# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5386 | 0 | 0.9819 | Antibiotic resistance of lactic acid bacteria isolated from Chinese yogurts. The aim of this study was to evaluate the susceptibility of 43 strains of lactic acid bacteria, isolated from Chinese yogurts made in different geographical areas, to 11 antibiotics (ampicillin, penicillin G, roxithromycin, chloramphenicol, tetracycline, chlortetracycline, lincomycin, kanamycin, streptomycin, neomycin, and gentamycin). The 43 isolates (18 Lactobacillus bulgaricus and 25 Streptococcus thermophilus) were identified at species level and were typed by random amplified polymorphic DNA analysis. Thirty-five genotypically different strains were detected and their antimicrobial resistance to 11 antibiotics was determined using the agar dilution method. Widespread resistance to ampicillin, chloramphenicol, chlortetracycline, tetracyclines, lincomycin, streptomycin, neomycin, and gentamycin was found among the 35 strains tested. All of the Strep. thermophilus strains tested were susceptible to penicillin G and roxithromycin, whereas 23.5 and 64.7% of Lb. bulgaricus strains, respectively, were resistant. All of the Strep. thermophilus and Lb. bulgaricus strains were found to be resistant to kanamycin. The presence of the corresponding resistance genes in the resistant isolates was investigated through PCR, with the following genes detected: tet(M) in 1 Lb. bulgaricus and 2 Strep. thermophilus isolates, ant(6) in 2 Lb. bulgaricus and 2 Strep. thermophilus isolates, and aph(3')-IIIa in 5 Lb. bulgaricus and 2 Strep. thermophilus isolates. The main threat associated with these bacteria is that they may transfer resistance genes to pathogenic bacteria, which has been a major cause of concern to human and animal health. To our knowledge, the aph(3')-IIIa and ant(6) genes were found in Lb. bulgaricus and Strep. thermophilus for the first time. Further investigations are required to analyze whether the genes identified in Lb. bulgaricus and Strep. thermophilus isolates might be horizontally transferred to other species. | 2012 | 22916881 |
| 5427 | 1 | 0.9817 | PCR-based detection of resistance genes in anaerobic bacteria isolated from intra-abdominal infections. Little information is available on the distribution of antimicrobial resistance genes in anaerobes in Japan. To understand the background of antimicrobial resistance in anaerobes involved in intra-abdominal infections, we investigated the distribution of eight antimicrobial resistance genes (cepA, cfiA, cfxA, ermF, ermB, mefA, tetQ, and nim) and a mutation in the gyrA gene in a total of 152 organisms (Bacteroides spp., Prevotella spp., Fusobacterium spp., Porphyromonas spp., Bilophila wadsworthia, Desulfovibrio desulfuricans, Veillonella spp., gram-positive cocci, and non-spore-forming gram-positive bacilli) isolated between 2003 and 2004 in Japan. The cepA gene was distributed primarily in Bacteroides fragilis. Gene cfxA was detected in about 9 % of the Bacteroides isolates and 75 % of the Prevotella spp. isolates and did not appear to contribute to cephamycin resistance. Two strains of B. fragilis contained the metallo-β-lactamase gene cfiA, but they did not produce the protein product. Gene tetQ was detected in about 81, 44, and 63 % of B. fragilis isolates, other Bacteroides spp., and Prevotella spp. isolates, respectively. The ermF gene was detected in 25, 13, 56, 64, and 16 % of Bacteroides spp., Prevotella spp., Fusobacterium spp., B. wadsworthia, and anaerobic cocci, respectively. Gene mefA was found in only 10 % of the B. fragilis strains and 3 % of the non-B. fragilis strains. Genes nim and ermB were not detected in any isolate. Substitution at position 82 (Ser to Phe) in gyrA was detected in B. fragilis isolates that were less susceptible or resistant to moxifloxacin. This study is the first report on the distribution of resistance genes in anaerobes isolated from intra-abdominal infections in Japan. We expect that the results might help in understanding the resistance mechanisms of specific anaerobes. | 2013 | 23338012 |
| 2141 | 2 | 0.9817 | Identification of oral anaerobic bacteria and the beta-lactamase resistance genes from Iranian patients with periodontitis. OBJECTIVES: The dysbiosis of bacteria and horizontal transfer of antibiotic resistance genes (ARGs) could be highly problematic particularly in the oral environment. Here, we aimed to identify the anaerobic species from patients with periodontitis and to screen the isolates for the β-lactamase resistance genes, bla(TEM), cfxA, its variants, and mobA. METHODS: The 129 samples from periodontal pockets were subjected to anaerobic culture, followed by 16S rRNA gene sequencing, PCR assays for the cfxA, bla(TEM), and mobA. The minimum inhibitory concentration (MIC) of amoxicillin, ampicillin, amoxicillin/clavulanate, ampicillin/sulbactam, and cefixime was determined against CfxA producing isolates using MIC Test Strips. RESULTS: The species with frequency higher than 10% were Lactobacillus spp. (26.3%), Streptococcus spp. (18.8%), Leptotrichia wadei (14%) and Veillonella spp. (11.4%). The bla(TEM) was not found in any of the isolates whereas cfxA was found in 12.5% of isolates including V. parvula, V. rogosae, Prevotella nigrescens and Campylobacter concisus. Of CfxA variants, CfxA2 (90%) was the most frequent one. Among the CfxA producing isolates, the resistance to ampicillin and amoxicillin was observed only in two isolates of P. nigrescens and V. rogosae. CONCLUSIONS: This study showed that various anaerobes species may be involved in the development of periodontitis. Of them, Prevotella and Veillonella species were found to commonly carry cfxA even though they are susceptible to beta-lactams and its combination. | 2022 | 35026418 |
| 1297 | 3 | 0.9816 | Antimicrobial resistance, prevalence of resistance genes, and molecular characterization in intestinal Bacteroides fragilis group isolates. Since the level of antimicrobial resistance in Bacteroides fragilis has increased, monitoring the antimicrobial susceptibility could be necessary. The objectives of this study were to (i) investigate the prevalence of species, the occurrence of reduced antimicrobial susceptibility (E-test method), and antibiotic resistance genes in the B. fragilis group and (ii) evaluate the prevalence of enterotoxigenic B. fragilis and the distribution of bft gene subtypes in hospitalized patients. As many as 475 isolates out of 250 stool samples were detected to be B. fragilis group by using conventional biochemical tests (API-32A system) and multiplex-PCR. In addition, 48.2%, 13.9%, 76.6%, and 1.2% of B. fragilis group isolates were resistant (according to EUCAST breakpoint) to piperacillin-tazobactam, meropenem, clindamycin, and metronidazole, respectively. Six metronidazole-resistant strains were isolated; B. fragilis (n: 3), B. thetaiotaomicron, B. vulgates, and B. ovatus. The presence of the cfiA, cepA, ermF, and nim genes was observed in 3.8%, 15.9%, 34.1%, and 0.7% of the B. fragilis isolates, respectively. One hundred thirty-two B. fragilis isolates (27.8%)and 21 B fragilis isolates (15.9%) turned out to be bft gene positive by multiplex-PCR; eleven isolates (52.4%) harbored bft-1, eight isolates (38%) harbored bft-2 isotypes, and two isolates (9.5%) harbored bft-3 isotype (16.66%). These bacteria harbor antimicrobial resistance genes that could be transferred to other susceptible intestinal strains. Further investigations on lineage analysis are needed for a better understanding of these bacteria in Iran. | 2019 | 30803024 |
| 1256 | 4 | 0.9816 | Prevalence of antimicrobial resistant genes in Bacteroides spp. isolated in Oita Prefecture, Japan. INTRODUCTION: Bacteroides spp. are the most common anaerobic bacteria isolated from the human gastrointestinal tract. Several resistant genes are present in Bacteroides spp. However, most studies have focused on the prevalence of the cfiA gene in Bacteroides fragilis alone. We assessed the susceptibility to antimicrobial agents and the prevalence of cepA, cfiA, cfxA, ermF, nim, and tetQ genes in Bacteroides strains isolated from clinical specimens in our hospital. METHODS: We isolated 86 B. fragilis and 58 non-fragilis Bacteroides strains from human clinical specimens collected from January 2011 to November 2021. Resistance against piperacillin (PIPC), cefotaxime (CTX), cefepime (CFPM), meropenem (MEPM), clindamycin, and minocycline was determined. RESULTS: The resistant rates of penicillins and cephalosporins in non-fragilis isolates were significantly higher than those in B. fragilis isolates. In B. fragilis isolates, the resistant rates of PIPC, CTX, and CFPM in cfxA-positive isolates were significantly higher than those in cfxA-negative isolates (71% vs. 16%, 77% vs. 19%, and 77% vs. 30%, respectively). Thirteen B. fragilis isolates harbored the cfiA gene, two of which were resistant to MEPM. Six of the 13 cfiA-positive B. fragilis isolates were heterogeneously resistant to MEPM. CONCLUSION: It is important to evaluate the use of MEPM as empirical therapy for Bacteroides spp. infections, considering the emergence of carbapenem resistance during treatment, existence of MEPM-resistant strains, and heterogeneous resistance. | 2023 | 36473684 |
| 2169 | 5 | 0.9815 | E-test antibiotics susceptibility of strict anaerobic bacteria. The E-test is convenient for testing susceptibility of anaerobes. From September 1998 to September 1999, 194 strains (105 Gram-positive bacteria, 89 Gram-negative bacteria) of clinically relevant samples were tested against five antibiotics benzylpenicillin, amoxicillin-clavulanic acid, clindamycin, metronidazole and imipenem on blood agar plates. Resistance to benzyl penicillin is widespread and Gram-negative bacteria and resistance to amoxicillin-clavulanic acid is exceptional. Metronidazole is very effective against anaerobes except non-spore-forming aerotolerant Gram-positive rods and Peptostreptococcus micros. | 2003 | 16887712 |
| 5433 | 6 | 0.9815 | Diversity of antimicrobial resistance genes in Bacteroides and Parabacteroides strains isolated in Germany. OBJECTIVES: Bacteroides spp. are normal constituents of the human intestinal microflora, but they are also able to cause severe diseases. The aim of this study was to determine the diversity of antibiotic resistance genes found in phenotypically resistant Bacteroides and Parabacteroides strains. METHODS: A total of 71 phenotypically resistant Bacteroides spp. from human clinical specimens were screened for the antibiotic resistance genes cfiA, tetQ, tetM, tet36, cepA, cfxA, nim, ermG, ermF, bexA, bla(VIM), bla(NDM), bla(KPC), bla(OXA-48) and bla(GES). The presence of these genes was compared with phenotypic resistance to ampicillin/sulbactam, cefoxitin, ceftolozane/tazobactam, piperacillin/tazobactam, imipenem, meropenem, meropenem/vaborbactam, clindamycin, moxifloxacin, tigecycline, eravacycline and metronidazole. RESULTS: tetQ was the most frequently detected gene, followed by cfiA, ermF, cfxA, ermG, cepA, nim and bexA. None of the strains were positive for tetM, tet36, bla(VIM), bla(NDM), bla(KPC), bla(OXA-48) or bla(GES). Resistance to the tested β-lactams was mainly linked to the presence of the cfiA gene. Clindamycin resistance correlated with the presence of the genes ermG and ermF. The bexA gene was found in six strains, but only two of them were resistant to moxifloxacin. Tigecycline and eravacycline showed good activities despite the frequent occurrence of tetQ. The nim gene was detected in six isolates, five of which were resistant to metronidazole. CONCLUSION: The findings of our study support the general belief that antimicrobial resistance within Bacteroides should be taken into consideration. This underlines the necessity of reliable routine antimicrobial susceptibility test methods for anaerobic bacteria and the implementation of antimicrobial surveillance programmes worldwide. | 2021 | 33508481 |
| 5387 | 7 | 0.9815 | Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine. Susceptibility to 12 antibiotics was tested in 75 unrelated lactic acid bacteria strains of wine origin of the following species: 38 Lactobacillus plantarum, 3 Lactobacillus hilgardii, 2 Lactobacillus paracasei, 1 Lactobacillus sp, 21 Oenococcus oeni, 4 Pediococcus pentosaceus, 2 Pediococcus parvulus, 1 Pediococcus acidilactici, and 3 Leuconostoc mesenteroides. The Minimal Inhibitory Concentrations of the different antibiotics that inhibited 50% of the strains of the Lactobacillus, Leuconostoc and Pediococcus genera were, respectively, the following ones: penicillin (2, < or =0.5, and < or =0.5 microg/ml), erythromycin (< or =0.5 microg/ml), chloramphenicol (4 microg/ml), ciprofloxacin (64, 8, and 128 microg/ml), vancomycin (> or =128 microg/ml), tetracycline (8, 2, and 8 microg/ml), streptomycin (256, 32, and 512 microg/ml), gentamicin (64, 4, and 128 microg/ml), kanamycin (256, 64, and 512 microg/ml), sulfamethoxazole (> or =1024 microg/ml), and trimethoprim (16 microg/ml). All 21 O. oeni showed susceptibility to erythromycin, tetracycline, rifampicin and chloramphenicol, and exhibited resistance to aminoglycosides, vancomycin, sulfamethoxazole and trimethoprim, that could represent intrinsic resistance. Differences were observed among the O. oeni strains with respect to penicillin or ciprofloxacin susceptibility. Antibiotic resistance genes were studied by PCR and sequencing, and the following genes were detected: erm(B) (one P. acidilactici), tet(M) (one L. plantarum), tet(L) (one P. parvulus), aac(6')-aph(2") (four L. plantarum, one P. parvulus, one P. pentosaceus and two O. oeni), ant(6) (one L. plantarum, and two P. parvulus), and aph(3')-IIIa (one L. plantarum and one O. oeni). This is the first time, to our knowledge, that ant(6), aph(3')-IIIa and tet(L) genes are found in Lactobacillus and Pediococcus strains and antimicrobial resistance genes are reported in O. oeni strains. | 2006 | 16876896 |
| 1260 | 8 | 0.9814 | Isolation, Identification, and Antimicrobial Susceptibilities of Bacteria from the Conjunctival Sacs of Dogs with Bacterial Conjunctivitis in Different Regions of Wuhan, China. In order to investigate the bacterial species present in the conjunctival sacs of dogs with bacterial conjunctivitis in Wuhan (Hongshan District, Wuchang District, Jiangxia District, and Huangpi District) and their resistance to aminoglycoside antibiotics, samples of conjunctival sac secretions were collected from 56 dogs with bacterial conjunctivitis in various regions of Wuhan. Drug susceptibility testing for aminoglycoside antibiotics was performed on the most commonly isolated gram-positive and gram-negative bacteria. The expression of two aminoglycoside modifying enzyme genes, aacA-aphD and aac (6')-Ib, and three 16S rRNA methyltransferase genes, rmtB, rmtE and npmA, were analyzed by PCR. The results showed that a total of 123 bacterial strains were cultured from 56 conjunctival sac secretion samples, with Staphylococcus being the most commonly isolated species, followed by Escherichia. Among them, 14 strains of Staphylococcus pseudointermedius were not resistant to tobramycin, amikacin, gentamicin or neomycin, but the resistance rates to streptomycin and kanamycin were 35.71% and 42.86%, respectively. Among them, 14 Escherichia coli strains were not resistant to tobramycin and gentamicin, but they showed high resistance rates to neomycin and kanamycin (both at 50%). The detection rate of the aacA-aphD gene in Staphylococcus pseudointermedius strains was 100%. The detection rates of the rmtB gene and rmtE gene in Escherichia coli were 85.71% and 28.57%, respectively, while the aac(6')-Ib gene and npmA gene were not detected. | 2025 | 39852896 |
| 5430 | 9 | 0.9813 | Anaerobic Gram-Negative Bacteria: Role as a Reservoir of Antibiotic Resistance. BACKGROUND: Anaerobic Gram-negative bacteria (AGNB) play a significant role as both pathogens and essential members of the human microbiota. Despite their clinical importance, there remains limited understanding regarding their antimicrobial resistance (AMR) patterns. This knowledge gap poses challenges in effectively managing AGNB-associated infections, as empirical treatment approaches may not adequately address the evolving resistance landscape. To bridge this research gap, we conducted a comprehensive study aimed at exploring the role of human AGNB as a reservoir of AMR. This can provide valuable insights for the prevention and management of anaerobic infections. METHODS: We studied the prevalence of AMR and AMR determinants conferring resistance to metronidazole (nimE), imipenem (cfiA), piperacillin-tazobactam (cepA), cefoxitin (cfxA), clindamycin (ermF), chloramphenicol (cat) and mobile genetic elements (MGEs) such as cfiA(IS) and IS1186 associated with the cfiA and nim gene expression. These parameters were studied in Bacteroides spp., Fusobacterium spp., Prevotella spp., Veillonella spp., Sutterella spp., and other clinical AGNB. RESULTS: Resistance to metronidazole, clindamycin, imipenem, piperacillin-tazobactam, cefoxitin and chloramphenicol was 29%, 33.5%, 0.5%, 27.5%, 26.5% and 0%, respectively. The presence of resistance genes, viz., nim, ermF, cfiA, cepA, cfxA, was detected in 24%, 33.5%, 10%, 9.5%, 21.5% isolates, respectively. None of the tested isolates showed the presence of a cat gene and MGEs, viz., cfiA(IS) and IS1186. The highest resistance to all antimicrobial agents was exhibited by Bacteroides spp. The association between resistant phenotypes and genotypes was complete in clindamycin, as all clindamycin-resistant isolates showed the presence of ermF gene, and none of the susceptible strains harbored this gene; similarly, all isolates were chloramphenicol-susceptible and also lacked the cat gene, whereas the association was low among imipenem and piperacillin-tazobactam. Metronidazole and imipenem resistance was seen to be dependent on insertion sequences for the expression of AMR genes. A constrained co-existence of cepA and cfiA gene in B. fragilis species was seen. Based on the absence and presence of the cfiA gene, we divided B. fragilis into two categories, Division I (72.6%) and Division II (27.3%), respectively. CONCLUSION: AGNB acts as a reservoir of specific AMR genes, which may pose a threat to other anaerobes due to functional compatibility and acquisition of these genes. Thus, AST-complying standard guidelines must be performed periodically to monitor the local and institutional susceptibility trends, and rational therapeutic strategies must be adopted to direct empirical management. | 2023 | 37237845 |
| 1264 | 10 | 0.9813 | Characterization of mannitol-fermenting methicillin-resistant staphylococci isolated from pigs in Nigeria. This study was conducted to determine the species distribution, antimicrobial resistance pheno- and genotypes and virulence traits of mannitol-positive methicillin-resistant staphylococci (MRS) isolated from pigs in Nsukka agricultural zone, Nigeria. Twenty mannitol-positive methicillin-resistant coagulase-negative staphylococcal (MRCoNS) strains harboring the mecA gene were detected among the 64 Staphylococcus isolates from 291 pigs. A total of 4 species were identified among the MRCoNS isolates, namely, Staphylococcus sciuri (10 strains), Staphylococcus lentus (6 strains), Staphylococcus cohnii (3 strains) and Staphylococcus haemolyticus (one strain). All MRCoNS isolates were multidrug-resistant. In addition to β-lactams, the strains were resistant to fusidic acid (85%), tetracycline (75%), streptomycin (65%), ciprofloxacin (65%), and trimethoprim/sulphamethoxazole (60%). In addition to the mecA and blaZ genes, other antimicrobial resistance genes detected were tet(K), tet(M), tet(L), erm(B), erm(C), aacA-aphD, aphA3, str, dfrK, dfrG, cat pC221, and cat pC223. Thirteen isolates were found to be ciprofloxacin-resistant, and all harbored a Ser84Leu mutation within the QRDR of the GyrA protein, with 3 isolates showing 2 extra substitutions, Ser98Ile and Arg100Lys (one strain) and Glu88Asp and Asp96Thr (2 strains). A phylogenetic tree of the QRDR nucleotide sequences in the gyrA gene revealed a high nucleotide diversity, with several major clusters not associated with the bacterial species. Our study highlights the possibility of transfer of mecA and other antimicrobial resistance genes from MRCoNS to pathogenic bacteria, which is a serious public health and veterinary concern. | 2015 | 26413075 |
| 5410 | 11 | 0.9811 | High-level mupirocin resistance in Gram-positive bacteria isolated from diseased companion animals. The purpose of this study was to investigate the high-level mupirocin resistance (HLMR) in Gram-positive bacteria isolated from companion animals. A total of 931 clinical specimens were collected from diseased pets. The detection of mupirocin-resistant bacteria and plasmid-mediated mupirocin resistance genes were evaluated by antimicrobial susceptibility tests, polymerase chain reactions, and sequencing analysis. Four-hundred and six (43.6%) bacteria were isolated and 17 (4.2%), including 14 staphylococci and 3 Corynebacterium were high-level mupirocin-resistant (MICs, ≥ 1,024 ug/mL) harboring mupA. Six staphylococci of HLMR strains had plasmid-mediated mupA-IS257 flanking regions. The results show that HLMR bacteria could spread in veterinary medicine in the near future. | 2020 | 32476314 |
| 5399 | 12 | 0.9811 | Characterisation and transferability of antibiotic resistance genes from lactic acid bacteria isolated from Irish pork and beef abattoirs. Lactic acid bacteria isolated from Irish pork and beef abattoirs were analysed for their susceptibility to antimicrobials. Thirty-seven isolates (12 enterococci, 10 lactobacilli, 8 streptococci, 3 lactococci, 2 Leuconostoc, and 2 pediococci) were examined for phenotypic resistance using the E-test and their minimum inhibitory concentration to a panel of six antibiotics (ampicillin, chloramphenicol, erythromycin, streptomycin, tetracycline, and vancomycin) was recorded. The corresponding genetic determinants responsible were characterised by PCR. Also, the transferability of these resistance markers was assessed in filter mating assays. Of the 37 isolates, 33 were found to be resistant to one or more antibiotics. All strains were susceptible to ampicillin and chloramphenicol. The erm(B) and msrA/B genes were detected among the 11 erythromycin-resistant strains of enterococci, lactobacilli, and streptococci. Two tetracycline-resistant strains, Lactobacillus plantarum and Leuconostoc mesenteroides spp., contained tet(M) and tet(S) genes respectively. Intrinsic streptomycin resistance was observed in lactobacilli, streptococci, lactococci and Leuconostoc species; none of the common genetic determinants (strA, strB, aadA, aadE) were identified. Four of 10 strains of Enterococcus faecium were resistant to vancomycin; however, no corresponding genetic determinants for this phenotype were identified. Enterococcus faecalis strains were susceptible to vancomycin. L. plantarum, L. mesenteroides and Pediococcus pentosaceus were intrinsically resistant to vancomycin. Transfer of antibiotic resistance determinants was demonstrated in one strain, wherein the tet(M) gene of L. plantarum (23) isolated from a pork abattoir was transferred to Lactococcus lactis BU-2-60 and to E. faecalis JH2-2. This study identified the presence of antibiotic resistance markers in Irish meat isolates and, in one example, resistance was conjugally transferred to other LAB strains. | 2010 | 20074643 |
| 5407 | 13 | 0.9810 | Resistance mechanisms and tedizolid susceptibility in clinical isolates of linezolid-resistant bacteria in Japan. OBJECTIVES: Studies combining linezolid resistance mechanisms and tedizolid susceptibility in linezolid-resistant clinical isolates are scarce. This study investigated the linezolid resistance mechanisms and tedizolid susceptibility of linezolid-resistant strains isolated clinically in Japan. METHODS: We analysed 25 linezolid-resistant strains of Enterococcus faecium and Enterococcus faecalis isolated from Japanese hospitals between 2015 and 2021. MICs of linezolid and tedizolid were determined using the agar plate dilution method. Each 23S rRNA copy was amplified by PCR, sequenced and analysed for mutations. The linezolid resistance genes cfr, poxtA, optrA, fexA and fexB were also detected by PCR. RESULTS: Drug susceptibility tests revealed that five linezolid-resistant E. faecium isolates had low (≤1 mg/L) tedizolid MICs. Resistance mechanisms included the G2576T mutation in 23S rRNA, the T2504A mutation and the resistance genes optrA, fexA and fexB. The T2504A mutation was identified in one E. faecium isolate, which exhibited linezolid and tedizolid MICs of 64 and 32 mg/L, respectively. CONCLUSIONS: Some linezolid-resistant isolates demonstrated low (≤1 mg/L) tedizolid MICs. To determine whether tedizolid susceptibility testing should be performed on linezolid-resistant isolates, more linezolid-resistant isolates should be collected and tested for tedizolid MICs. Tedizolid MICs were 2-3 doubling dilutions lower than linezolid MICs. The results of this study suggest that future research should investigate whether the T2504A mutation contributes to tedizolid resistance. To our knowledge, this is the first study to report tedizolid susceptibility in E. faecium with the T2504A mutation and in isolate harbouring this mutation. | 2025 | 40463587 |
| 5394 | 14 | 0.9810 | Antibiotic susceptibility of bacteria isolated from pasteurized milk and characterization of macrolide-lincosamide-streptogramin resistance genes. The presence of antibiotic-resistant bacteria in pasteurized milk was detected by plating 18 milk samples on selective media containing beta-lactams, macrolides, or a glycopeptide. Most samples contained gram-positive bacteria that grew on agar plates containing oxacillin, erythromycin, and/or spiramycin. The disk-diffusion method confirmed resistance to erythromycin and/or spiramycin in 86 and 65% of the coryneform bacteria and Micrococcaceae tested, respectively. PCR and sequence analysis revealed the presence of an ermC gene in 2 of the 25 Micrococcaceae strains investigated for their resistance to erythromycin and/or spiramycin. None of the 14 corynebacteria strains resistant to erythromycin and/or spiramycin harbored the erm(X) gene. No gene transfer could be demonstrated between the two erm(C) staphylococcal isolates and recipient strains of Enterococcus faecalis JH2-2 or Staphylococcus aureus 80CR5. | 2005 | 15726980 |
| 5409 | 15 | 0.9810 | Presence and new genetic environment of pleuromutilin-lincosamide-streptogramin A resistance gene lsa(E) in Erysipelothrix rhusiopathiae of swine origin. Erysipelothrix rhusiopathiae is a Gram-positive bacillus that causes erysipelas in swine. In recent years, erysipelas infection among swine in China has been increasing. A combined resistance phenotype to pleuromutilins, lincosamides, and streptogramin A (PLSA phenotype) was found in some E. rhusiopathiae isolates. The aim of this study was to identify the resistance genes responsible for the PLSA phenotype in E. rhusiopathiae strains and to map the genetic environment of the identified resistance gene. A total of 46 E. rhusiopathiae isolates from 31 pig farms in China were studied. Minimum inhibitory concentrations (MICs) of 11 antimicrobial agents were determined by broth microdilution method. Seven were highly resistant to tiamulin (MICs 32 μg/ml) and clindamycin (MICs 64 μg/ml). Resistance genes responsible for the PLSA phenotype were screened by PCR. The lsa(E), spw, lnu(B), aadE and aphA3 genes were detected in strains had the PLSA phenotype, whereas none was detected in susceptible strains. The genetic environment of lsa(E) gene was determined by whole-genome sequencing and overlapping PCR assays. A novel multiresistance gene cluster, orf1-aadE-apt-spw-lsa(E)-lnu(B)-rec-orf2-orf1-aadE-sat4-aphA3, was found. Horizontal gene transfer experiments and whole-genome sequencing suggested that the lsa(E)-carrying multiresistance gene cluster was located in the chromosome. This is the first molecular characterization of PLSA resistance in E. rhusiopathiae. The lsa(E), spw and lnu(B) genes were found in E. rhusiopathiae for the first time. A novel lsa(E)-carrying multiresistance gene cluster was found. The location of lsa(E) in different gene cluster facilitates its persistence and dissemination. | 2015 | 25759293 |
| 5377 | 16 | 0.9810 | Synthetic lincosamides iboxamycin and cresomycin are active against ocular multidrug-resistant methicillin-resistant Staphylococcus aureus carrying erm genes. OBJECTIVE: Antimicrobial resistance is a global pandemic that poses a major threat to vision health as ocular bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA), are becoming increasingly resistant to first-line therapies. Here we evaluated the antimicrobial activity of new synthetic lincosamides in comparison to currently used antibiotics against clinical ocular MRSA isolates. METHODS: Antimicrobial susceptibility testing was performed by broth microdilution for two novel synthetic lincosamides (iboxamycin and cresomycin) and eight comparator antibiotics against a collection of 50 genomically characterised ocular MRSA isolates, including isolates harbouring erm genes (n = 25). RESULTS: Both drugs were active against widespread MRSA clonal complexes CC8 and CC5. The MIC(50) and MIC(90) of iboxamycin were 0.06 and 2 mg/L, respectively. Cresomycin (MIC(50) = 0.06 mg/L) also displayed good activity with an in vitro potency four-fold higher (MIC(90) = 0.5 mg/L) than iboxamycin. In isolates harbouring erm genes, MIC(90) were >16, 2, and 0.5 mg/L for clindamycin, iboxamycin, and cresomycin, respectively. The in vitro potencies of iboxamycin and cresomycin were similar or higher than that of comparator agents and were not impacted by multidrug-resistance phenotypes or by the presence of erm genes when compared with clindamycin. CONCLUSIONS: Our results demonstrate that iboxamycin and cresomycin display potent in vitro activity against ocular MRSA isolates, including multidrug-resistant isolates harbouring erm genes. | 2024 | 39293511 |
| 5388 | 17 | 0.9810 | Molecular identification and antibiotic resistance of bacteriocinogenic lactic acid bacteria isolated from table olives. In the present study, lactic acid bacteria were isolated from table olive in Morocco. Random Amplified Polymorphic DNA fingerprinting with (GTG)'(5) primer revealed a remarquable variability within isolates. According to the molecular identification, Enterococcus faecium was the most dominant species isolated with 32 strains (84.21%), followed by 4 strains of Weissella paramesenteroides (10.52%), 1 strain of Leuconostoc mesenteroides (2.63%) and Lactobacillus plantarum (2.63%). All of the strains that were identified showed occurrence of more than one bacteriocin-encoding gene. Based on the results obtained, L. plantarum 11 showed a mosaic of loci coding for nine bacteriocins (pln A, pln D, pln K, pln G, pln B, pln C, pln N, pln J, ent P). A phenotypic and genotypic antibiotic resistance was also examined. L. plantarum 11, L. mesenteroides 62, W. paramesenteroides 9 and W. paramesenteroides 36 as well as all the strains of E. faecium were susceptible to ampicillin, clindamycin and teicoplanin; however, isolates showed a resistance profile against tetracycline and erythromycin. Except E. faecium 114, E. faecium 130 and L. plantarum 11, no antibiotic resistance genes were detected in all of the strains, which might be due to resistances resulting from non-transferable or non-acquired resistance determinants (intrinsic mechanism). | 2021 | 32995979 |
| 5426 | 18 | 0.9810 | First Report of Antibiotic Resistance Markers cfiA and nim Among Bacteroides fragilis Group Strains in Ecuadorian Patients. In recent years, increasing resistance of Bacteroides fragilis to several antibiotics has been reported in different countries. The aim of this study was to evaluate the antibiotic resistance profiles of Bacteroides spp. isolated from clinical samples by phenotypic and molecular methods. A total of 40 nonrepetitive isolates of the B. fragilis group were studied from 2018 to 2019. The species was identified by API 20A system. The minimum inhibitory concentrations (MICs) were determined by Sensititre anaerobe MIC plate. The presence of the nim and cfiA genes was checked by conventional PCR. The association between genes and insertion sequence (IS) was performed by whole genome sequencing. Eleven isolates were categorized as metronidazole-resistant and only 2 isolates harbored the nim gene. Five isolates were imipenem-resistant, but cfiA gene was detected in two isolates. cfiA gene was closely related to the cfiA-4 allele and associated with IS614B. The nim gene was not related to any nim gene type and was considered a new variant named nimL. IS612 was found upstream of nimL gene. In view of the scarcity of data on B. fragilis, there is a need to surveil antibiotic resistance levels and molecular mechanisms to implement better antimicrobial therapies against this important group of bacteria. | 2023 | 37733248 |
| 5390 | 19 | 0.9809 | Presence of erythromycin and tetracycline resistance genes in lactic acid bacteria from fermented foods of Indian origin. Lactic acid bacteria (LAB) resistant to erythromycin were isolated from different food samples on selective media. The isolates were identified as Enterococcus durans, Enterococcus faecium, Enterococcus lactis, Enterococcus casseliflavus, Lactobacillus salivarius, Lactobacillus reuteri, Lactobacillus plantarum, Lactobacillus fermentum, Pediococcus pentosaceus and Leuconostoc mesenteroides. Of the total 60 isolates, 88 % harbored the ermB gene. The efflux gene msrA was identified in E. faecium, E. durans, E. lactis, E. casseliflavus, P. pentosaceus and L. fermentum. Further analysis of the msrA gene by sequencing suggested its homology to msrC. Resistance to tetracycline due to the genes tetM, tetW, tetO, tetK and tetL, alone or in combination, were identified in Lactobacillus species. The tetracycline efflux genes tetK and tetL occurred in P. pentosaceus and Enterococcus species. Since it appeared that LAB had acquired these genes, fermented foods may be a source of antibiotic resistance. | 2012 | 22644346 |