# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9243 | 0 | 0.9836 | Gene Transfer Potential of Outer Membrane Vesicles of Gram-Negative Bacteria. The increasing spread of multidrug-resistant pathogenic bacteria is one of the major threats to public health worldwide. Bacteria can acquire antibiotic resistance and virulence genes through horizontal gene transfer (HGT). A novel horizontal gene transfer mechanism mediated by outer membrane vesicles (OMVs) has been recently identified. OMVs are rounded nanostructures released during their growth by Gram-negative bacteria. Biologically active toxins and virulence factors are often entrapped within these vesicles that behave as molecular carriers. Recently, OMVs have been reported to contain DNA molecules, but little is known about the vesicle packaging, release, and transfer mechanisms. The present review highlights the role of OMVs in HGT processes in Gram-negative bacteria. | 2021 | 34205995 |
| 579 | 1 | 0.9833 | Control of expression of a periplasmic nickel efflux pump by periplasmic nickel concentrations. There is accumulating evidence that transenvelope efflux pumps of the resistance, nodulation, cell division protein family (RND) are excreting toxic substances from the periplasm across the outer membrane directly to the outside. This would mean that resistance of Gram-negative bacteria to organic toxins and heavy metals is in fact a two-step process: one set of resistance factors control the concentration of a toxic substance in the periplasm, another one that in the cytoplasm. Efficient periplasmic detoxification requires periplasmic toxin sensing and transduction of this signal into the cytoplasm to control expression of the periplasmic detoxification system. Such a signal transduction system was analyzed using the Cnr nickel resistance system from Cupriavidus (Wautersia, Ralstonia, Alcaligenes) metallidurans strain CH34. Resistance is based on nickel efflux mediated by the CnrCBA efflux pump encoded by the cnrYHXCBAT metal resistance determinant. The products of the three genes cnrYXH transcriptionally regulate expression of cnr. CnrY and CnrX are membrane-bound proteins probably functioning as anti sigma factors while CnrH is a cnr-specific extracytoplasmic functions (ECF) sigma factors. Experimental data provided here indicate a signal transduction chain leading from nickel in the periplasm to transcription initiation at the cnr promoters cnrYp and cnrCp, which control synthesis of the nickel efflux pump CnrCBA. | 2005 | 16158236 |
| 726 | 2 | 0.9830 | Regulation of antimicrobial resistance by extracytoplasmic function (ECF) sigma factors. Extracytoplasmic function (ECF) sigma factors are a subfamily of σ(70) sigma factors that activate genes involved in stress-response functions. In many bacteria, ECF sigma factors regulate resistance to antimicrobial compounds. This review will summarize the ECF sigma factors that regulate antimicrobial resistance in model organisms and clinically relevant pathogens. | 2017 | 28153747 |
| 8200 | 3 | 0.9830 | Precisely modulated pathogenicity island interference with late phage gene transcription. Having gone to great evolutionary lengths to develop resistance to bacteriophages, bacteria have come up with resistance mechanisms directed at every aspect of the bacteriophage life cycle. Most genes involved in phage resistance are carried by plasmids and other mobile genetic elements, including bacteriophages and their relatives. A very special case of phage resistance is exhibited by the highly mobile phage satellites, staphylococcal pathogenicity islands (SaPIs), which carry and disseminate superantigen and other virulence genes. Unlike the usual phage-resistance mechanisms, the SaPI-encoded interference mechanisms are carefully crafted to ensure that a phage-infected, SaPI-containing cell will lyse, releasing the requisite crop of SaPI particles as well as a greatly diminished crop of phage particles. Previously described SaPI interference genes target phage functions that are not required for SaPI particle production and release. Here we describe a SaPI-mediated interference system that affects expression of late phage gene transcription and consequently is required for SaPI and phage. Although when cloned separately, a single SaPI gene totally blocks phage production, its activity in situ is modulated accurately by a second gene, achieving the required level of interference. The advantage for the host bacteria is that the SaPIs curb excessive phage growth while enhancing their gene transfer activity. This activity is in contrast to that of the clustered regularly interspaced short palindromic repeats (CRISPRs), which totally block phage growth at the cost of phage-mediated gene transfer. In staphylococci the SaPI strategy seems to have prevailed during evolution: The great majority of Staphylococcus aureus strains carry one or more SaPIs, whereas CRISPRs are extremely rare. | 2014 | 25246539 |
| 329 | 4 | 0.9827 | Effect of NlpE overproduction on multidrug resistance in Escherichia coli. NlpE, an outer membrane lipoprotein, functions during envelope stress responses in Gram-negative bacteria. In this study, we report that overproduction of NlpE increases multidrug and copper resistance through activation of the genes encoding the AcrD and MdtABC multidrug efflux pumps in Escherichia coli. | 2010 | 20211889 |
| 730 | 5 | 0.9824 | How intracellular bacteria survive: surface modifications that promote resistance to host innate immune responses. Bacterial pathogens regulate the expression of virulence factors in response to environmental signals. In the case of salmonellae, many virulence factors are regulated via PhoP/PhoQ, a two-component signal transduction system that is repressed by magnesium and calcium in vitro. PhoP/PhoQ-activated genes promote intracellular survival within macrophages, whereas PhoP-repressed genes promote entrance into epithelial cells and macrophages by macropinocytosis and stimulate epithelial cell cytokine production. PhoP-activated genes include those that alter the cell envelope through structural alterations of lipopolysaccharide and lipid A, the bioactive component of lipopolysaccharide. PhoP-activated changes in the bacterial envelope likely promote intracellular survival by increasing resistance to host cationic antimicrobial peptides and decreasing host cell cytokine production. | 1999 | 10081503 |
| 728 | 6 | 0.9824 | Surviving Reactive Chlorine Stress: Responses of Gram-Negative Bacteria to Hypochlorous Acid. Sodium hypochlorite (NaOCl) and its active ingredient, hypochlorous acid (HOCl), are the most commonly used chlorine-based disinfectants. HOCl is a fast-acting and potent antimicrobial agent that interacts with several biomolecules, such as sulfur-containing amino acids, lipids, nucleic acids, and membrane components, causing severe cellular damage. It is also produced by the immune system as a first-line of defense against invading pathogens. In this review, we summarize the adaptive responses of Gram-negative bacteria to HOCl-induced stress and highlight the role of chaperone holdases (Hsp33, RidA, Cnox, and polyP) as an immediate response to HOCl stress. We also describe the three identified transcriptional regulators (HypT, RclR, and NemR) that specifically respond to HOCl. Besides the activation of chaperones and transcriptional regulators, the formation of biofilms has been described as an important adaptive response to several stressors, including HOCl. Although the knowledge on the molecular mechanisms involved in HOCl biofilm stimulation is limited, studies have shown that HOCl induces the formation of biofilms by causing conformational changes in membrane properties, overproducing the extracellular polymeric substance (EPS) matrix, and increasing the intracellular concentration of cyclic-di-GMP. In addition, acquisition and expression of antibiotic resistance genes, secretion of virulence factors and induction of the viable but nonculturable (VBNC) state has also been described as an adaptive response to HOCl. In general, the knowledge of how bacteria respond to HOCl stress has increased over time; however, the molecular mechanisms involved in this stress response is still in its infancy. A better understanding of these mechanisms could help understand host-pathogen interactions and target specific genes and molecules to control bacterial spread and colonization. | 2020 | 32796669 |
| 760 | 7 | 0.9824 | The underling mechanism of bacterial TetR/AcrR family transcriptional repressors. Bacteria transcriptional regulators are classified by their functional and sequence similarities. Member of the TetR/AcrR family is two-domain proteins including an N-terminal HTH DNA-binding motif and a C-terminal ligand recognition domain. The C-terminal ligand recognition domain can recognize the very same compounds as their target transporters transferred. TetRs act as chemical sensors to monitor both the cellular environmental dynamics and their regulated genes underlying many events, such as antibiotics production, osmotic stress, efflux pumps, multidrug resistance, metabolic modulation, and pathogenesis. Compounds targeting Mycobacterium tuberculosis ethR represent promising novel antibiotic potentiater. TetR-mediated multidrug efflux pumps regulation might be good target candidate for the discovery of better new antibiotics against drug resistance. | 2013 | 23602932 |
| 583 | 8 | 0.9824 | MarR family proteins sense sulfane sulfur in bacteria. Members of the multiple antibiotic resistance regulator (MarR) protein family are ubiquitous in bacteria and play critical roles in regulating cellular metabolism and antibiotic resistance. MarR family proteins function as repressors, and their interactions with modulators induce the expression of controlled genes. The previously characterized modulators are insufficient to explain the activities of certain MarR family proteins. However, recently, several MarR family proteins have been reported to sense sulfane sulfur, including zero-valent sulfur, persulfide (R-SSH), and polysulfide (R-SnH, n ≥ 2). Sulfane sulfur is a common cellular component in bacteria whose levels vary during bacterial growth. The changing levels of sulfane sulfur affect the expression of many MarR-controlled genes. Sulfane sulfur reacts with the cysteine thiols of MarR family proteins, causing the formation of protein thiol persulfide, disulfide bonds, and other modifications. Several MarR family proteins that respond to reactive oxygen species (ROS) also sense sulfane sulfur, as both sulfane sulfur and ROS induce the formation of disulfide bonds. This review focused on MarR family proteins that sense sulfane sulfur. However, the sensing mechanisms reviewed here may also apply to other proteins that detect sulfane sulfur, which is emerging as a modulator of gene regulation. | 2024 | 38948149 |
| 224 | 9 | 0.9824 | Untying the anchor for the lipopolysaccharide: lipid A structural modification systems offer diagnostic and therapeutic options to tackle polymyxin resistance. Polymyxin antibiotics are the last resort for treating patients in intensive care units infected with multiple-resistant Gram-negative bacteria. Due to their polycationic structure, their mode of action is based on an ionic interaction with the negatively charged lipid A portion of the lipopolysaccharide (LPS). The most prevalent polymyxin resistance mechanisms involve covalent modifications of lipid A: addition of the cationic sugar 4-amino-L-arabinose (L-Ara4N) and/or phosphoethanolamine (pEtN). The modified structure of lipid A has a lower net negative charge, leading to the repulsion of polymyxins and bacterial resistance to membrane disruption. Genes encoding the enzymatic systems involved in these modifications can be transferred either through chromosomes or mobile genetic elements. Therefore, new approaches to resistance diagnostics have been developed. On another note, interfering with these enzymatic systems might offer new therapeutic targets for drug discovery. This literature review focuses on diagnostic approaches based on structural changes in lipid A and on the therapeutic potential of molecules interfering with these changes. | 2023 | 37791675 |
| 347 | 10 | 0.9823 | A novel plasmid gene involved in bacteriophage PRD1 infection and conjugative host-range. PRD1 infects bacteria carrying IncN plasmids by binding to their conjugative pili. Mutations in a plasmid locus kikA close to the pilus region result in PRD1 resistance and reduced conjugation proficiency to Klebsiella but not to Escherichia coli. One of the two genes of kikA is sufficient to restore both normal phenotypes. PRD1 binds to cells carrying the mutant plasmid but fails to inject its genome. | 1996 | 8812786 |
| 766 | 11 | 0.9822 | The essential inner membrane protein YejM is a metalloenzyme. Recent recurrent outbreaks of Gram-negative bacteria show the critical need to target essential bacterial mechanisms to fight the increase of antibiotic resistance. Pathogenic Gram-negative bacteria have developed several strategies to protect themselves against the host immune response and antibiotics. One such strategy is to remodel the outer membrane where several genes are involved. yejM was discovered as an essential gene in E. coli and S. typhimurium that plays a critical role in their virulence by changing the outer membrane permeability. How the inner membrane protein YejM with its periplasmic domain changes membrane properties remains unknown. Despite overwhelming structural similarity between the periplasmic domains of two YejM homologues with hydrolases like arylsulfatases, no enzymatic activity has been previously reported for YejM. Our studies reveal an intact active site with bound metal ions in the structure of YejM periplasmic domain. Furthermore, we show that YejM has a phosphatase activity that is dependent on the presence of magnesium ions and is linked to its function of regulating outer membrane properties. Understanding the molecular mechanism by which YejM is involved in outer membrane remodeling will help to identify a new drug target in the fight against the increased antibiotic resistance. | 2020 | 33082366 |
| 577 | 12 | 0.9822 | The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genomic silencing is a fundamental mechanism of transcriptional regulation, yet little is known about conserved mechanisms of silencing. We report here the discovery of four Saccharomyces cerevisiae homologs of the SIR2 silencing gene (HSTs), as well as conservation of this gene family from bacteria to mammals. At least three HST genes can function in silencing; HST1 overexpression restores transcriptional silencing to a sir2 mutant and hst3 hst4 double mutants are defective in telomeric silencing. In addition, HST3 and HST4 together contribute to proper cell cycle progression, radiation resistance, and genomic stability, establishing new connections between silencing and these fundamental cellular processes. | 1995 | 7498786 |
| 8235 | 13 | 0.9822 | The bacterial defense system MADS interacts with CRISPR-Cas to limit phage infection and escape. The constant arms race between bacteria and their parasites has resulted in a large diversity of bacterial defenses, with many bacteria carrying multiple systems. Here, we report the discovery of a phylogenetically widespread defense system, coined methylation-associated defense system (MADS), which is distributed across gram-positive and gram-negative bacteria. MADS interacts with a CRISPR-Cas system in its native host to provide robust and durable resistance against phages. While phages can acquire epigenetic-mediated resistance against MADS, co-existence of MADS and a CRISPR-Cas system limits escape emergence. MADS comprises eight genes with predicted nuclease, ATPase, kinase, and methyltransferase domains, most of which are essential for either self/non-self discrimination, DNA restriction, or both. The complex genetic architecture of MADS and MADS-like systems, relative to other prokaryotic defenses, points toward highly elaborate mechanisms of sensing infections, defense activation, and/or interference. | 2024 | 39094583 |
| 8238 | 14 | 0.9821 | Resistance to enediyne antitumor antibiotics by CalC self-sacrifice. Antibiotic self-resistance mechanisms, which include drug elimination, drug modification, target modification, and drug sequestration, contribute substantially to the growing problem of antibiotic resistance among pathogenic bacteria. Enediynes are among the most potent naturally occurring antibiotics, yet the mechanism of resistance to these toxins has remained a mystery. We characterize an enediyne self-resistance protein that reveals a self-sacrificing paradigm for resistance to highly reactive antibiotics, and thus another opportunity for nonpathogenic or pathogenic bacteria to evade extremely potent small molecules. | 2003 | 12970566 |
| 9330 | 15 | 0.9820 | Pneumococcal Extracellular Vesicles Mediate Horizontal Gene Transfer via the Transformation Machinery. Bacterial cells secrete extracellular vesicles (EVs), the function of which is a matter of intense investigation. Here, we show that the EVs secreted by the human pathogen Streptococcus pneumoniae (pneumococcus) are associated with bacterial DNA on their surface and can deliver this DNA to the transformation machinery of competent cells. These findings suggest that EVs contribute to gene transfer in Gram-positive bacteria, and in doing so, may promote the spread of drug resistance genes in the population. | 2023 | 38168155 |
| 777 | 16 | 0.9820 | Multiantibiotic resistance caused by active drug extrusion in Pseudomonas aeruginosa and other gram-negative bacteria. All living organisms have been exposed to noxious compounds throughout their long evolutionary history and those surviving have evolved to fabricate devices that detoxicate and extrude these life threatening substances. It is likely, therefore, that all viable organisms, from bacteria to mammals, are equipped with active extrusion machinery. When bacteria are attacked by antibiotics, they use these tactics to combat the drugs and to develop resistance. Drugs extrusion machinery in Gram-negative bacteria is complex, consisting of the inner membrane transporter which acts as an energy-dependent extrusion pump; a binding protein which presumably connect both membranes; and the outer membrane exit channel. The extrusion pump assemblies are often encoded by chromosomal genes and might be expressed by mutation(s) or induced in the presence of drug(s). | 1997 | 9353746 |
| 727 | 17 | 0.9820 | Bacillus subtilis extracytoplasmic function (ECF) sigma factors and defense of the cell envelope. Bacillus subtilis provides a model for investigation of the bacterial cell envelope, the first line of defense against environmental threats. Extracytoplasmic function (ECF) sigma factors activate genes that confer resistance to agents that threaten the integrity of the envelope. Although their individual regulons overlap, σ(W) is most closely associated with membrane-active agents, σ(X) with cationic antimicrobial peptide resistance, and σ(V) with resistance to lysozyme. Here, I highlight the role of the σ(M) regulon, which is strongly induced by conditions that impair peptidoglycan synthesis and includes the core pathways of envelope synthesis and cell division, as well as stress-inducible alternative enzymes. Studies of these cell envelope stress responses provide insights into how bacteria acclimate to the presence of antibiotics. | 2016 | 26901131 |
| 731 | 18 | 0.9820 | Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Bacterial pathogenesis requires proteins that sense host microenvironments and respond by regulating virulence gene transcription. For Salmonellae, one such regulatory system is PhoP-PhoQ, which regulates genes required for intracellular survival and resistance to cationic peptides. Analysis by mass spectrometry revealed that Salmonella typhimurium PhoP-PhoQ regulated structural modifications of lipid A, the host signaling portion of lipopolysaccharide (LPS), by the addition of aminoarabinose and 2-hydroxymyristate. Structurally modified lipid A altered LPS-mediated expression of the adhesion molecule E-selectin by endothelial cells and tumor necrosis factor-alpha expression by adherent monocytes. Thus, altered responses to environmentally induced lipid A structural modifications may represent a mechanism for bacteria to gain advantage within host tissues. | 1997 | 9092473 |
| 331 | 19 | 0.9820 | MmpS4 promotes glycopeptidolipids biosynthesis and export in Mycobacterium smegmatis. The MmpS family (mycobacterial membrane protein small) includes over 100 small membrane proteins specific to the genus Mycobacterium that have not yet been studied experimentally. The genes encoding MmpS proteins are often associated with mmpL genes, which are homologous to the RND (resistance nodulation cell division) genes of Gram-negative bacteria that encode proteins functioning as multidrug efflux system. We showed by molecular genetics and biochemical analysis that MmpS4 in Mycobacterium smegmatis is required for the production and export of large amounts of cell surface glycolipids, but is dispensable for biosynthesis per se. A new specific and sensitive method utilizing single-chain antibodies against the surface-exposed glycolipids was developed to confirm that MmpS4 was dispensable for transport to the surface. Orthologous complementation demonstrated that the MmpS4 proteins are exchangeable, thus not specific to a defined lipid species. MmpS4 function requires the formation of a protein complex at the pole of the bacillus, which requires the extracytosolic C-terminal domain of MmpS4. We suggest that MmpS proteins facilitate lipid biosynthesis by acting as a scaffold for coupled biosynthesis and transport machinery. | 2010 | 21062372 |