VETERINARY - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
669000.9966Antimicrobial resistance situation in animal health of Bangladesh. Antimicrobial resistance (AMR) is a crucial multifactorial and complex global problem and Bangladesh poses a regional and global threat with a high degree of antibiotic resistance. Although the routine application of antimicrobials in the livestock industry has largely contributed to the health and productivity, it correspondingly plays a significant role in the evolution of different pathogenic bacterial strains having multidrug resistance (MDR) properties. Bangladesh is implementing the National Action Plan (NAP) for containing AMR in human, animal, and environment sectors through "One Health" approach where the Department of Livestock Services (DLS) is the mandated body to implement NAP strategies in the animal health sector of the country. This review presents a "snapshot" of the predisposing factors, and current situations of AMR along with the weakness and strength of DLS to contain the problem in animal farming practices in Bangladesh. In the present review, resistance monitoring data and risk assessment identified several direct and/or indirect predisposing factors to be potentially associated with AMR development in the animal health sector of Bangladesh. The predisposing factors are inadequate veterinary healthcare, monitoring and regulatory services, intervention of excessive informal animal health service providers, and farmers' knowledge gap on drugs, and AMR which have resulted in the misuse and overuse of antibiotics, ultimate in the evolution of antibiotic-resistant bacteria and genes in all types of animal farming settings of Bangladesh. MDR bacteria with extreme resistance against antibiotics recommended to use in both animals and humans have been reported and been being a potential public health hazard in Bangladesh. Execution of extensive AMR surveillance in veterinary practices and awareness-building programs for stakeholders along with the strengthening of the capacity of DLS are recommended for effective containment of AMR emergence and dissemination in the animal health sector of Bangladesh.202033487990
420510.9965Public health risk of antimicrobial resistance transfer from companion animals. Antimicrobials are important tools for the therapy of infectious bacterial diseases in companion animals. Loss of efficacy of antimicrobial substances can seriously compromise animal health and welfare. A need for the development of new antimicrobials for the therapy of multiresistant infections, particularly those caused by Gram-negative bacteria, has been acknowledged in human medicine and a future corresponding need in veterinary medicine is expected. A unique aspect related to antimicrobial resistance and risk of resistance transfer in companion animals is their close contact with humans. This creates opportunities for interspecies transmission of resistant bacteria. Yet, the current knowledge of this field is limited and no risk assessment is performed when approving new veterinary antimicrobials. The objective of this review is to summarize the current knowledge on the use and indications for antimicrobials in companion animals, drug-resistant bacteria of concern among companion animals, risk factors for colonization of companion animals with resistant bacteria and transmission of antimicrobial resistance (bacteria and/or resistance determinants) between animals and humans. The major antimicrobial resistance microbiological hazards originating from companion animals that directly or indirectly may cause adverse health effects in humans are MRSA, methicillin-resistant Staphylococcus pseudintermedius, VRE, ESBL- or carbapenemase-producing Enterobacteriaceae and Gram-negative bacteria. In the face of the previously recognized microbiological hazards, a risk assessment tool could be applied in applications for marketing authorization for medicinal products for companion animals. This would allow the approval of new veterinary medicinal antimicrobials for which risk levels are estimated as acceptable for public health.201727999066
501220.9965Extended-spectrum beta-lactamases-producing gram-negative bacteria in companion animals: action is clearly warranted! Extended-spectrum beta-lactamases (ESBL)-producing Gram-negative bacteria pose a serious threat to Public Health in human medicine as well as increasingly in the veterinary context worldwide. Several studies reported the transmission of zoonotic multidrug resistant bacteria between food-producing animals and humans, whilst the contribution of companion animals to this scenario is rather unknown. Within the last decades a change in the social role of companion animals has taken place, resulting in a very close contact between owners and their pets. As a consequence, humans may obtain antimicrobial resistant bacteria or the corresponding resistance genes not only from food-producing animals but also via close contact to their pets.This may give rise to bacterial infections with limited therapeutic options and an increased risk of treatment failure. As beta-lactams constitute one of the most important groups of antimicrobial agents in veterinary medicine, retaliatory actions in small animal and equine practices are urgently needed. This review addresses the increasing burden of extended-spectrum beta-lactam resistance among Enterobacteriaceae isolated from companion animals. It should emphasize the urgent need for the implementation of antibiotic stewardship as well as surveillance and monitoring programs of multi resistant bacteria in particular in view of new putative infection cycles between humans and their pets.201121462862
418630.9964Antimicrobial use and antimicrobial resistance in food animals. Antimicrobials have been widely used in food animals for growth promotion since the 1950s. Antimicrobial resistance emerges in animal production settings and frequently spreads to humans through the food chain and direct contact. There have been international efforts to restrict or ban antimicrobials used for both humans and animals. Denmark has taken positive strides in the development of a comprehensive database DANMAP to track antimicrobial usage and resistance. Although food animals are sources of antimicrobial resistance, there is little evidence that antimicrobial resistance originates from food animals. This review comprehensively introduces the history and trends of antimicrobial use, the emergence and spread of antimicrobial resistance in food animals provides suggestions to tackle the problems of the spread of antimicrobial resistance.201829802609
418540.9964Containment of antimicrobial resistance due to use of antimicrobial agents in animals intended for food: WHO perspective. The use of antimicrobial agents in humans and food-producing animals has important consequences for human and animal health, as it can lead to the development of resistant bacteria (pathogens and/or commensals with resistance genes). Moreover, resistant bacteria in animals can be transferred to people--usually through the consumption of food, but also through direct contact with food-producing animals or through environmental spread. Ultimately, this can result in human infections with bacteria that are resistant to antimicrobial agents and that can therefore be difficult or impossible to cure. Of special concern is resistance to antimicrobial agents classified by the World Health Organization (WHO) as critically important for human medicine, such as fluoroquinolones, third- and fourth-generation cephalosporins, and macrolides. WHO encourages the agricultural, food, veterinary and health sectors to work together to eliminate the burden of antimicrobial resistance arising from the use of antimicrobial agents in food-producing animals. Joint efforts should be made to reduce the inappropriate use of antimicrobial agents (e.g. the use of antimicrobials as growth promoters) and limit the spread of bacteria resistant to antimicrobial agents. WHO will continueto address this issue in conjunction with the Food and Agriculture Organization of the United Nations, the World Organisation for Animal Health, the animal health/production industry and other important stakeholders. It will also continue to enhance the capacity of its Member States (through training courses and sentinel studies), particularly developing countries, to conduct integrated surveillance of antimicrobial use and resistance, to carry out risk assessments to support the selection of risk management options and to implement strategies for the containment of antimicrobial resistance.201222849282
396450.9964Working across the veterinary and human health sectors. Antibiotics are widely used in human and veterinary medicine for the prevention and treatment of infectious diseases. This practice has led to the emergence of antimicrobial-resistant bacteria in both humans and animals. The potential role that animals, particularly livestock, might play as potential reservoirs of antibiotic resistance genes has been recognized, and it is currently a cause of public health concern. The impact of animal and human antibiotic usage on the emergence and persistence of resistant bacteria and the precise transfer pathways for resistance genes between humans and animals are not currently fully understood. As part of the remit of the UK Advisory Committee on Antimicrobial Resistance and Healthcare-Associated Infection (ARHAI), two main areas were addressed, namely methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Gram-negative bacteria, where both the human and veterinary health sectors share interests. We review the current knowledge of MRSA and resistant Gram-negative bacteria, and provide guidance on occupational risks for veterinary healthcare workers relating to animals infected or colonized with MRSA. Findings and recommendations for further work across disciplines and future research in multidrug-resistant Gram-negative bacteria are also presented. Working collaboratively across disciplines is essential in order to better understand and challenge an important human and animal health problem: antimicrobial resistance.201222855878
420460.9963Antimicrobial Resistance in Bacteria from Meat and Meat Products: A One Health Perspective. According to the 2030 Agenda of the United Nations, one of the sustainable development goals is to ensure sustainable consumption and production patterns. The need to ensure food safety includes, other than microbiological hazards, concerns with antimicrobial-resistant (AMR) bacteria. The emergence of resistant bacteria in the food industry is essentially due to the abusive, and sometimes incorrect, administration of antimicrobials. Although not allowed in Europe, antimicrobials are often administered to promote animal growth. Each time antimicrobials are used, a selective pressure is applied to AMR bacteria. Moreover, AMR genes can be transmitted to humans through the consumption of meat-harbouring-resistant bacteria, which highlights the One Health dimension of antimicrobial resistance. Furthermore, the appropriate use of antimicrobials to ensure efficacy and the best possible outcome for the treatment of infections is regulated through the recommendations of antimicrobial stewardship. The present manuscript aims to give the current state of the art about the transmission of AMR bacteria, particularly methicillin-resistant S. aureus, ESBL-producing Enterobacteriaceae, and vancomycin-resistant Enterococcus spp., along with other ESKAPE bacteria, from animals to humans through the consumption of meat and meat products, with emphasis on pork meat and pork meat products, which are considered the most consumed worldwide.202337894239
662870.9963Campylobacter and antimicrobial resistance in dogs and humans: "One health" in practice. Increasing antimicrobial resistance in both medicine and agriculture is recognised as a major emerging public health concern. Since 2005, campylobacteriosis has been the most zoonotic disease reported in humans in the European Union. Human infections due to Campylobacter spp. primarily comes from food. However, the human-animal interface is a potential space for the bidirectional movement of zoonotic agents, including antimicrobial resistant strains. Dogs have been identified as carriers of the Campylobacter species and their role as a source of infection for humans has been demonstrated. Furthermore, dogs may play an important role as a reservoir of resistant bacteria or resistance genes. Human beings may also be a reservoir of Campylobacter spp. for their pets. This review analyses the current literature related to the risk of Campylobacter antimicrobial resistance at the dog-human interface.201931599545
420380.9963Control and monitoring of antimicrobial resistance in bacteria in food-producing animals in Japan. Increased antimicrobial resistance in bacteria that cause infections in humans is a threat to public health. The use of antimicrobials in food-producing animals in the form of veterinary medicine and feed additives may lead to the emergence or spread of antimicrobial resistance in bacteria of animal origin. In Japan, the use of antimicrobials in food-producing animals is regulated by the Pharmaceutical Affairs Law and Feed Safety Law to minimise the risk of emergence and spread of antimicrobial resistance in bacteria. Since December 2003, all antimicrobials used in food-producing animals have been subjected to risk assessment by the Food Safety Commission. In addition, an antimicrobial resistance monitoring programme has been in place since 2000 to monitor the evolution of resistance to different antimicrobials in bacteria in food-producing animals.200920391381
662690.9963Multidrug-resistant pathogens in the food supply. Antimicrobial resistance, including multidrug resistance (MDR), is an increasing problem globally. MDR bacteria are frequently detected in humans and animals from both more- and less-developed countries and pose a serious concern for human health. Infections caused by MDR microbes may increase morbidity and mortality and require use of expensive drugs and prolonged hospitalization. Humans may be exposed to MDR pathogens through exposure to environments at health-care facilities and farms, livestock and companion animals, human food, and exposure to other individuals carrying MDR microbes. The Centers for Disease Control and Prevention classifies drug-resistant foodborne bacteria, including Campylobacter, Salmonella Typhi, nontyphoidal salmonellae, and Shigella, as serious threats. MDR bacteria have been detected in both meat and fresh produce. Salmonellae carrying genes coding for resistance to multiple antibiotics have caused numerous foodborne MDR outbreaks. While there is some level of resistance to antimicrobials in environmental bacteria, the widespread use of antibiotics in medicine and agriculture has driven the selection of a great variety of microbes with resistance to multiple antimicrobials. MDR bacteria on meat may have originated in veterinary health-care settings or on farms where animals are given antibiotics in feed or to treat infections. Fresh produce may be contaminated by irrigation or wash water containing MDR bacteria. Livestock, fruits, and vegetables may also be contaminated by food handlers, farmers, and animal caretakers who carry MDR bacteria. All potential sources of MDR bacteria should be considered and strategies devised to reduce their presence in foods. Surveillance studies have documented increasing trends in MDR in many pathogens, although there are a few reports of the decline of certain multidrug pathogens. Better coordination of surveillance programs and strategies for controlling use of antimicrobials need to be implemented in both human and animal medicine and agriculture and in countries around the world.201525621383
6661100.9963Country Income Is Only One of the Tiles: The Global Journey of Antimicrobial Resistance among Humans, Animals, and Environment. Antimicrobial resistance (AMR) is one of the most complex global health challenges today: decades of overuse and misuse in human medicine, animal health, agriculture, and dispersion into the environment have produced the dire consequence of infections to become progressively untreatable. Infection control and prevention (IPC) procedures, the reduction of overuse, and the misuse of antimicrobials in human and veterinary medicine are the cornerstones required to prevent the spreading of resistant bacteria. Purified drinking water and strongly improved sanitation even in remote areas would prevent the pollution from inadequate treatment of industrial, residential, and farm waste, as all these situations are expanding the resistome in the environment. The One Health concept addresses the interconnected relationships between human, animal, and environmental health as a whole: several countries and international agencies have now included a One Health Approach within their action plans to address AMR. Improved antimicrobial usage, coupled with regulation and policy, as well as integrated surveillance, infection control and prevention, along with antimicrobial stewardship, sanitation, and animal husbandry should all be integrated parts of any new action plan targeted to tackle AMR on the Earth. Since AMR is found in bacteria from humans, animals, and in the environment, we briefly summarize herein the current concepts of One Health as a global challenge to enable the continued use of antibiotics.202032752276
6608110.9963Trends in antimicrobial resistance in Malaysia. INTRODUCTION: Antibiotic resistance is a burgeoning problem worldwide. The trend of bacterial resistance has increased over the past decade in which more common bacteria are becoming resistant to almost all the antibiotics currently in use, posing a threat to humans and even livestock. METHODS: The databases used to search for the relevant articles for this review include PubMed, Science Direct, and Scopus. The following keywords were used in the search: Antimicrobial resistance, Malaysian action plan, antibioticresistant bacteria, and Malaysian National Surveillance on Antimicrobial Resistance (NSAR). The relevant articles published in English were considered. RESULTS: The antibiotic-resistant bacteria highlighted in this review showed an increase in resistance patterns to the majority of the antibiotics tested. The Malaysian government has come up with an action plan to create public awareness and to educate them regarding the health implications of antibiotic resistance. CONCLUSION: Antimicrobial resistance in Malaysia continues to escalate and is attributed to the overuse and misuse of antibiotics in various fields. As this crisis impacts the health of both humans and animals, therefore a joined continuous effort from all sectors is warranted to reduce the spread and minimize its development.202134508377
2535120.9963Mobile Colistin Resistance (mcr) Genes in Cats and Dogs and Their Zoonotic Transmission Risks. Background: Pets, especially cats and dogs, represent a great potential for zoonotic transmission, leading to major health problems. The purpose of this systematic review was to present the latest developments concerning colistin resistance through mcr genes in pets. The current study also highlights the health risks of the transmission of colistin resistance between pets and humans. Methods: We conducted a systematic review on mcr-positive bacteria in pets and studies reporting their zoonotic transmission to humans. Bibliographic research queries were performed on the following databases: Google Scholar, PubMed, Scopus, Microsoft Academic, and Web of Science. Articles of interest were selected using the PRISMA guideline principles. Results: The analyzed articles from the investigated databases described the presence of mcr gene variants in pets including mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-8, mcr-9, and mcr-10. Among these articles, four studies reported potential zoonotic transmission of mcr genes between pets and humans. The epidemiological analysis revealed that dogs and cats can be colonized by mcr genes that are beginning to spread in different countries worldwide. Overall, reported articles on this subject highlight the high risk of zoonotic transmission of colistin resistance genes between pets and their owners. Conclusions: This review demonstrated the spread of mcr genes in pets and their transmission to humans, indicating the need for further measures to control this significant threat to public health. Therefore, we suggest here some strategies against this threat such as avoiding zoonotic transmission.202235745552
6629130.9962The rise of antibiotic resistance in Campylobacter. PURPOSE OF REVIEW: Campylobacter is a major foodborne pathogen that infects the human intestinal tract. This review discusses the current status of antibiotic resistance, transmission of antibiotic resistance genes, and strategies to combat the global Campylobacter epidemic. RECENT FINDINGS: Over the past 18 months, articles on Campylobacter antibiotic resistance have been published in ∼39 countries. Antibiotic-resistant Campylobacter have been detected in humans, livestock, poultry, wild animals, the environment, and food. Campylobacter spp. are resistant to a wide spectrum of antimicrobial agents, including the antibiotics quinolones, macrolides, tetracyclines, aminoglycosides, and chloramphenicols. Multidrug resistance is a globally emerging problem. Continuous antibiotic pressure promotes the spread of drug-resistant Campylobacter spp. Additionally, Campylobacter is well adapted to acquiring foreign drug resistance genes, including ermB, optrA, fexA, and cfrC, which are usually acquired from gram-positive bacteria. SUMMARY: The widespread use of antibiotics has caused a global epidemic of drug-resistant Campylobacter infections. Many countries are actively reducing the use of antibiotics and adopting alternatives in the livestock and poultry industries to control the spread of drug-resistant Campylobacter spp.202336504031
6616140.9962The menace of colistin resistance across globe: Obstacles and opportunities in curbing its spread. Colistin-resistance in bacteria is a big concern for public health, since it is a last resort antibiotic to treat infectious diseases of multidrug resistant and carbapenem resistant Gram-negative pathogens in clinical settings. The emergence of colistin resistance in aquaculture and poultry settings has escalated the risks associated with colistin resistance in environment as well. The staggering number of reports pertaining to the rise of colistin resistance in bacteria from clinical and non-clinical settings is disconcerting. The co-existence of colistin resistant genes with other antibiotic resistant genes introduces new challenges in combatting antimicrobial resistance. Some countries have banned the manufacture, sale and distribution of colistin and its formulations for food producing animals. However, to tackle the issue of antimicrobial resistance, a one health approach initiative, inclusive of human, animal, and environmental health needs to be developed. Herein, we review the recent reports in colistin resistance in bacteria of clinical and non-clinical settings, deliberating on the new findings obtained regarding the development of colistin resistance. This review also discusses the initiatives implemented globally in mitigating colistin resistance, their strength and weakness.202336812837
1819150.9962Antimicrobial-resistant Enterobacteriaceae recovered from companion animal and livestock environments. Antimicrobial-resistant bacteria represent an important concern impacting both veterinary medicine and public health. The rising prevalence of extended-spectrum beta-lactamase (ESBL), AmpC beta-lactamase, carbapenemase (CRE) and fluoroquinolone-resistant Enterobacteriaceae continually decreases the efficiency of clinically important antibiotics. Moreover, the potential for zoonotic transmission of antibiotic-resistant enteric bacteria increases the risk to public health. Our objective was to estimate the prevalence of specific antibiotic-resistant bacteria on human contact surfaces in various animal environments. Environmental surface samples were collected from companion animal shelters, private equine facilities, dairy farms, livestock auction markets and livestock areas of county fairs using electrostatic cloths. Samples were screened for Enterobacteriaceae expressing AmpC, ESBL, CRE or fluoroquinolone resistance using selective media. Livestock auction markets and county fairs had higher levels of bacteria expressing both cephalosporin and fluoroquinolone resistance than did equine, dairy, and companion animal environments. Equine facilities harboured more bacteria expressing cephalosporin resistance than companion animal shelters, but less fluoroquinolone resistance. The regular use of extended-spectrum cephalosporins in livestock populations could account for the increased levels of cephalosporin resistance in livestock environments compared to companion animal and equine facilities. Human surfaces, as well as shared human and animal surfaces, were contaminated with resistant bacteria regardless of species environment. Detecting these bacteria on common human contact surfaces suggests that the environment can serve as a reservoir for the zoonotic transmission of antibiotic-resistant bacteria and resistance genes. Identifying interventions to lower the prevalence of antibiotic-resistant bacteria in animal environments will protect both animal and public health.201829575700
4184160.9962The use of aminopenicillins in animals within the EU, emergence of resistance in bacteria of animal and human origin and its possible impact on animal and human health. Aminopenicillins have been widely used for decades for the treatment of various infections in animals and humans in European countries. Following this extensive use, acquired resistance has emerged among human and animal pathogens and commensal bacteria. Aminopenicillins are important first-line treatment options in both humans and animals, but are also among limited therapies for infections with enterococci and Listeria spp. in humans in some settings. Therefore, there is a need to assess the impact of the use of these antimicrobials in animals on public and animal health. The most important mechanisms of resistance to aminopenicillins are the β-lactamase enzymes. Similar resistance genes have been detected in bacteria of human and animal origin, and molecular studies suggest that transmission of resistant bacteria or resistance genes occurs between animals and humans. Due to the complexity of epidemiology and the near ubiquity of many aminopenicillin resistance determinants, the direction of transfer is difficult to ascertain, except for major zoonotic pathogens. It is therefore challenging to estimate to what extent the use of aminopenicillins in animals could create negative health consequences to humans at the population level. Based on the extent of use of aminopenicillins in humans, it seems probable that the major resistance selection pressure in human pathogens in European countries is due to human consumption. It is evident that veterinary use of these antimicrobials increases the selection pressure towards resistance in animals and loss of efficacy will at minimum jeopardize animal health and welfare.202337229552
5011170.9962Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in cattle production - a threat around the world. Food producing animal is a global challenge in terms of antimicrobial resistance spread. Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae are relevant opportunistic pathogens that may spread in many ecological niches of the One Health approach as human, animal and environment due to intestinal selection of antimicrobial resistant commensals in food production animals. Cattle production is a relevant ecological niche for selection of commensal bacteria with antimicrobial resistance from microbiota. Enterobacteriaceae show importance in terms of circulation of resistant-bacteria and antimicrobial resistance genes via food chain creating a resistance reservoir, setting up a threat for colonization of humans and consequent health risk. ESBL-producing Enterobacteriaceae are a threat in terms of human health responsible for life threatening outbreaks and silent enteric colonization of community populations namely the elder population. Food associated colonization is a risk difficult to handle and control. In a time of globalization of food trading, population intestinal colonization is a mirror of food production and in that sense this work aims to make a picture of ESBL-producing Enterobacteriaceae in animal production for food over the world in order to make some light in this reality of selection of resistant threats in food producing animal.202032042963
4206180.9961Control of the development and prevalence of antimicrobial resistance in bacteria of food animal origin in Japan: a new approach for risk management of antimicrobial veterinary medicinal products in Japan. Antimicrobial agents are essential for controlling bacterial disease in food-producing animals and contribute to the stable production of safe animal products. The use of antimicrobial agents in these animals affects the emergence and prevalence of antimicrobial resistance in bacteria isolated from animals and animal products. As disease-causing bacteria are often transferred from food-producing animals to humans, the food chain is considered a route of transmission for the resistant bacteria and/or resistance genes. The Food Safety Commission of Japan (FSC) has been assessing the risk posed to human health by the transmission of antimicrobial-resistant bacteria from livestock products via the food chain. In addition to the FSC's risk assessments, the Japanese Ministry of Agriculture, Forestry and Fisheries has developed risk-management guidelines to determine feasible risk-management options for the use of antimicrobial veterinary medicinal products during farming practices. This report includes information on risk assessment and novel approaches for risk management of antimicrobial veterinary medicinal products for mitigating the risk of development and prevalence of antimicrobial resistance in bacteria originating from food-producing animals in Japan.201424387636
6630190.9961Antimicrobial Resistance Gene Detection Methods for Bacteria in Animal-Based Foods: A Brief Review of Highlights and Advantages. Antimicrobial resistance is a major public health problem and is mainly due to the indiscriminate use of antimicrobials in human and veterinary medicine. The consumption of animal-based foods can contribute to the transfer of these genes between animal and human bacteria. Resistant and multi-resistant bacteria such as Salmonella spp. and Campylobacter spp. have been detected both in animal-based foods and in production environments such as farms, industries and slaughterhouses. This review aims to compile the techniques for detecting antimicrobial resistance using traditional and molecular methods, highlighting their advantages and disadvantages as well as the effectiveness and confidence of their results.202133925810