VILLAGERS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
717000.8982Effect of cattle farm exposure on oropharyngeal and gut microbial communities and antibiotic resistance genes in workers. Livestock farms are recognized as the main sources of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) with potential implications for human health. In this study, we systematically analyzed microbiome composition, distribution of ARGs and mobile genetic elements (MGEs) in the oropharynx and gut of workers in cattle farms and surrounding villagers, cattle feces and farm air, and the relationship of microbial communities among farm air, cattle feces and farmworkers (oropharynx and gut). Exposure to the farm environment may have remodeled farmworkers' oropharynx and gut microbiota, with reduced microbial diversity (P < 0.05) and enrichment of some opportunistic pathogenic bacteria like Shigella, Streptococcus, and Neisseria in the oropharynx. Meanwhile, compared with villagers, ARG abundance in oropharynx of farmworkers increased significantly (P < 0.05), but, no significant difference in gut (P > 0.05). Microbial composition and ARG profile in farmworkers might be influenced by working time and work type, ARG abundance in farmworkers' gut was positively correlated with working time (P < 0.01), and higher ARG abundance was found in the oropharynx of drovers. The network analysis revealed that 4 MGEs (tnpA-01, tnpA-04, Tp614, and IS613), 5 phyla (e.g. Bacteroidetes, Fusobacteria, and TM7), and 6 genera were significantly associated with 37 ARGs (ρ > 0.6, P < 0.01). Overall, our results indicated that farm exposure may have affected the microbial composition and increased ARG abundance of farmworkers. Transmission of some ARGs may have occurred among the environment, animals and humans via host bacteria, which might pose a potential threat to human health.202234600986
678910.8960Metagenomic insights on promoting the removal of resistome in aerobic composting pig manure by lightly burned modified magnesite. The antibiotic resistance genes (ARGs) have become a serious issue facing public health. In this study, light-burned magnesite with a high specific surface area at 650 °C (MS650) was used for aerobic composting, evaluating its effect on the resistome during pig manure composting. Different concentrations of MS650 reduced the abundance of the resistome, including seven high-risk ARGs, class two metal and biocide resistance genes (MBRGs), and human pathogenic bacteria (HPBs). The addition of 2.5 % MS650 (L1) in the composting had the best reduction effect on ARGs, MBRGs and HPBs. ARG and microbial community assembly are deterministic processes. Proteobacteria and Actinobacteria was the main factor associated with the decrease in ARGs, followed by virulence factor genes (VFGs, 44.2 %). The reduction in MBRGs by MS650 mainly suppressed HGT by reducing the Isfinder abundance. To summarize, MS650 is an effective method to improve emission reduction of ARGs and MBRGs. This study provided a theoretical basis for improving the engineering application potential of MS650.202439490844
812620.8958Antiallergic drugs drive the alteration of microbial community and antibiotic resistome in surface waters: A metagenomic perspective. Antiallergic drugs (AADs) are emerging contaminants of global concern due to their environmental persistence and potential ecological impacts. This study investigated the effects of seven AADs (chlorpheniramine, diphenhydramine, cetirizine, loratadine, desloratadine, sodium cromoglicate and calcium gluconate) at environmentally relevant concentrations on antibiotic resistome and bacterial community structures in water using microcosm experiments and metagenomic sequencing. The results showed that AADs increased the abundance of antibiotic-resistant bacteria (ARB) by 1.24- to 7.78-fold. Community structure shifts indicated that chlorpheniramine, diphenhydramine, and cetirizine promoted Actinobacteria (e.g., Aurantimicrobium), while the other four AADs favored Proteobacteria (e.g., Limnohabitans). AADs also significantly altered the relative abundance of antibiotic resistance genes (ARGs), with Actinobacteria and Proteobacteria identified as key ARB components and potential hosts of ARGs (e.g., evgS, mtrA, RanA). Host analysis showed ARGs were primarily carried by Actinobacteria (e.g., Aurantimicrobium) under chlorpheniramine, diphenhydramine, and cetirizine exposure, but by Proteobacteria (e.g., Limnohabitans) under the other four AADs. Furthermore, AADs facilitated the horizontal transfer of ARGs (e.g., evgS) within microbial communities, contributing to antibiotic resistance dissemination. This study highlights the ecological risks of AADs in promoting antibiotic resistance spread and provides new insights into their impact on microbial communities and resistome dynamics in aquatic environments.202540570627
679030.8951Overlooked dissemination risks of antimicrobial resistance through green tide proliferation. Green tides, particularly those induced by Enteromorpha, pose significant environmental challenges, exacerbated by climate change, coastal eutrophication, and other anthropogenic impacts. More concerningly, these blooms may influence the spread of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) within ecosystems. However, the manner in which Enteromorpha blooms affect the distribution and spread of antimicrobial resistance (AMR) remains uncertain. This study investigated ARG profiles, dynamic composition, and associated health risks within the Enteromorpha phycosphere and surrounding seawater in typical bays (Jiaozhou, Aoshan, and Lingshan) in the South Yellow Sea. The Enteromorpha phycosphere exhibited significantly higher ARG abundance (p < 0.05) but lower diversity compared to the surrounding seawater. Source-tracking and metagenomic analyses revealed that the phycosphere was the main contributor to the resistome of surrounding seawater. Moreover, resistant pathogens, especially ESKAPE pathogens, with horizontal gene transfer (HGT) potential, were more abundant in the phycosphere than in the surrounding seawater. The phycosphere released high-risk ARGs to the surrounding seawater during Enteromorpha blooms, posing serious health and ecological AMR risks in marine environments. This study highlights the significant role of Enteromorpha blooms in ARG spread and associated risks, urging a reassessment of AMR burden from a public health perspective.202539488061
716740.8948Occurrence and distribution of antibiotic pollution and antibiotic resistance genes in seagrass meadow sediments based on metagenomics. Seagrass meadows are one of the most important coastal ecosystems that provide essential ecological and economic services. The contamination levels of antibiotic and antibiotic resistance genes (ARGs) in coastal ecosystems are severely elevated owing to anthropogenic disturbances, such as terrestrial input, aquaculture effluent, and sewage discharge. However, few studies have focused on the occurrence and distribution of antibiotics and their corresponding ARGs in this habitat. Thus, we investigated the antibiotic and ARGs profiles, microbial communities, and ARG-carrying host bacteria in typical seagrass meadow sediments collected from Swan Lake, Caofeidian shoal harbor, Qingdao Bay, and Sishili Bay in the Bohai Sea and northern Yellow Sea. The total concentrations of 30 detected antibiotics ranged from 99.35 to 478.02 μg/kg, tetracyclines were more prevalent than other antibiotics. Metagenomic analyses showed that 342 ARG subtypes associated with 22 ARG types were identified in the seagrass meadow sediments. Multidrug resistance genes and RanA were the most dominant ARG types and subtypes, respectively. Co-occurrence network analysis revealed that Halioglobus, Zeaxanthinibacter, and Aureitalea may be potential hosts at the genus level, and the relative abundances of these bacteria were higher in Sishili Bay than those in other areas. This study provided important insights into the pollution status of antibiotics and ARGs in typical seagrass meadow sediments. Effective management should be performed to control the potential ecological health risks in seagrass meadow ecosystems.202438782270
693750.8947Differential responses of bacterial and archaeal communities to biodegradable and non-biodegradable microplastics in river. Microplastics are widespread environmental pollutants that pose risks to ecosystems, yet their effects on bacterial and archaeal communities in aquatic ecosystems remain understudied. In this study, we performed a 14-day microcosm experiment combined with metagenomic sequencing to compare bacterial and archaeal responses to a biodegradable microplastic (polylactic acid, PLA) and a non-biodegradable microplastic (polyvinyl chloride, PVC). Microplastics selectively enriched distinct microbial assemblages, with Pseudomonadota and Euryarchaeota identified as the dominant bacterial and archaeal phyla, accounting for 67.83 % and 15.95 %, respectively. Archaeal community in surrounding water were more sensitive to colonization time than bacterial community. Compared to the surrounding water, the plastisphere displayed simpler and more loosely connected microbial networks. Notably, co-occurrence networks of both bacteria and archaea in the PVC plastisphere were predominantly shaped by symbiotic interactions. Both bacteria and archaea carried diverse antibiotic resistance genes (ARGs), but PLS-PM indicated that bacteria were the primary drivers of ARG dissemination (path coefficient = 0.952). While the PVC plastisphere showed higher ARG abundance than the PLA plastisphere, elevated intI1 expression in the PLA plastisphere suggests a potentially greater risk of ARG dissemination associated with PLA microplastics. These findings reveal the distinct effects of PLA and PVC microplastics on microbial communities and highlight the role of microplastics in ARG dissemination, emphasizing their ecological risks in aquatic ecosystems.202540712359
717560.8947Key Contribution and Risk of Airborne Antibiotic Resistance: Total Suspended Particles or Settled Dust? The atmosphere is an important environmental medium in spreading antimicrobial resistance (AMR) in animal farming systems, yet the exposure risks associated with airborne pathways remain underexplored. This study employed metagenomic sequencing to investigate the airborne transmission of AMR in chicken farms (i.e., chicken feces, total suspended particles (TSP), and dust) and its exposure risks on the gut and nasal cavities of workers, office staff, and nearby villagers. Results revealed that TSP exhibited greater abundance, diversity, and transfer potential of antibiotic resistance genes (ARGs) compared to dust. The abundance of airborne resistome decreased with distance from the chicken house, and ARGs were estimated to spread up to 9.48 km within 1 h. While the gut resistome of workers and villagers showed limited differences, emerging tet(X) variants and high-risk dfrA remain future concerns. More nasal resistome was attributable to TSP compared to dust. Workers faced significantly higher inhalable exposures to antibiotic-resistant bacteria (ARB) and human pathogenic antibiotic-resistant bacteria (HPARB), exceeding those of office staff and villagers by an order of magnitude. We also compiled lists of high-risk and potential-risk airborne ARGs to inform monitoring. These findings highlight the need for regular air disinfection in animal farms and better protective measures for workers.202540434009
705470.8934Effective removal of antibiotic resistance genes and potential links with archaeal communities during vacuum-type composting and positive-pressure composting. As a major reservoir of antibiotics, animal manure contributes a lot to the augmented environmental pressure of antibiotic resistance genes (ARGs). This might be the first study to explore the effects of different ventilation types on the control of ARGs and to identify the relationships between archaeal communities and ARGs during the composting of dairy manure. Several ARGs were quantified via Real-time qPCR and microbial communities including bacteria and archaea were analyzed by High-throughput sequencing during vacuum-type composting (VTC) and positive-pressure composting (PPC). The total detected ARGs and class I integrase gene (intI1) under VTC were significantly lower than that under PPC during each stage of the composting (p<0.001). The relative abundance of potential human pathogenic bacteria (HPB) which were identified based on sequencing information and correlation analysis decreased by 74.6% and 91.4% at the end of PPC and VTC, respectively. The composition of archaeal communities indicated that methane-producing archaea including Methanobrevibacter, Methanocorpusculum and Methanosphaera were dominant throughout the composting. Redundancy analysis suggested that Methanobrevibacter and Methanocorpusculum were positively correlated with all of the detected ARGs. Network analysis determined that the possible hosts of ARGs were different under VTC and PPC, and provided new sights about potential links between archaea and ARGs. Our results showed better performance of VTC in reducing ARGs and potential HPB and demonstrated that some archaea could also be influential hosts of ARGs, and caution the risks of archaea carrying ARGs.202031892399
717480.8931Metagenomic analysis deciphers airborne pathogens with enhanced antimicrobial resistance and virulence factors in composting facilities. The composting process has been shown to effectively reduce antimicrobial resistance (AMR) in animal manure, but its influence on surrounding airborne AMR remains unknown, particularly with regard to human-pathogenic antibiotic-resistant bacteria (HPARB). In this study, air and paired compost samples were collected from a full-scale composting facility, and the antibiotic resistome, microbiome, and HPARB were systematically analyzed in both two habitats using metagenomic analysis. Current result uncovered the profiles of HPARB in air, showing that significantly more airborne HPARB were assembled than that in compost samples. Airborne pathogens harboredan increased abundance and diversity of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) in comparison with compost-borne HPARB. The core antibiotic resistome represents 18.58% of overall ARG subtypes, contributing to 86.31% of ARG abundance. A higher number of enriched core ARGs (2.16- to 13.36-times higher), including mexF, tetW, and vanS, were observed in air samples compared to compost samples. As an important human pathogen, Mycobacterium tuberculosis was prevalent in the air and carried more ARG (6) and VFG (130) subtypes than those in compost. A significantly higher risk score was detected for airborne AMR in the composting facility compared to that in hospital and urban environments. This study revealed the enhanced airborne HPARB through comparative experiments between air and composting habitats. It highlighted the unrecognized AMR risks associated with air in composting site and provided a scientific basis for accurately assessing health outcomes caused by occupational exposure.202540472755
716090.8930High-throughput profiling of antibiotic resistance genes in the Yellow River of Henan Province, China. Profiling antibiotic resistance genes (ARGs) in the Yellow River of China's Henan Province is essential for understanding the health risks of antibiotic resistance. The profiling of ARGs was investigated using high-throughput qPCR from water samples in seven representative regions of the Yellow River. The absolute and relative abundances of ARGs and moble genetic elements (MGEs) were higher in summer than in winter (ANOVA, p < 0.001). The diversity and abundance of ARGs were higher in the Yellow River samples from PY and KF than the other sites. Temperature (r = 0.470 ~ 0.805, p < 0.05) and precipitation (r = 0.492 ~ 0.815, p < 0.05) positively influenced the ARGs, while pH had a negative effect (r = - 0.462 ~ - 0.849, p < 0.05). Network analysis indicated that the pathogenic bacteria Rahnella, Bacillus, and Shewanella were the possible hub hosts of ARGs, and tnpA1 was the potential MGE hub. These findings provide insights into the factors influencing ARG dynamics and the complex interaction among the MGEs, pathogenic bacteria and environmental parameters in enriching ARGs in the Yellow River of Henan Province.202439080455
6939100.8927Field ponding water exacerbates the dissemination of manure-derived antibiotic resistance genes from paddy soil to surrounding waterbodies. Farmlands fertilized with livestock manure-derived amendments have become a hot topic in the dissemination of antibiotic resistance genes (ARGs). Field ponding water connects rice paddies with surrounding water bodies, such as reservoirs, rivers, and lakes. However, there is a knowledge gap in understanding whether and how manure-borne ARGs can be transferred from paddy soil into field ponding water. Our studies suggest that the manure-derived ARGs aadA1, bla1, catA1, cmlA1-01, cmx(A), ermB, mepA and tetPB-01 can easily be transferred into field ponding water from paddy soil. The bacterial phyla Crenarchaeota, Verrucomicrobia, Cyanobacteria, Choloroflexi, Acidobacteria, Firmicutes, Bacteroidetes, and Actinobacteria are potential hosts of ARGs. Opportunistic pathogens detected in both paddy soil and field ponding water showed robust correlations with ARGs. Network co-occurrence analysis showed that mobile genetic elements (MGEs) were strongly correlated with ARGs. Our findings highlight that manure-borne ARGs and antibiotic-resistant bacteria in paddy fields can conveniently disseminate to the surrounding waterbodies through field ponding water, posing a threat to public health. This study provides a new perspective for comprehensively assessing the risk posed by ARGs in paddy ecosystems.202337007487
7168110.8927Insights into microbial contamination in multi-type manure-amended soils: The profile of human bacterial pathogens, virulence factor genes and antibiotic resistance genes. Concerns regarding biological risk in environment have garnered increasing attention. Manure has been believed to be a significant source of antibiotic resistance genes (ARGs) in agricultural soil. Nevertheless, the profile of microbial contamination including ARGs, virulence factor genes (VFGs) and human bacterial pathogens (HBPs) in different manure-amended soils remain largely unknown. Here, we conducted the systematic metagenome-based study to explore changes in resistome, VFGs and HBPs in soils treated by frequently-used manures. The results revealed that many manure-borne ARGs, VFGs, and HBPs could be spreaded into soils, and their diversity and abundance were significantly different among chemical fertilizer, pig manure, chicken manure, cow dung and silkworm excrement application. A total of 157 potential HBPs accounting about 1.33% of total bacteria were detected. The main ARGs transferred from manures to soil conferred resistance to vancomycin and macrolide-lincosamide-streptogramin. The series analysis revealed positive co-occurrence patterns of ARGs-HBPs, VFGs-HBPs and ARGs-VFGs. Microbial contamination were more serious in pig manure and silkworm excrement sample than in the other samples, implying the usage of these two manures increased the risk of HBPs and dissemination of ARGs. This study confirmed the prevalence and discrepancy of resistome, VFGs and HBPs in different manure-amended soils.202235728317
7941120.8926Microplastics accelerate nitrification, shape the microbial community, and alter antibiotic resistance during the nitrifying process. Microplastics (MPs) and antibiotic resistance genes (ARGs) are both emerging pollutants that are frequently detected in wastewater treatment plants. In this study, the effects of various MPs, including polyethylene (PE), polyvinyl chloride (PVC), and biodegradable polylactic acid (PLA), on nitrification performance, dominant microbial communities, and antibiotic resistance during nitrification were investigated. The results revealed that the addition of MPs increased the specific ammonia oxidation rate and specific nitrate production rate by 15.2 % - 15.5 % and 8.0 % - 11.6 %, respectively, via enrichment of nitrifying microorganisms, Nitrospira and Nitrosomonas. Moreover, ARGs were selectively enriched in nitrifying sludge and microplastic biofilms under stress from different MPs. Compared with PE-MPs (23.9 %) and PVC-MPs (21.4 %), exposure to PLA-MPs significantly increased intI1 abundance by 51.6 %. The results of the variance decomposition analysis implied that MPs and the microbial community play important roles in the behavior of ARGs. Network analysis indicated that Nitrosomonas and potentially pathogenic bacteria emerged as possible hosts, harboring ARGs and intI1 genes in the nitrifying sludge and microplastic biofilms. Critically, PLA-MPs were found to enrich both ARGs and potential pathogenic bacteria during nitrification, which should be considered in their promotion of application processes due to their biodegradability.202539740624
8120130.8924Insight into the fate of antibiotic resistance genes and bacterial community in co-composting green tea residues with swine manure. Green tea residues (GTRs) are byproducts of tea production and processing, and this type of agricultural waste retains nutritious components. This study investigated the co-composting of GTRs with swine manure, as well as the effects of GTRs on antibiotic resistance genes (ARGs) and the bacterial community during co-composting. The temperature and C/N ratio indicate compost was mature after processing. The addition of GTRs effectively promoted the reduction in the abundances of most targeted ARGs (tet and sul genes), mobile genetic element (MGE; intI1), and metal resistance genes (MRGs; pcoA and tcrB). Redundancy analysis (RDA) showed that GTRs can reduce the abundance of MRGs and ARGs by reducing the bioavailability of heavy metals. Network analysis shows that Firmicutes and Actinobacteria were the main hosts of ARGs and ARGs, MGEs, and MRGs shared the same potential host bacteria. Adding GTRs during composting may reduce ARGs transmission through horizontal gene transfer (HGT). GTRs affected the bacterial community, thereby influencing the variations in the ARG profiles and reducing the potential risk associated with the compost product.202032310121
8123140.8924The effect of bulk-biochar and nano-biochar amendment on the removal of antibiotic resistance genes in microplastic contaminated soil. Biochar amendment has significant benefits in removing antibiotic resistance genes (ARGs) in the soil. Nevertheless, there is little information on ARGs removal in microplastic contaminated soil. Herein, a 42-day soil microcosm experiment were carried out to study how two coconut shell biochars (bulk- and nano-size) eliminate soil ARGs with/without microplastic presence. The results showed that microplastic increased significantly the numbers and abundances of ARGs in soil at 14d of cultivation. And, two biochars amendment effectively inhibited soil ARGs spread whether or not microplastic was present, especially for nano-biochar which had more effective removal compared to bulk-biochar. However, microplastic weakened soil ARGs removal after applying same biochar. Two biochars removed ARGs through decreasing horizontal gene transfer (HGT) of ARGs, potential host-bacteria abundances, some bacteria crowding the eco-niche of hosts and promoting soil properties. The adverse effect of microplastic on ARGs removal was mainly caused by weakening mobile genetic elements (MGEs) removal, and by changing soil properties. Structural equation modeling (SEM) analysis indicated that biochar's effect on ARGs profile was changed by its size and microplastic presence through altering MGEs abundances. These results highlight that biochar amendment is still an effective method for ARGs removal in microplastic contaminated soil.202437907163
7940150.8924Microplastics affect the ammonia oxidation performance of aerobic granular sludge and enrich the intracellular and extracellular antibiotic resistance genes. Microplastics (MPs) and antibiotic resistance genes (ARGs), as emerging pollutants, are frequently detected in wastewater treatment plants, and their threats to the environment have received extensive attentions. However, the effects of MPs on the nitrification of aerobic granular sludge (AGS) and the spread patterns of intracellular and extracellular ARGs (iARGs and eARGs) in AGS were still unknown. In this study, the responses of AGS to the exposure of 1, 10 and 100 mg/L of typical MPs (polyvinyl chloride (PVC), polyamide (PA), polystyrene (PS) and polyethylene (PE)) and tetracycline were focused on in 3 L nitrifying sequencing batch reactors. 10 mg/L MPs decreased the nitrification function, but nitrification could recover. Furthermore, MPs inhibited ammonia-oxidizing bacteria and enriched nitrite-oxidizing bacteria, leading partial nitrification to losing stability. PVC, PA and PS stimulated the secretion of extracellular polymeric substances and reactive oxygen species. PE had less negative effect on AGS than PVC, PA and PS. The abundances of iARGs and eARGs (tetW, tetE and intI1) increased significantly and the intracellular and extracellular microbial communities obviously shifted in AGS system under MPs stress. Potential pathogenic bacteria might be the common hosts of iARGs and eARGs in AGS system and were enriched in AGS and MPs biofilms.202133387747
7988160.8924Electrokinetic treatment at the thermophilic stage achieves more effective control of heavy metal resistance in swine manure composting. Excessive heavy metals (HMs) and metal resistance genes (MRGs) in manure pose significant environmental and human health risks. Our previous work proved enhanced control of antibiotic resistance and quality of swine manure composting with electrokinetic technology (EK). As a continuous study, EK treatments were further employed at typical stages of composting. The humification level increased significantly in EK treatments applied at the thermophilic stage (EK1) and throughout the whole composting period (EK2). The immobilization efficiency of heavy metals increased by 3.02 %-20.90 % for EK1, and 3.86 %-20.56 % for EK2, compared with the EK treatment applied at maturity stage (EK3). EK1 showed the highest ability to remove MRGs (29.38 %-87.13 %), while the abundance of potential host bacteria increased in EK2, raising potential transmission risk of MRGs. Furthermore, there was an elevated presence of bacteria associated with membrane transport as a response mechanism to HMs stress in EK1. Considering economic factors and environmental effects, EK treatment during the thermophilic stage was more effective in compost maturation, HMs passivation, as well as control of HMs resistance. This study provides an effective method to address HMs-related contamination with highly efficient maturation in swine manure composting.202540543370
8017170.8922Dose-Dependent Effect of Tilmicosin Residues on ermA Rebound Mediated by IntI1 in Pig Manure Compost. The impact of varying antibiotic residue levels on antibiotic resistance gene (ARG) removal during composting is still unclear. This study investigated the impact of different residue levels of tilmicosin (TIM), a common veterinary macrolide antibiotic, on ARG removal during pig manure composting. Three groups were used: the CK group (no TIM), the L group (246.49 ± 22.83 mg/kg TIM), and the H group (529.99 ± 16.15 mg/kg TIM). Composting removed most targeted macrolide resistance genes (MRGs) like ereA, ermC, and ermF (>90% removal), and reduced ermB, ermX, ermQ, acrA, acrB, and mefA (30-70% removal). However, ermA increased in abundance. TIM altered compost community structure, driving succession through a deterministic process. At low doses, TIM reduced MRG-bacteria co-occurrence, with horizontal gene transfer via intI1 being the main cause of ermA rebound. In conclusion, composting reduces many MRG levels in pig manure, but the persistence and rebound of genes like ermA reveal the complex interactions between composting conditions and microbial gene transfer.202541011454
7176180.8922Significant higher airborne antibiotic resistance genes and the associated inhalation risk in the indoor than the outdoor. Inhalation of airborne antibiotic resistance genes (ARGs) can lead to antimicrobial resistance and potential health risk. In modern society, increasing individuals stay more indoors, however, studies regarding the exposure to airborne ARGs in indoor environments and the associated risks remain limited. Here, we compared the variance of aerosol-associated ARGs, bacterial microbiomes, and their daily intake (DI) burden in dormitory, office, and outdoor environments in a university in Tianjin. The results indicated that compared to outdoor aerosols, indoors exhibited significantly higher absolute abundance of both ARG subtypes and mobile genetic elements (MGEs) (1-7 orders of magnitude), 16S rRNA genes (2-3 orders), and total culturable bacteria (1-3 orders). Furthermore, we observed that significantly different airborne bacterial communities are the major drivers contributing to the variance of aerosol-associated ARGs in indoor and outdoor aerosols. Notably, the high abundances of total bacteria, potential pathogenic genera, and ARGs (particularly those harbored by pathogens) in indoor and outdoor aerosols, especially in indoors, may pose an increased exposure risk via inhalation. The successful isolation of human pathogens such as Elizabethkingia anopheles, Klebsiella pneumonia, and Delftia lacustris resistant to the "last-resort" antibiotics carbapenems and polymyxin B from indoor aerosols further indicated an increased exposure risk in indoors. Together, this study highlights the potential risks associated with ARGs and their inhalation to human health in indoor environments.202133120141
7137190.8922The exposure risks associated with pathogens and antibiotic resistance genes in bioaerosol from municipal landfill and surrounding area. Pathogenic microbes with antibiotic resistance can thrive on municipal solid waste as nutrients and be aerosolized and transported to vicinities during waste disposal processes. However, the characterization of pathogenic bioaerosols and assessment of their exposure risks are lacking. Herein, particle size, concentration, activity, antibiotic resistance, and pathogenicity of airborne microorganisms were assessed in different sectors of a typical landfill. Results showed that active sector in downwind direction has the highest bioaerosol level (1234 CFU/m(3)), while residential area has the highest activity (14.82 mg/L). Botanical deodorizer from mist cannon can effectively remove bioaerosol. Most bioaerosols can be inhaled into respiratory system till bronchi with sizes ranging from 2.1-3.3 and 3.3-4.7 µm. Pathogenic bacteria (Bacilli, Bacillus, and Burkholderia-Paraburkholderia) and allergenic fungi (Aspergillus, Cladosporium, and Curvularia) prevailed in landfill. Although high abundance of microbial volatile organic compounds (mVOCs) producing bioaerosols were detected, these mVOCs contributed little to odor issues in landfill. Notably, surrounding areas have higher levels of antibiotic-resistance genes (ARGs) than inner landfill with tetC, acrB, acrF, mdtF, and bacA as dominant ones. Most ARGs were significantly correlated with bacterial community, while environmental parameters mainly influenced fungal prevalence. These findings can assist in reducing and preventing respiratory allergy or infection risks in occupational environments relating to waste management.202336804245