisition. Here, we apply a new bioinformatics algorithm - block optical content scoring (BOCS) - capable of using the high-throughput content k-mers for rapid, broad-spectrum identification of genetic biomarkers. BOCS uses content-based sequence alignment for probabilistic mapping of k-mer contents to gene sequences within a biomarker database, resulting in a probability ranking of genes on a content score. Simulations of the BOCS algorithm reveal high accuracy for identification of single antibiotic resistance genes, even in the presence of significant sequencing errors (100% accuracy for no sequencing errors, and >90% accuracy for sequencing errors at 20%), and at well below full coverage of the genes. Simulations for detecting multiple resistance genes within a methicillin-resistant Staphylococcus aureus (MRSA) strain showed 100% accuracy at an average gene coverage of merely 0.515, when the k-mer lengths were variable and with 4% sequencing error within the k-mer blocks. Extension of BOCS to cancer and other genetic diseases met or exceeded the results for resistance genes. Combined with a high-throughput content-based sequencing technique, the BOCS algorithm potentiates a test capable of rapid diagnosis and profiling of genetic biomarkers ranging from antibiotic resistance to cancer and other genetic diseases.201931173943
5042170.9789Multiplex loop-mediated isothermal amplification (multi-LAMP) assay for rapid detection of mcr-1 to mcr-5 in colistin-resistant bacteria. Purpose: The discovery of the plasmid-mediated colistin resistance genes, mcr, revealed a mechanism of transmission of colistin resistance, which is a major, global public health concern especially among individuals infected with carbapenem-resistant Gram-negative bacteria. To monitor the spread and epidemiology of mcr genes, a convenient and reliable method to detect mcr genes in clinical isolates is needed, especially in the primary care institutions. This study aimed to establish a restriction endonuclease-based multiplex loop-mediated isothermal amplification (multi-LAMP) assay to detect mcr genes (mcr-1 to mcr-5) harbored by colistin-resistant bacteria. Methods: A triple-LAMP assay for mcr-1, mcr-3, and mcr-4 and a double-LAMP assay for mcr-2 and mcr-5 were established. The sensitivity and specificity of the LAMP reactions were determined via electrophoresis and visual detection. Results: The sensitivity of the LAMP assay was 10-fold greater than that of PCR, with high specificity among the screened primers. Specific mcr genes were distinguished in accordance with band numbers and the fragment length of the digested LAMP amplification products. Furthermore, the LAMP assay was confirmed as a rapid and reliable diagnostic technique upon application for clinical samples, and the results were consistent with those of conventional PCR assay. Conclusion: The multi-LAMP assay is a potentially promising method to detect mcr genes and will, if implemented, help prevent infections by drug-resistant bacteria in primary-care hospitals due to rapid and reliable surveillance. To our knowledge, this is the first study to report the application of LAMP to detect mcr-2 to mcr-5 genes and the first time that multi-LAMP has been applied to detect mcr genes.201931308708
5194180.9789Evaluation of the CosmosID Bioinformatics Platform for Prosthetic Joint-Associated Sonicate Fluid Shotgun Metagenomic Data Analysis. We previously demonstrated that shotgun metagenomic sequencing can detect bacteria in sonicate fluid, providing a diagnosis of prosthetic joint infection (PJI). A limitation of the approach that we used is that data analysis was time-consuming and specialized bioinformatics expertise was required, both of which are barriers to routine clinical use. Fortunately, automated commercial analytic platforms that can interpret shotgun metagenomic data are emerging. In this study, we evaluated the CosmosID bioinformatics platform using shotgun metagenomic sequencing data derived from 408 sonicate fluid samples from our prior study with the goal of evaluating the platform vis-à-vis bacterial detection and antibiotic resistance gene detection for predicting staphylococcal antibacterial susceptibility. Samples were divided into a derivation set and a validation set, each consisting of 204 samples; results from the derivation set were used to establish cutoffs, which were then tested in the validation set for identifying pathogens and predicting staphylococcal antibacterial resistance. Metagenomic analysis detected bacteria in 94.8% (109/115) of sonicate fluid culture-positive PJIs and 37.8% (37/98) of sonicate fluid culture-negative PJIs. Metagenomic analysis showed sensitivities ranging from 65.7 to 85.0% for predicting staphylococcal antibacterial resistance. In conclusion, the CosmosID platform has the potential to provide fast, reliable bacterial detection and identification from metagenomic shotgun sequencing data derived from sonicate fluid for the diagnosis of PJI. Strategies for metagenomic detection of antibiotic resistance genes for predicting staphylococcal antibacterial resistance need further development.201930429253
5070190.9789Sequence-specific DNA solid-phase extraction in an on-chip monolith: Towards detection of antibiotic resistance genes. Antibiotic resistance of bacteria is a growing problem and presents a challenge for prompt treatment in patients with sepsis. Currently used methods rely on culturing or amplification; however, these steps are either time consuming or suffer from interference issues. A microfluidic device was made from black polypropylene, with a monolithic column modified with a capture oligonucleotide for sequence selective solid-phase extraction of a complementary target from a lysate sample. Porous properties of the monolith allow flow and hybridization of a target complementary to the probe immobilized on the column surface. Good flow-through properties enable extraction of a 100μL sample and elution of target DNA in 12min total time. Using a fluorescently labeled target oligonucleotide related to Verona Integron-Mediated Metallo-β-lactamase it was possible to extract and detect a 1pM sample with 83% recovery. Temperature-mediated elution by heating above the duplex melting point provides a clean extract without any agents that interfere with base pairing, allowing various labeling methods or further downstream processing of the eluent. Further integration of this extraction module with a system for isolation and lysis of bacteria from blood, as well as combining with single-molecule detection should allow rapid determination of antibiotic resistance.201728734608