# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6180 | 0 | 0.9520 | Mab2780c, a TetV-like efflux pump, confers high-level spectinomycin resistance in mycobacterium abscessus. Mycobacterium abscessus is highly resistant to spectinomycin (SPC) thereby making it unavailable for therapeutic use. Sublethal exposure to SPC strongly induces whiB7 and its regulon, and a ΔMab_whiB7 strain is SPC sensitive suggesting that the determinants of SPC resistance are included within its regulon. In the present study we have determined the transcriptomic changes that occur in M. abscessus upon SPC exposure and have evaluated the involvement of 11 genes, that are both strongly SPC induced and whiB7 dependent, in SPC resistance. Of these we show that MAB_2780c can complement SPC sensitivity of ΔMab_whiB7 and that a ΔMab_2780c strain is ∼150 fold more SPC sensitive than wildtype bacteria, but not to tetracycline (TET) or other aminoglycosides. This is in contrast to its homologues, TetV from M. smegmatis and Tap from M. tuberculosis, that confer low-level resistance to TET, SPC and other aminoglycosides. We also show that the addition of the efflux pump inhibitor (EPI), verapamil results in >100-fold decrease in MIC of SPC in bacteria expressing Mab2780c to the levels observed for ΔMab_2780c; moreover a deletion of MAB_2780c results in a decreased efflux of the drug into the cell supernatant. Together our data suggest that Mab2780c is an SPC antiporter. Finally, molecular docking of SPC and TET on models of TetV(Ms) and Mab2780c confirmed our antibacterial susceptibility findings that the Mab2780c pump preferentially effluxes SPC over TET. To our knowledge, this is the first report of an efflux pump that confers high-level drug resistance in M. abscessus. The identification of Mab2780c in SPC resistance opens up prospects for repurposing this relatively well-tolerated antibiotic as a combination therapy with verapamil or its analogs against M. abscessus infections. | 2023 | 36584486 |
| 6009 | 1 | 0.9489 | Efflux pump inhibitor chlorpromazine effectively increases the susceptibility of Escherichia coli to antimicrobial peptide Brevinin-2CE. Aim: The response of E. coli ATCC8739 to Brevinin-2CE (B2CE) was evaluated as a strategy to prevent the development of antimicrobial peptide (AMP)-resistant bacteria. Methods: Gene expression levels were detected by transcriptome sequencing and RT-PCR. Target genes were knocked out using CRISPR-Cas9. MIC was measured to evaluate strain resistance. Results: Expression of acrZ and sugE were increased with B2CE stimulation. ATCC8739ΔacrZ and ATCC8739ΔsugE showed twofold and fourfold increased sensitivity, respectively. The survival rate of ATCC8739 was reduced in the presence of B2CE/chlorpromazine (CPZ). Combinations of other AMPs with CPZ also showed antibacterial effects. Conclusion: The results indicate that combinations of AMPs/efflux pump inhibitors (EPIs) may be a potential approach to combat resistant bacteria. | 2024 | 38683168 |
| 6175 | 2 | 0.9488 | Phenotype microarray analysis of the drug efflux systems in Salmonella enterica serovar Typhimurium. A large number of drug efflux transporters have been identified in Salmonella enterica serovar Typhimurium, and increased expression of these transporters confers drug resistance in this organism. Here we compared the respiration activities of the wild-type strain and a mutant with nine deleted transporters by phenotype microarray analysis. The mutant was susceptible to 66 structurally unrelated compounds including many antibiotics, dyes, detergents, antihistamine agents, plant alkaloids, antidepressants, antipsychotic drugs, and antiprotozoal drugs. To investigate the effect of each transporter on the susceptibilities to these drugs, we used the single transporter mutants, several multiple deletion mutants, and the transporter overexpressor strains to determine minimum inhibitory concentrations of ampicillin, erythromycin, minocycline, ciprofloxacin, orphenadrine, amitriptyline, thioridazine, and chlorpromazine. The data indicate that the increased susceptibilities of the mutant lacking nine transporter genes are mainly dependent on the absence of the acrAB efflux genes as well as the tolC gene. In addition to the AcrAB-TolC efflux system, the results from the overexpressor strains show that AcrEF confers resistance to these compounds as well as AcrAB of Escherichia coli, MexAB-OprM and MexXY-OprM of Pseudomonas aeruginosa. The results highlight the importance of the efflux systems not only for resistance to antibiotics but also for resistance to antihistamine agents, plant alkaloids, antidepressants, antipsychotic drugs, and antiprotozoal drugs. | 2016 | 27210311 |
| 6371 | 3 | 0.9487 | Bioactive compounds from the African medicinal plant Cleistochlamys kirkii as resistance modifiers in bacteria. Cleistochlamys kirkii (Benth) Oliv. (Annonaceae) is a medicinal plant traditionally used in Mozambique to treat infectious diseases. The aim of this study was to find resistance modifiers in C. kirkii for Gram-positive and Gram-negative model bacterial strains. One of the most important resistance mechanisms in bacteria is the efflux pump-related multidrug resistance. Therefore, polycarpol (1), three C-benzylated flavanones (2-4), and acetylmelodorinol (5) were evaluated for their multidrug resistance-reverting activity on methicillin-susceptible and methicillin-resistant Staphylococcus aureus and Escherichia coli AG100 and AG100 A strains overexpressing and lacking the AcrAB-TolC efflux pump system. The combined effects of antibiotics and compounds (2 and 4) were also assessed by using the checkerboard microdilution method in both S. aureus strains. The relative gene expression of the efflux pump genes was determined by real-time reverse transcriptase quantitative polymerase chain reaction. The inhibition of quorum sensing was also investigated. The combined effect of the antibiotics and compound 2 or 4 on the methicillin-sensitive S. aureus resulted in synergism. The most active compounds 2 and 4 increased the expression of the efflux pump genes. These results suggested that C. kirkii constituents could be effective adjuvants in the antibiotic treatment of infections. | 2018 | 29464798 |
| 806 | 4 | 0.9487 | A two-component small multidrug resistance pump functions as a metabolic valve during nicotine catabolism by Arthrobacter nicotinovorans. The genes nepAB of a small multidrug resistance (SMR) pump were identified as part of the pAO1-encoded nicotine regulon responsible for nicotine catabolism in Arthrobacter nicotinovorans. When [(14)C]nicotine was added to the growth medium the bacteria exported the (14)C-labelled end product of nicotine catabolism, methylamine. In the presence of the proton-motive force inhibitors 2,4-dinitrophenol (DNP), carbonyl cyanide m-chlorophenylhydrazone (CCCP) or the proton ionophore nigericin, export of methylamine was inhibited and radioactivity accumulated inside the bacteria. Efflux of [(14)C]nicotine-derived radioactivity from bacteria was also inhibited in a pmfR : cmx strain with downregulated nepAB expression. Because of low amine oxidase levels in the pmfR : cmx strain, gamma-N-methylaminobutyrate, the methylamine precursor, accumulated. Complementation of this strain with the nepAB genes, carried on a plasmid, restored the efflux of nicotine breakdown products. Both NepA and NepB were required for full export activity, indicating that they form a two-component efflux pump. NepAB may function as a metabolic valve by exporting methylamine, the end product of nicotine catabolism, and, in conditions under which it accumulates, the intermediate gamma-N-methylaminobutyrate. | 2007 | 17464069 |
| 6181 | 5 | 0.9486 | Two distinct major facilitator superfamily drug efflux pumps mediate chloramphenicol resistance in Streptomyces coelicolor. Chloramphenicol, florfenicol, and thiamphenicol are used as antibacterial drugs in clinical and veterinary medicine. Two efflux pumps of the major facilitator superfamily encoded by the cmlR1 and cmlR2 genes mediate resistance to these antibiotics in Streptomyces coelicolor, a close relative of Mycobacterium tuberculosis. The transcription of both genes was observed by reverse transcription-PCR. Disruption of cmlR1 decreased the chloramphenicol MIC 1.6-fold, while disruption of cmlR2 lowered the MIC 16-fold. The chloramphenicol MIC of wild-type S. coelicolor decreased fourfold and eightfold in the presence of reserpine and Phe-Arg-beta-naphthylamide, respectively. These compounds are known to potentiate the activity of some antibacterial drugs via efflux pump inhibition. While reserpine is known to potentiate drug activity against gram-positive bacteria, this is the first time that Phe-Arg-beta-naphthylamide has been shown to potentiate drug activity against a gram-positive bacterium. | 2009 | 19687245 |
| 6189 | 6 | 0.9483 | Characterization of all RND-type multidrug efflux transporters in Vibrio parahaemolyticus. Resistance nodulation cell division (RND)-type efflux transporters play the main role in intrinsic resistance to various antimicrobial agents in many gram-negative bacteria. Here, we estimated 12 RND-type efflux transporter genes in Vibrio parahaemolyticus. Because VmeAB has already been characterized, we cloned the other 11 RND-type efflux transporter genes and characterized them in Escherichia coli KAM33 cells, a drug hypersusceptible strain. KAM33 expressing either VmeCD, VmeEF, or VmeYZ showed increased minimum inhibitory concentrations (MICs) for several antimicrobial agents. Additional four RND-type transporters were functional as efflux pumps only when co-expressed with VpoC, an outer membrane component in V. parahaemolyticus. Furthermore, VmeCD, VmeEF, and VmeYZ co-expressed with VpoC exhibited a broader substrate specificity and conferred higher resistance than that with TolC of E. coli. Deletion mutants of these transporter genes were constructed in V. parahaemolyticus. TM32 (ΔvmeAB and ΔvmeCD) had significantly decreased MICs for many antimicrobial agents and the number of viable cells after exposure to deoxycholate were markedly reduced. Strains in which 12 operons were all disrupted had very low MICs and much lower fluid accumulation in rabbit ileal loops. These results indicate that resistance nodulation cell division-type efflux transporters contribute not only to intrinsic resistance but also to exerting the virulence of V. parahaemolyticus. | 2013 | 23894076 |
| 6199 | 7 | 0.9480 | A bacterial gene homologous to ABC transporters protect Oenococcus oeni from ethanol and other stress factors in wine. The wine lactic acid bacteria Oenococcus oeni has to cope with harsh environmental conditions including an acidic pH, a high alcoholic content, non-optimal growth temperatures, and growth inhibitory compounds such as fatty acids, phenolic acids and tannins. We here describe characterisation and cloning of the O. oeni omrA gene encoding a protein belonging to the ATP-binding cassette superfamily of transporters. The OmrA protein displays the highest sequence similarity with the subfamily of ATP-dependent multidrug resistance (MDR) proteins, most notably the bacterial Lactococcus lactis LmrA homologue of the human MDR1 P-glycoprotein. The omrA gene proved to be a stress-responsive gene since its expression was increased at high temperature or under osmotic shock. The OmrA protein function was tested in Escherichia coli, and consistent with the omrA gene expression pattern, OmrA conferred protection to bacteria grown on a high salt medium. OmrA also triggered bacterial resistance to sodium laurate, wine and ethanol toxicity. The homologous LmrA protein featured the same stress-protective pattern than OmrA when expressed in E. coli, and the contribution to resistance of both OmrA and LmrA transporters was decreased by verapamil, a well-known inhibitor of the human MDR1 protein. Genes homologous to omrA were detected in other wine lactic acid bacteria, suggesting that this type of genes might constitute a well-conserved stress-protective molecular device. | 2004 | 15033264 |
| 657 | 8 | 0.9479 | Mycobacterial HflX is a ribosome splitting factor that mediates antibiotic resistance. Antibiotic resistance in bacteria is typically conferred by proteins that function as efflux pumps or enzymes that modify either the drug or the antibiotic target. Here we report an unusual mechanism of resistance to macrolide-lincosamide antibiotics mediated by mycobacterial HflX, a conserved ribosome-associated GTPase. We show that deletion of the hflX gene in the pathogenic Mycobacterium abscessus, as well as the nonpathogenic Mycobacterium smegmatis, results in hypersensitivity to the macrolide-lincosamide class of antibiotics. Importantly, the level of resistance provided by Mab_hflX is equivalent to that conferred by erm41, implying that hflX constitutes a significant resistance determinant in M. abscessus We demonstrate that mycobacterial HflX associates with the 50S ribosomal subunits in vivo and can dissociate purified 70S ribosomes in vitro, independent of GTP hydrolysis. The absence of HflX in a ΔMs_hflX strain also results in a significant accumulation of 70S ribosomes upon erythromycin exposure. Finally, a deletion of either the N-terminal or the C-terminal domain of HflX abrogates ribosome splitting and concomitantly abolishes the ability of mutant proteins to mediate antibiotic tolerance. Together, our results suggest a mechanism of macrolide-lincosamide resistance in which the mycobacterial HflX dissociates antibiotic-stalled ribosomes and rescues the bound mRNA. Given the widespread presence of hflX genes, we anticipate this as a generalized mechanism of macrolide resistance used by several bacteria. | 2020 | 31871194 |
| 8796 | 9 | 0.9478 | Divergent Roles of Escherichia Coli Encoded Lon Protease in Imparting Resistance to Uncouplers of Oxidative Phosphorylation: Roles of marA, rob, soxS and acrB. Uncouplers of oxidative phosphorylation dissipate the proton gradient, causing lower ATP production. Bacteria encounter several non-classical uncouplers in the environment, leading to stress-induced adaptations. Here, we addressed the molecular mechanisms responsible for the effects of uncouplers in Escherichia coli. The expression and functions of genes involved in phenotypic antibiotic resistance were studied using three compounds: two strong uncouplers, i.e., Carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and 2,4-Dinitrophenol (DNP), and one moderate uncoupler, i.e., Sodium salicylate (NaSal). Quantitative expression studies demonstrated induction of transcripts encoding marA, soxS and acrB with NaSal and DNP, but not CCCP. Since MarA and SoxS are degraded by the Lon protease, we investigated the roles of Lon using a lon-deficient strain (Δlon). Compared to the wild-type strain, Δlon shows compromised growth upon exposure to NaSal or 2, 4-DNP. This sensitivity is dependent on marA but not rob and soxS. On the other hand, the Δlon strain shows enhanced growth in the presence of CCCP, which is dependent on acrB. Interestingly, NaSal and 2,4-DNP, but not CCCP, induce resistance to antibiotics, such as ciprofloxacin and tetracycline. This study addresses the effects of uncouplers and the roles of genes involved during bacterial growth and phenotypic antibiotic resistance. Strong uncouplers are often used to treat wastewater, and these results shed light on the possible mechanisms by which bacteria respond to uncouplers. Also, the rampant usage of some uncouplers to treat wastewater may lead to the development of antibiotic resistance. | 2024 | 38372817 |
| 6253 | 10 | 0.9477 | The Contribution of Efflux Pumps in Mycobacterium abscessus Complex Resistance to Clarithromycin. The basis of drug resistance in Mycobacterium abscessus is still poorly understood. Nevertheless, as seen in other microorganisms, the efflux of antimicrobials may also play a role in M. abscessus drug resistance. Here, we investigated the role of efflux pumps in clarithromycin resistance using nine clinical isolates of M. abscessus complex belonging to the T28 erm(41) sequevar responsible for the inducible resistance to clarithromycin. The strains were characterized by drug susceptibility testing in the presence/absence of the efflux inhibitor verapamil and by genetic analysis of drug-resistance-associated genes. Efflux activity was quantified by real-time fluorometry. Efflux pump gene expression was studied by RT-qPCR upon exposure to clarithromycin. Verapamil increased the susceptibility to clarithromycin from 4- to ≥64-fold. The efflux pump genes MAB_3142 and MAB_1409 were found consistently overexpressed. The results obtained demonstrate that the T28 erm(41) polymorphism is not the sole cause of the inducible clarithromycin resistance in M. abscessus subsp. abscessus or bolletii with efflux activity providing a strong contribution to clarithromycin resistance. These data highlight the need for further studies on M. abscessus efflux response to antimicrobial stress in order to implement more effective therapeutic regimens and guidance in the development of new drugs against these bacteria. | 2019 | 31540480 |
| 9046 | 11 | 0.9471 | Burkholderia pseudomallei resistance to antibiotics in biofilm-induced conditions is related to efflux pumps. Burkholderia pseudomallei, the causative agent of melioidosis, has been found to increase its resistance to antibiotics when growing as a biofilm. The resistance is related to several mechanisms. One of the possible mechanisms is the efflux pump. Using bioinformatics analysis, it was found that BPSL1661, BPSL1664 and BPSL1665 were orthologous genes of the efflux transporter encoding genes for biofilm-related antibiotic resistance, PA1874-PA1877 genes in Pseudomonas aeruginosa strain PAO1. Expression of selected encoding genes for the efflux transporter system during biofilm formation were investigated. Real-time reverse transcriptase PCR expression of amrB, cytoplasmic membrane protein of AmrAB-OprA efflux transporter encoding gene, was slightly increased, while BPSL1665 was significantly increased during growth of bacteria in biofilm formation. Minimum biofilm inhibition concentration and minimum biofilm eradication concentration (MBEC) of ceftazidime (CTZ), doxycycline (DOX) and imipenem were found to be 2- to 1024-times increased when compared to their MICs for of planktonic cells. Inhibition of the efflux transporter by adding phenylalanine arginine β-napthylamide (PAβN), a universal efflux inhibitor, decreased 2 to 16 times as much as MBEC in B. pseudomallei biofilms with CTZ and DOX. When the intracellular accumulation of antibiotics was tested to reveal the pump inhibition, only the concentrations of CTZ and DOX increased in PAβN treated biofilm. Taken together, these results indicated that BPSL1665, a putative precursor of the efflux pump gene, might be related to the adaptation of B. pseudomallei in biofilm conditions. Inhibition of efflux pumps may lead to a decrease of resistance to CTZ and DOX in biofilm cells. | 2016 | 27702426 |
| 6182 | 12 | 0.9471 | An RND-type multidrug efflux pump SdeXY from Serratia marcescens. OBJECTIVES: Serratia marcescens, an important cause of nosocomial infections, shows intrinsic resistance to a wide variety of antimicrobial agents (multidrug resistance). Multidrug efflux pumps are often involved in the multidrug resistance in many bacteria. A study was undertaken to characterize the multidrug efflux pumps in S. marcescens. METHODS: The genes responsible for the multidrug resistance phenotype in S. marcescens were cloned into Escherichia coli KAM32, a drug-hypersusceptible strain, for further analysis. RESULTS: We cloned sdeXY genes and determined the nucleotide sequence. Clones that carried the sdeXY genes displayed reduced susceptibility to several antimicrobial agents including erythromycin, tetracycline, norfloxacin, benzalkonium chloride, ethidium bromide, acriflavine and rhodamine 6G. A protein similarity search using GenBank revealed that SdeY is a member of the resistance nodulation cell-division (RND) family of multidrug efflux proteins and SdeX is a member of the membrane fusion proteins. Introduction of sdeXY into E. coli cells possessing tolC, but not in cells lacking tolC, resulted in multidrug resistance. We observed energy-dependent ethidium efflux in cells of E. coli KAM32 possessing sdeXY and tolC. CONCLUSIONS: SdeXY is the first RND-type multidrug efflux pump to be characterized in multidrug-resistant S. marcescens. | 2003 | 12837741 |
| 6372 | 13 | 0.9471 | Sensitizing multi drug resistant Staphylococcus aureus isolated from surgical site infections to antimicrobials by efflux pump inhibitors. BACKGROUND: Staphylococcus aureus is a common hospital acquired infections pathogen. Multidrug-resistant Methicillin-resistant Staphylococcus aureus represents a major problem in Egyptian hospitals. The over-expression of efflux pumps is a main cause of multidrug resistance. The discovery of efflux pump inhibitors may help fight multidrug resistance by sensitizing bacteria to antibiotics. This study aimed to investigate the role of efflux pumps in multidrug resistance. METHODS: Twenty multidrug resistant S. aureus isolates were selected. Efflux pumps were screened by ethidium bromide agar cartwheel method and polymerase chain reaction. The efflux pump inhibition by seven agents was tested by ethidium bromide agar cartwheel method and the effect on sensitivity to selected antimicrobials was investigated by broth microdilution method. RESULTS: Seventy percent of isolates showed strong efflux activity, while 30% showed intermediate activity. The efflux genes mdeA, norB, norC, norA and sepA were found to play the major role in efflux, while genes mepA, smr and qacA/B had a minor role. Verapamil and metformin showed significant efflux inhibition and increased the sensitivity to tested antimicrobials, while vildagliptin, atorvastatin, domperidone, mebeverine and nifuroxazide showed no effect. CONCLUSION: Efflux pumps are involved in multidrug resistance in Staphylococcus aureus. Efflux pump inhibitors could increase the sensitivity to antimicrobials. | 2020 | 34394224 |
| 6373 | 14 | 0.9467 | Antibiotic resistance and multidrug-resistant efflux pumps expression in lactic acid bacteria isolated from pozol, a nonalcoholic Mayan maize fermented beverage. Pozol is a handcrafted nonalcoholic Mayan beverage produced by the spontaneous fermentation of maize dough by lactic acid bacteria. Lactic acid bacteria (LAB) are carriers of chromosomal encoded multidrug-resistant efflux pumps genes that can be transferred to pathogens and/or confer resistance to compounds released during the fermentation process causing food spoiling. The aim of this study was to evaluate the antibiotic sensibility and the transcriptional expression of ABC-type efflux pumps in LAB isolated from pozol that contributes to multidrug resistance. Analysis of LAB and Staphylococcus (S.) aureus ATCC 29213 and ATCC 6538 control strains to antibiotic susceptibility, minimal inhibitory concentration (MIC), and minimal bactericidal concentration (MBC) to ethidium bromide were based in "standard methods" whereas the ethidium bromide efflux assay was done by fluorometric assay. Transcriptional expression of efflux pumps was analyzed by RT-PCR. LAB showed antibiotic multiresistance profiles, moreover, Lactococcus (L.) lactis and Lactobacillus (L.) plantarum displayed higher ethidium bromide efflux phenotype than S. aureus control strains. Ethidium bromide resistance and ethidium bromide efflux phenotypes were unrelated with the overexpression of lmrD in L. lactics, or the underexpression of lmrA in L. plantarum and norA in S. aureus. These findings suggest that, moreover, the analyzed efflux pumps genes, other unknown redundant mechanisms may underlie the antibiotic resistance and the ethidium bromide efflux phenotype in L. lactis and L. plantarum. Phenotypic and molecular drug multiresistance assessment in LAB may improve a better selection of the fermentation starter cultures used in pozol, and to control the antibiotic resistance widespread and food spoiling for health safety. | 2016 | 27247772 |
| 554 | 15 | 0.9465 | VanZ Reduces the Binding of Lipoglycopeptide Antibiotics to Staphylococcus aureus and Streptococcus pneumoniae Cells. vanZ, a member of the VanA glycopeptide resistance gene cluster, confers resistance to lipoglycopeptide antibiotics independent of cell wall precursor modification by the vanHAX genes. Orthologs of vanZ are present in the genomes of many clinically relevant bacteria, including Enterococcus faecium and Streptococcus pneumoniae; however, vanZ genes are absent in Staphylococcus aureus. Here, we show that the expression of enterococcal vanZ paralogs in S. aureus increases the minimal inhibitory concentrations of lipoglycopeptide antibiotics teicoplanin, dalbavancin, oritavancin and new teicoplanin pseudoaglycone derivatives. The reduction in the binding of fluorescently labeled teicoplanin to the cells suggests the mechanism of VanZ-mediated resistance. In addition, using a genomic vanZ gene knockout mutant of S. pneumoniae, we have shown that the ability of VanZ proteins to compromise the activity of lipoglycopeptide antibiotics by reducing their binding is a more general feature of VanZ-superfamily proteins. | 2020 | 32318043 |
| 6366 | 16 | 0.9464 | Fluorinated Beta-diketo Phosphorus Ylides Are Novel Efflux Pump Inhibitors in Bacteria. BACKGROUND: One of the most important resistance mechanisms in bacteria is the increased expression of multidrug efflux pumps. To combat efflux-related resistance, the development of new efflux pump inhibitors is essential. MATERIALS AND METHODS: Ten phosphorus ylides were compared based on their MDR-reverting activity in multidrug efflux pump system consisting of the subunits acridine-resistance proteins A and B (AcrA and AcrB) and the multidrug efflux pump outer membrane factor TolC (TolC) of Escherichia coli K-12 AG100 strain and its AcrAB-TolC-deleted strain. Efflux inhibition was assessed by real-time fluorimetry and the inhibition of quorum sensing (QS) was also investigated. The relative gene expression of efflux QS genes was determined by real-time reverse transcriptase quantitative polymerase chain reaction. RESULTS: The most potent derivative was Ph(3)P=C(COC(2)F(5))CHO and its effect was more pronounced on the AcrAB-TolC-expressing E. coli strain, furthermore the most active compounds, Ph(3)P=C(COCF(3))OMe, Ph(3)P=C(COC(2)F(5))CHO and Ph(3)P=C(COCF(3))COMe, reduced the expression of efflux pump and QS genes. CONCLUSION: Phosphorus ylides might be valuable EPI compounds to reverse efflux related MDR in bacteria. | 2016 | 27815466 |
| 9035 | 17 | 0.9464 | Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. Bacteria growing in biofilms are more resistant to antibiotics than their planktonic counterparts. How this transition occurs is unclear, but it is likely there are multiple mechanisms of resistance that act together in order to provide an increased overall level of resistance to the biofilm. We have identified a novel efflux pump in Pseudomonas aeruginosa that is important for biofilm-specific resistance to a subset of antibiotics. Complete deletion of the genes encoding this pump, PA1874 to PA1877 (PA1874-1877) genes, in an P. aeruginosa PA14 background results in an increase in sensitivity to tobramycin, gentamicin, and ciprofloxacin, specifically when this mutant strain is growing in a biofilm. This efflux pump is more highly expressed in biofilm cells than in planktonic cells, providing an explanation for why these genes are important for biofilm but not planktonic resistance to antibiotics. Furthermore, expression of these genes in planktonic cells increases their resistance to antibiotics. We have previously shown that ndvB is important for biofilm-specific resistance (T. F. Mah, B. Pitts, B. Pellock, G. C. Walker, P. S. Stewart, and G. A. O'Toole, Nature 426:306-310, 2003). Our discovery that combining the ndvB mutation with the PA1874-1877 gene deletion results in a mutant strain that is more sensitive to antibiotics than either single mutant strain suggests that ndvB and PA1874-1877 contribute to two different mechanisms of biofilm-specific resistance to antibiotics. | 2008 | 18469108 |
| 9037 | 18 | 0.9462 | Assessment of three Resistance-Nodulation-Cell Division drug efflux transporters of Burkholderia cenocepacia in intrinsic antibiotic resistance. BACKGROUND: Burkholderia cenocepacia are opportunistic Gram-negative bacteria that can cause chronic pulmonary infections in patients with cystic fibrosis. These bacteria demonstrate a high-level of intrinsic antibiotic resistance to most clinically useful antibiotics complicating treatment. We previously identified 14 genes encoding putative Resistance-Nodulation-Cell Division (RND) efflux pumps in the genome of B. cenocepacia J2315, but the contribution of these pumps to the intrinsic drug resistance of this bacterium remains unclear. RESULTS: To investigate the contribution of efflux pumps to intrinsic drug resistance of B. cenocepacia J2315, we deleted 3 operons encoding the putative RND transporters RND-1, RND-3, and RND-4 containing the genes BCAS0591-BCAS0593, BCAL1674-BCAL1676, and BCAL2822-BCAL2820. Each deletion included the genes encoding the RND transporter itself and those encoding predicted periplasmic proteins and outer membrane pores. In addition, the deletion of rnd-3 also included BCAL1672, encoding a putative TetR regulator. The B. cenocepacia rnd-3 and rnd-4 mutants demonstrated increased sensitivity to inhibitory compounds, suggesting an involvement of these proteins in drug resistance. Moreover, the rnd-3 and rnd-4 mutants demonstrated reduced accumulation of N-acyl homoserine lactones in the growth medium. In contrast, deletion of the rnd-1 operon had no detectable phenotypes under the conditions assayed. CONCLUSION: Two of the three inactivated RND efflux pumps in B. cenocepacia J2315 contribute to the high level of intrinsic resistance of this strain to some antibiotics and other inhibitory compounds. Furthermore, these efflux systems also mediate accumulation in the growth medium of quorum sensing molecules that have been shown to contribute to infection. A systematic study of RND efflux systems in B. cenocepacia is required to provide a full picture of intrinsic antibiotic resistance in this opportunistic bacterium. | 2009 | 19761586 |
| 9036 | 19 | 0.9461 | Resistance-nodulation-division efflux pump acrAB is modulated by florfenicol and contributes to drug resistance in the fish pathogen Piscirickettsia salmonis. Piscirickettsia salmonis is a fastidious intracellular pathogen responsible for high mortality rates in farmed salmonids, with serious economic consequences for the Chilean aquaculture industry. Oxytetracycline and florfenicol are the most frequently used antibiotics against P. salmonis, but routine use could contribute to drug resistance. This study identified differentiated florfenicol susceptibilities in two P. salmonis strains, LF-89 and AUSTRAL-005. The less susceptible isolate, AUSTRAL-005, also showed a high ethidium bromide efflux rate, indicating a higher activity of general efflux pump genes than LF-89. The P. salmonis genome presented resistance nodulation division (RND) family members, a family containing typical multidrug resistance-related efflux pumps in Gram-negative bacteria. Additionally, efflux pump acrAB genes were overexpressed in AUSTRAL-005 following exposure to the tolerated maximal concentration of florfenicol, in contrast to LF-89. These results indicate that tolerated maximum concentrations of florfenicol can modulate RND gene expression and increase efflux pump activity. We propose that the acrAB efflux pump is essential for P. salmonis survival at critical florfenicol concentrations and for the generation of antibiotic-resistant bacterial strains. | 2016 | 27190287 |