# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1388 | 0 | 0.9945 | Snapshot Study of Whole Genome Sequences of Escherichia coli from Healthy Companion Animals, Livestock, Wildlife, Humans and Food in Italy. Animals, humans and food are all interconnected sources of antimicrobial resistance (AMR), allowing extensive and rapid exchange of AMR bacteria and genes. Whole genome sequencing (WGS) was used to characterize 279 Escherichia coli isolates obtained from animals (livestock, companion animals, wildlife), food and humans in Italy. E. coli predominantly belonged to commensal phylogroups B1 (46.6%) and A (29%) using the original Clermont criteria. One hundred and thirty-six sequence types (STs) were observed, including different pandemic (ST69, ST95, ST131) and emerging (ST10, ST23, ST58, ST117, ST405, ST648) extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Eight antimicrobial resistance genes (ARGs) and five chromosomal mutations conferring resistance to highest priority critically important antimicrobials (HP-CIAs) were identified (qnrS1, qnrB19, mcr-1, bla(CTX-M1,15,55), bla(CMY-2), gyrA/parC/parE, ampC and pmrB). Twenty-two class 1 integron arrangements in 34 strains were characterized and 11 ARGs were designated as intI1 related gene cassettes (aadA1, aadA2, aadA5, aad23, ant2_Ia, dfrA1, dfrA7, dfrA14, dfrA12, dfrA17, cmlA1). Notably, most intI1 positive strains belonged to rabbit (38%) and poultry (24%) sources. Three rabbit samples carried the mcr-1 colistin resistance gene in association with IS6 family insertion elements. Poultry meat harbored some of the most prominent ExPEC STs, including ST131, ST69, ST10, ST23, and ST117. Wildlife showed a high average number of virulence-associated genes (VAGs) (mean = 10), mostly associated with an ExPEC pathotype and some predominant ExPEC lineages (ST23, ST117, ST648) were identified. | 2020 | 33172096 |
| 1852 | 1 | 0.9943 | Genomic and Resistance Epidemiology of Gram-Negative Bacteria in Africa: a Systematic Review and Phylogenomic Analyses from a One Health Perspective. Antibiotic resistance (AR) remains a major threat to public and animal health globally. However, AR ramifications in developing countries are worsened by limited molecular diagnostics, expensive therapeutics, inadequate numbers of skilled clinicians and scientists, and unsanitary environments. The epidemiology of Gram-negative bacteria, their AR genes, and geographical distribution in Africa are described here. Data were extracted and analyzed from English-language articles published between 2015 and December 2019. The genomes and AR genes of the various species, obtained from the Pathosystems Resource Integration Center (PATRIC) and NCBI were analyzed phylogenetically using Randomized Axelerated Maximum Likelihood (RAxML) and annotated with Figtree. The geographic location of resistant clones/clades was mapped manually. Thirty species from 31 countries and 24 genera from 41 countries were analyzed from 146 articles and 3,028 genomes, respectively. Genes mediating resistance to β-lactams (including bla (TEM-1), bla (CTX-M), bla (NDM), bla (IMP), bla (VIM), and bla (OXA-48/181)), fluoroquinolones (oqxAB, qnrA/B/D/S, gyrA/B, and parCE mutations, etc.), aminoglycosides (including armA and rmtC/F), sulfonamides (sul1/2/3), trimethoprim (dfrA), tetracycline [tet(A/B/C/D/G/O/M/39)], colistin (mcr-1), phenicols (catA/B, cmlA), and fosfomycin (fosA) were mostly found in Enterobacter spp. and Klebsiella pneumoniae, and also in Serratia marcescens, Escherichia coli, Salmonella enterica, Pseudomonas, Acinetobacter baumannii, etc., on mostly IncF-type, IncX(3/4), ColRNAI, and IncR plasmids, within IntI1 gene cassettes, insertion sequences, and transposons. Clonal and multiclonal outbreaks and dissemination of resistance genes across species and countries and between humans, animals, plants, and the environment were observed; Escherichia coli ST103, K. pneumoniae ST101, S. enterica ST1/2, and Vibrio cholerae ST69/515 were common strains. Most pathogens were of human origin, and zoonotic transmissions were relatively limited.IMPORTANCE Antibiotic resistance (AR) is one of the major public health threats and challenges to effective containment and treatment of infectious bacterial diseases worldwide. Here, we used different methods to map out the geographical hot spots, sources, and evolutionary epidemiology of AR. Escherichia coli, Klebsiella pneumoniae, Salmonella enterica, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., Neisseria meningitis/gonorrhoeae, Vibrio cholerae, Campylobacter jejuni, etc., were common pathogens shuttling AR genes in Africa. Transmission of the same clones/strains across countries and between animals, humans, plants, and the environment was observed. We recommend Enterobacter spp. or K. pneumoniae as better sentinel species for AR surveillance. | 2020 | 33234606 |
| 1743 | 2 | 0.9943 | International clones of extended-spectrum β-lactamase (CTX-M)-producing Escherichia coli in peri-urban wild animals, Brazil. CTX-M-type extended-spectrum β-lactamase (ESBL)-producing Escherichia coli clones have been increasingly reported worldwide. In this regard, although discussions of transmission routes of these bacteria are in evidence, molecular data are lacking to elucidate the epidemiological impacts of ESBL producers in wild animals. In this study, we have screened 90 wild animals living in a surrounding area of São Paulo, the largest metropolitan city in South America, to monitor the presence of multidrug-resistant (MDR) Gram-negative bacteria. Using a genomic approach, we have analysed eight ceftriaxone-resistant E. coli. Resistome analyses revealed that all E. coli strains carried bla(CTX-M) -type genes, prevalent in human infections, besides other clinically relevant resistance genes to aminoglycosides, β-lactams, phenicols, tetracyclines, sulphonamides, trimethoprim, fosfomycin and quinolones. Additionally, E. coli strains belonged to international sequence types (STs) ST38, ST58, ST212, ST744, ST1158 and ST1251, and carried several virulence-associated genes. Our findings suggest spread and adaptation of international clones of CTX-M-producing E. coli beyond urban settings, including wildlife from shared environments. | 2020 | 32239649 |
| 1387 | 3 | 0.9942 | Whole-Genome Characterisation of ESBL-Producing E. coli Isolated from Drinking Water and Dog Faeces from Rural Andean Households in Peru. E. coli that produce extended-spectrum β-lactamases (ESBLs) are major multidrug-resistant bacteria. In Peru, only a few reports have characterised the whole genome of ESBL enterobacteria. We aimed to confirm the identity and antimicrobial resistance (AMR) profile of two ESBL isolates from dog faeces and drinking water of rural Andean households and determine serotype, phylogroup, sequence type (ST)/clonal complex (CC), pathogenicity, virulence genes, ESBL genes, and their plasmids. To confirm the identity and AMR profiles, we used the VITEK(®)2 system. Whole-genome sequencing (WGS) and bioinformatics analysis were performed subsequently. Both isolates were identified as E. coli, with serotypes -:H46 and O9:H10, phylogroups E and A, and ST/CC 5259/- and 227/10, respectively. The isolates were ESBL-producing, carbapenem-resistant, and not harbouring carbapenemase-encoding genes. Isolate 1143 ST5259 harboured the astA gene, encoding the EAST(1) heat-stable toxin. Both genomes carried ESBL genes (bla(EC-15), bla(CTX-M-8), and bla(CTX-M-55)). Nine plasmids were detected, namely IncR, IncFIC(FII), IncI, IncFIB(AP001918), Col(pHAD28), IncFII, IncFII(pHN7A8), IncI1, and IncFIB(AP001918). Finding these potentially pathogenic bacteria is worrisome given their sources and highlights the importance of One-Health research efforts in remote Andean communities. | 2022 | 35625336 |
| 2637 | 4 | 0.9941 | Potentially Pathogenic Multidrug-Resistant Escherichia coli in Lamb Meat. Extended-spectrum cephalosporin (ESC) resistance remains a threat since ESC are important antimicrobials used to treat infections in humans and animals. Escherichia coli is an important source of ESC-resistance genes, such as those encoding extended-spectrum β-lactamases (ESBLs). E. coli is a common commensal of lambs. Reports that contaminated food can be a source of ESC-resistant bacteria in humans and that ESBL-producing E. coli are found in sheep in Brazil led us to survey their presence in retail lamb meat. Twenty-five samples intended for human consumption were screened for ESC-resistant E. coli, and the isolates were characterized. IncI1-bla(CTX-M-8) and IncHI2-bla(CTX-M-2) were the main plasmids responsible for ESC resistance. The plasmids harbored common ESBL genes in Enterobacteriaceae from food-producing animals in Brazil. IncI1-bla(CTX-M-14) and IncF-bla(CTX-M-55) plasmids, associated with human infections, were also detected. Few CTX-M-producing E. coli have been clustered by typing methods, and some may be genetically pathogenic. The findings indicate the presence of diverse strains of E. coli, harboring important ESBL genes, in lamb meat in Brazil. Surveillance of ESC-resistant bacteria could reduce the spread of antimicrobial resistance through the food chain. | 2021 | 33417827 |
| 1875 | 5 | 0.9941 | Mobile Colistin Resistance (mcr) Gene-Containing Organisms in Poultry Sector in Low- and Middle-Income Countries: Epidemiology, Characteristics, and One Health Control Strategies. Mobile colistin resistance (mcr) genes (mcr-1 to mcr-10) are plasmid-encoded genes that threaten the clinical utility of colistin (COL), one of the highest-priority critically important antibiotics (HP-CIAs) used to treat infections caused by multidrug-resistant and extensively drug-resistant bacteria in humans and animals. For more than six decades, COL has been used largely unregulated in the poultry sector in low- and middle-income countries (LMICs), and this has led to the development/spread of mcr gene-containing bacteria (MGCB). The prevalence rates of mcr-positive organisms from the poultry sector in LMICs between January 1970 and May 2023 range between 0.51% and 58.8%. Through horizontal gene transfer, conjugative plasmids possessing insertion sequences (ISs) (especially ISApl1), transposons (predominantly Tn6330), and integrons have enhanced the spread of mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-7, mcr-8, mcr-9, and mcr-10 in the poultry sector in LMICs. These genes are harboured by Escherichia, Klebsiella, Proteus, Salmonella, Cronobacter, Citrobacter, Enterobacter, Shigella, Providencia, Aeromonas, Raoultella, Pseudomonas, and Acinetobacter species, belonging to diverse clones. The mcr-1, mcr-3, and mcr-10 genes have also been integrated into the chromosomes of these bacteria and are mobilizable by ISs and integrative conjugative elements. These bacteria often coexpress mcr with virulence genes and other genes conferring resistance to HP-CIAs, such as extended-spectrum cephalosporins, carbapenems, fosfomycin, fluoroquinolone, and tigecycline. The transmission routes and dynamics of MGCB from the poultry sector in LMICs within the One Health triad include contact with poultry birds, feed/drinking water, manure, poultry farmers and their farm workwear, farming equipment, the consumption and sale of contaminated poultry meat/egg and associated products, etc. The use of pre/probiotics and other non-antimicrobial alternatives in the raising of birds, the judicious use of non-critically important antibiotics for therapy, the banning of nontherapeutic COL use, improved vaccination, biosecurity, hand hygiene and sanitization, the development of rapid diagnostic test kits, and the intensified surveillance of mcr genes, among others, could effectively control the spread of MGCB from the poultry sector in LMICs. | 2023 | 37508213 |
| 5238 | 6 | 0.9941 | Snapshot of resistome, virulome and mobilome in aquaculture. Aquaculture environments can be hotspots for resistance genes through the surrounding environment. Our objective was to study the resistome, virulome and mobilome of Gram-negative bacteria isolated in seabream and bivalve molluscs, using a WGS approach. Sixty-six Gram-negative strains (Aeromonadaceae, Enterobacteriaceae, Hafniaceae, Morganellaceae, Pseudomonadaceae, Shewanellaceae, Vibrionaceae, and Yersiniaceae families) were selected for genomic characterization. The species and MLST were determined, and antibiotic/disinfectants/heavy metals resistance genes, virulence determinants, MGE, and pathogenicity to humans were investigated. Our study revealed new sequence-types (e.g. Aeromonas spp. ST879, ST880, ST881, ST882, ST883, ST887, ST888; Shewanella spp. ST40, ST57, ST58, ST60, ST61, ST62; Vibrio spp. ST206, ST205). >140 different genes were identified in the resistome of seabream and bivalve molluscs, encompassing genes associated with β-lactams, tetracyclines, aminoglycosides, quinolones, sulfonamides, trimethoprim, phenicols, macrolides and fosfomycin resistance. Disinfectant resistance genes qacE-type, sitABCD-type and formA-type were found. Heavy metals resistance genes mdt, acr and sil stood out as the most frequent. Most resistance genes were associated with antibiotics/disinfectants/heavy metals commonly used in aquaculture settings. We also identified 25 different genes related with increased virulence, namely associated with adherence, colonization, toxins production, red blood cell lysis, iron metabolism, escape from the immune system of the host. Furthermore, 74.2 % of the strains analysed were considered pathogenic to humans. We investigated the genetic environment of several antibiotic resistance genes, including bla(TEM-1B), bla(FOX-18), aph(3″)-Ib, dfrA-type, aadA1, catA1-type, tet(A)/(E), qnrB19 and sul1/2. Our analysis also focused on identifying MGE in proximity to these genes (e.g. IntI1, plasmids and TnAs), which could potentially facilitate the spread of resistance among bacteria across different environments. This study provides a comprehensive examination of the diversity of resistance genes that can be transferred to both humans and the environment, with the recognition that aquaculture and the broader environment play crucial roles as intermediaries within this complex transmission network. | 2023 | 37604365 |
| 977 | 7 | 0.9940 | High prevalence of carriage of mcr-1-positive enteric bacteria among healthy children from rural communities in the Chaco region, Bolivia, September to October 2016. BackgroundThe mcr-1 gene is a transferable resistance determinant against colistin, a last-resort antimicrobial for infections caused by multi-resistant Gram-negatives.AimTo study carriage of antibiotic-resistant bacteria in healthy school children as part of a helminth control and antimicrobial resistance survey in the Bolivian Chaco region.MethodsFrom September to October 2016 we collected faecal samples from healthy children in eight rural villages. Samples were screened for mcr-1- and mcr-2 genes. Antimicrobial susceptibility testing was performed, and a subset of 18 isolates representative of individuals from different villages was analysed by whole genome sequencing (WGS).ResultsWe included 337 children (mean age: 9.2 years, range: 7-11; 53% females). The proportion of mcr-1 carriers was high (38.3%) and present in all villages; only four children had previous antibiotic exposure. One or more mcr-1-positive isolates were recovered from 129 positive samples, yielding a total of 173 isolates (171 Escherichia coli, 1 Citrobacter europaeus, 1 Enterobacter hormaechei). No mcr-2 was detected. Co-resistance to other antimicrobials varied in mcr-positive E. coli. All 171 isolates were susceptible to carbapenems and tigecycline; 41 (24.0%) were extended-spectrum β-lactamase producers and most of them (37/41) carried bla(CTX-M)-type genes. WGS revealed heterogeneity of clonal lineages and mcr-genetic supports.ConclusionThis high prevalence of mcr-1-like carriage, in absence of professional exposure, is unexpected. Its extent at the national level should be investigated with priority. Possible causes should be studied; they may include unrestricted use of colistin in veterinary medicine and animal breeding, and importation of mcr-1-positive bacteria via food and animals. | 2018 | 30424831 |
| 1749 | 8 | 0.9940 | The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2021-2022. This report by the European Food Safety Authority and the European Centre for Disease prevention and Control, provides an overview of the main findings of the 2021-2022 harmonised Antimicrobial Resistance (AMR) monitoring in Salmonella spp., Campylobacter jejuni and C. coli from humans and food-producing animals (broilers, laying hens and fattening turkeys, fattening pigs and cattle under one year of age) and relevant meat thereof. For animals and meat thereof, AMR data on indicator commensal Escherichia coli, presumptive extended-spectrum beta-lactamases (ESBL)-/AmpC beta-lactamases (AmpC)-/carbapenemase (CP)-producing E. coli, and the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) are also analysed. Generally, resistance levels differed greatly between reporting countries and antimicrobials. Resistance to commonly used antimicrobials was frequently found in Salmonella and Campylobacter isolates from humans and animals. In humans, increasing trends in resistance to one of two critically antimicrobials (CIA) for treatment was observed in poultry-associated Salmonella serovars and Campylobacter, in at least half of the reporting countries. Combined resistance to CIA was however observed at low levels except in some Salmonella serovars and in C. coli from humans and animals in some countries. While CP-producing Salmonella isolates were not detected in animals in 2021-2022, nor in 2021 for human cases, in 2022 five human cases of CP-producing Salmonella were reported (four harbouring bla (OXA-48) or bla (OXA-48-like) genes). The reporting of a number of CP-producing E. coli isolates (harbouring bla (OXA-48), bla (OXA-181), bla (NDM-5) and bla (VIM-1) genes) in fattening pigs, cattle under 1 year of age, poultry and meat thereof by a limited number of MSs (5) in 2021 and 2022, requires a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC-producers in E. coli) showed an encouraging progress in reducing AMR in food-producing animals in several EU MSs over the last 7 years. | 2024 | 38419967 |
| 1742 | 9 | 0.9940 | Shelter dogs as reservoirs of international clones of Escherichia coli carrying mcr-1.1 and bla(CTX-M) resistance genes in Lima, Peru. Antimicrobial resistance (AMR) poses a critical public health threat worldwide, particularly at the human-animal interface where cross-transmission of critical priority Enterobacterales, such as Escherichia coli, have become increasingly reported. Worryingly, E. coli encoding extended-spectrum β-lactamases (ESBLs) has been documented in companion animals worldwide. Conversely, the presence of mcr genes, which confer resistance to polymyxins, in bacteria from pets remains more infrequent. In this study, we sequenced and reported on the first genomic data of E. coli strains carrying mcr-1 and/or bla(CTX-M) genes isolated from rectal swabs of stray dogs in a shelter in the city of Lima, Peru. Antimicrobial susceptibility revealed that E. coli strains exhibited a multidrug resistance profile. In addition to mcr-1 and bla(CTX-M) genes, other clinically relevant resistance determinants were identified, with notably presence of bla(TEM-176) and the novel bla(SCO-2) variant. The association of mcr-1.1 and IncI2 plasmid was confirmed. Several virulence genes were detected, classifying strains as putative extraintestinal pathogenic E. coli. Multilocus sequence typing prediction recognized diverse sequence types (ST), including ST155, ST189, ST657, ST746, ST1140, ST3014, and ST7188. This study represents the first report of mcr-positive E. coli in dogs from Peru, emphasizing the need for continuous surveillance and genomic characterization to better understand the transmission dynamics of these critical resistance genes at the human-animal interface. Furthermore, our results provide evidence that stray, and shelter dogs could be a reservoir for the spread of WHO priority pathogens, and/or polymyxin and β-lactam resistance genes, which is a public health and One Health concern that requires appropriate management strategies. | 2025 | 40339258 |
| 1064 | 10 | 0.9940 | Isolation of AmpC- and extended spectrum β-lactamase-producing Enterobacterales from fresh vegetables in the United States. Vegetables may serve as a reservoir for antibiotic resistant bacteria and resistance genes. AmpC β-lactamases and extended spectrum beta-lactamases (ESBL) inactivate commonly used β-lactam antibiotics, including penicillins and cephalosporins. In this study, we determined the prevalence of AmpC and ESBL-producing Enterobacterales in retail vegetables in the United States. A total of 88 vegetable samples were collected for the screening of AmpC and ESBL-producing Enterobacterales using CHROMagar ESBL agar. These vegetables included washed ready-to-eat salad (23), microgreens/sprouts (13), lettuce (11), herbs (11), spinach (5), mushrooms (5), brussels sprouts (4), kale (3), and other vegetable samples (13). AmpC and ESBL activity in these isolates were determined using double disk combination tests. Two vegetable samples (2.27%), organic basil and brussels sprouts, were positive for AmpC-producing Enterobacterales and eight samples (9.09%), including bean sprouts, organic parsley, organic baby spinach, and several mixed salads, were positive for ESBL-producing Enterobacterales. Whole genome sequencing was used to identify the bacterial species and resistance genes in these isolates. Genes encoding AmpC β-lactamases were found in Enterobacter hormaechei strains S43-1 and 74-2, which were consistent with AmpC production phenotypes. Multidrug-resistant E. hormaechei strains S11-1, S17-1, and S45-4 possess an ESBL gene, bla(SHV66) , whereas five Serratia fonticola isolates contain genes encoding a minor ESBL, FONA-5. In addition, we used shotgun metagenomic sequencing approach to examine the microbiome and resistome profiles of three spinach samples. We found that Pseudomonas was the most prevalent bacteria genus in the spinach samples. Within the Enterobacteriaceae family, Enterobacter was the most abundant genus in the spinach samples. Moreover, antibiotic resistance genes encoding 12 major classes of antibiotics, including β-lactam antibiotics, aminoglycoside, macrolide, fluoroquinolone, and others, were found in these spinach samples. Therefore, vegetables can serve as an important vehicle for transmitting antibiotic resistance. The study highlights the need for antibiotic resistance surveillance in vegetable products. | 2022 | 34629764 |
| 960 | 11 | 0.9940 | Beta-lactamase genes in bacteria from food animals, retail meat, and human surveillance programs in the United States from 2002 to 2021. The spread of beta-lactamase-producing bacteria is a global public-health concern. This study aimed to explore the distribution of beta-lactamases reported in three sampling sources (cecal, retail meat, and human) collected as part of integrated surveillance in the United States. We retrieved and analyzed data from the United States National Antimicrobial Resistance Monitoring Systems (NARMS) from 2002 to 2021. A total of 115 beta-lactamase genes were detected in E. coli, Salmonella enterica, Campylobacter, Shigella and Vibrio: including 35 genes from cecal isolates, 32 genes from the retail meat isolates, and 104 genes from the human isolates. Three genes in E. coli (bla(CMY-2,)bla(TEM-1A), and bla(TEM-1B)), 6 genes in Salmonella enterica (bla(CARB-2), bla(CMY-2), bla(CTXM-65), bla(TEM-1A), bla(TEM-1B), and bla(HERA-3)), and 2 genes in Campylobacter spp. (bla(OXA-61) and bla(OXA-449)) have been detected across food animals (cattle, chicken, swine, and turkey) and humans over the study period. bla(CTXM-55) has been detected in E. coli isolates from the four food animal sources while bla(CTXM-15) and bla(CTXM-27) were found only in cattle and swine. In Salmonella enterica, bla(CTXM-2), bla(CTXM-9), bla(CTXM-14), bla(CTXM-15), bla(CTXM-27), bla(CTXM-55), and bla(NDM-1) were only detected among human isolates. bla(OXAs) and bla(CARB) were bacteria-specific and the only beta-lactamase genes detected in Campylobacter spp. and Vibrio spp respectively. The proportions of beta-lactamase genes detected varies from bacteria to bacteria. This study provided insights on the beta-lactamase genes detected in bacteria in food animals and humans in the United States. This is necessary for better understanding the molecular epidemiology of clinically important beta-lactamases in one health interface. | 2024 | 38325128 |
| 1994 | 12 | 0.9939 | Antibiotic resistance genes, mobile elements, virulence genes, and phages in cultivated ESBL-producing Escherichia coli of poultry origin in Kwara State, North Central Nigeria. The paucity of information on the genomic diversity of drug-resistant bacteria in most food-producing animals, including poultry in Nigeria, has led to poor hazard characterization and the lack of critical control points to safeguard public health. Hence, this study used whole genome sequencing (WGS) to assess the presence and the diversity of antibiotic resistance genes, mobile genetic elements, virulence genes, and phages in Extended Spectrum Beta Lactamase producing Escherichia coli (ESBL - E. coli) isolates obtained from poultry via the EURL guideline of 2017 in Ilorin, Nigeria. The prevalence of ESBL - E. coli in poultry was 10.5 % (n = 37/354). The phenotypic antibiotic susceptibility testing showed that all the ESBL- E. coli isolates were multi-drug resistant (MDR). The in-silico analysis of the WGS raw-read data from 11 purposively selected isolates showed that the isolates had a wide array of ARGs that conferred resistance to beta-lactam antibiotics, and 8 other classes of antibiotics (fluoroquinolones, foliate pathway antagonists, aminoglycoside, phenicol, tetracycline, epoxide, macrolides, and rifamycin). All the ARGs were in the bacterial chromosome except in two isolates where plasmid-mediated quinolone resistance (PMQR) was detected. Two isolates carried the gyrAp.S83L mutation which confers resistance to certain fluoroquinolones. The mobilome consisted of several Col-plasmids and the predominant IncF plasmids belonged to the IncF64:A-:B27 sequence type. The virulome consisted of genes that function as adhesins, iron acquisition genes, toxins, and protectins. Intact phages were found in 8 of the 11 isolates and the phageome consisted of representatives of four families of viruses: Myoviridae (62.5 %, n = 5/8), Siphoviridae (37.5 %, n = 3/8), Inoviridae (12.5 %, n = 1), and Podoviridae (12.5 %, n = 1/8). ESBL - E. coli isolates harboured 1-5 intact phages and no ARGs were identified on any of the phages. Although five of the isolates belonged to phylogroup A, the isolates were diverse as they belonged to different serotype and sequence types. Our findings demonstrate the high genomic diversity of ESBL - E. coli of poultry origin in Ilorin, Nigeria. These diverse isolates harbor clinically relevant ARGs, mobile elements, virulence genes, and phages that may have detrimental zoonotic potentials on human health. | 2023 | 36738714 |
| 1842 | 13 | 0.9939 | Emergence of mcr-9.1 in Extended-Spectrum-β-Lactamase-Producing Clinical Enterobacteriaceae in Pretoria, South Africa: Global Evolutionary Phylogenomics, Resistome, and Mobilome. Extended-spectrum-β-lactamase (ESBL)-producing Enterobacteriaceae are critical-priority pathogens that cause substantial fatalities. With the emergence of mobile mcr genes mediating resistance to colistin in Enterobacteriaceae, clinicians are now left with few therapeutic options. Eleven clinical Enterobacteriaceae strains with resistance to cephems and/or colistin were genomically analyzed to determine their resistomes, mobilomes, and evolutionary relationships to global strains. The global phylogenomics of mcr genes and mcr-9.1-bearing genomes were further analyzed. Ten isolates were ESBL positive. The isolates were multidrug resistant and phylogenetically related to global clones but distant from local strains. Multiple resistance genes, including bla (CTX-M-15) bla (TEM-1), and mcr-9.1, were found in single isolates; ISEc9, IS19, and Tn3 transposons bracketed bla (CTX-M-15) and bla (TEM-1) Common plasmid types included IncF, IncH, and ColRNAI. mcr-9 was of close sequence identity to mcr-3, mcr-5, mcr-7, mcr-8, and mcr-10. Genomes bearing mcr-9.1 clustered into six main phyletic groups (A to F), with those of this study belonging to clade B. Enterobacter species and Salmonella species are the main hosts of mcr-9.1 globally, although diverse promiscuous plasmids disseminate mcr-9.1 across different bacterial species. Emergence of mcr-9.1 in ESBL-producing Enterobacteriaceae in South Africa is worrying, due to the restricted therapeutic options. Intensive One Health molecular surveillance might discover other mcr alleles and inform infection management and antibiotic choices.IMPORTANCE Colistin is currently the last-resort antibiotic for difficult-to-treat bacterial infections. However, colistin resistance genes that can move from bacteria to bacteria have emerged, threatening the safe treatment of many bacterial infections. One of these genes, mcr-9.1, has emerged in South Africa in bacteria that are multidrug resistant, further limiting treatment options for clinicians. In this work, we show that this new gene is disseminating worldwide through Enterobacter and Salmonella species through multiple plasmids. This worrying observation requires urgent action to prevent further escalation of this gene in South Africa and Africa. | 2020 | 32430406 |
| 1750 | 14 | 0.9939 | The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021. Antimicrobial resistance (AMR) data on zoonotic and indicator bacteria from humans, animals and food are collected annually by the EU Member States (MSs) and reporting countries, jointly analysed by EFSA and ECDC and presented in a yearly EU Summary Report. This report provides an overview of the main findings of the 2020-2021 harmonised AMR monitoring in Salmonella spp., Campylobacter jejuni and C. coli in humans and food-producing animals (broilers, laying hens and turkeys, fattening pigs and bovines under 1 year of age) and relevant meat thereof. For animals and meat thereof, indicator E. coli data on the occurrence of AMR and presumptive Extended spectrum β-lactamases (ESBL)-/AmpC β-lactamases (AmpC)-/carbapenemases (CP)-producers, as well as the occurrence of methicillin-resistant Staphylococcus aureus are also analysed. In 2021, MSs submitted for the first time AMR data on E. coli isolates from meat sampled at border control posts. Where available, monitoring data from humans, food-producing animals and meat thereof were combined and compared at the EU level, with emphasis on multidrug resistance, complete susceptibility and combined resistance patterns to selected and critically important antimicrobials, as well as Salmonella and E. coli isolates exhibiting ESBL-/AmpC-/carbapenemase phenotypes. Resistance was frequently found to commonly used antimicrobials in Salmonella spp. and Campylobacter isolates from humans and animals. Combined resistance to critically important antimicrobials was mainly observed at low levels except in some Salmonella serotypes and in C. coli in some countries. The reporting of a number of CP-producing E. coli isolates (harbouring bla (OXA-48), bla (OXA-181), and bla (NDM-5) genes) in pigs, bovines and meat thereof by a limited number of MSs (4) in 2021, requests a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC- producers) showed that encouraging progress have been registered in reducing AMR in food-producing animals in several EU MSs over the last years. | 2023 | 36891283 |
| 1729 | 15 | 0.9939 | Plasmid-Borne and Chromosomal ESBL/AmpC Genes in Escherichia coli and Klebsiella pneumoniae in Global Food Products. Plasmid-mediated extended-spectrum beta-lactamase (ESBL), AmpC, and carbapenemase producing Enterobacteriaceae, in particular Escherichia coli and Klebsiella pneumoniae, with potential zoonotic transmission routes, are one of the greatest threats to global health. The aim of this study was to investigate global food products as potential vehicles for ESBL/AmpC-producing bacteria and identify plasmids harboring resistance genes. We sampled 200 food products purchased from Finland capital region during fall 2018. Products originated from 35 countries from six continents and represented four food categories: vegetables (n = 60), fruits and berries (n = 50), meat (n = 60), and seafood (n = 30). Additionally, subsamples (n = 40) were taken from broiler meat. Samples were screened for ESBL/AmpC-producing Enterobacteriaceae and whole genome sequenced to identify resistance and virulence genes and sequence types (STs). To accurately identify plasmids harboring resistance and virulence genes, a hybrid sequence analysis combining long- and short-read sequencing was employed. Sequences were compared to previously published plasmids to identify potential epidemic plasmid types. Altogether, 14 out of 200 samples were positive for ESBL/AmpC-producing E. coli and/or K. pneumoniae. Positive samples were recovered from meat (18%; 11/60) and vegetables (5%; 3/60) but were not found from seafood or fruit. ESBL/AmpC-producing E. coli and/or K. pneumoniae was found in 90% (36/40) of broiler meat subsamples. Whole genome sequencing of selected isolates (n = 21) revealed a wide collection of STs, plasmid replicons, and genes conferring multidrug resistance. bla (CTX-M-15)-producing K. pneumoniae ST307 was identified in vegetable (n = 1) and meat (n = 1) samples. Successful IncFII plasmid type was recovered from vegetable and both IncFII and IncI1-Iγ types from meat samples. Hybrid sequence analysis also revealed chromosomally located beta-lactamase genes in two of the isolates and indicated similarity of food-derived plasmids to other livestock-associated sources and also to plasmids obtained from human clinical samples from various countries, such as IncI type plasmid harboring bla (TEM-52C) from a human urine sample obtained in the Netherlands which was highly similar to a plasmid obtained from broiler meat in this study. Results indicate certain foods contain bacteria with multidrug resistance and pose a possible risk to public health, emphasizing the importance of surveillance and the need for further studies on epidemiology of epidemic plasmids. | 2021 | 33613476 |
| 2632 | 16 | 0.9939 | Environmental Spread of Extended Spectrum Beta-Lactamase (ESBL) Producing Escherichia coli and ESBL Genes among Children and Domestic Animals in Ecuador. BACKGROUND: There is a significant gap in our understanding of the sources of multidrug-resistant bacteria and resistance genes in community settings where human-animal interfaces exist. OBJECTIVES: This study characterized the relationship of third-generation cephalosporin-resistant Escherichia coli (3GCR-EC) isolated from animal feces in the environment and child feces based on phenotypic antimicrobial resistance (AMR) and whole genome sequencing (WGS). METHODS: We examined 3GCR-EC isolated from environmental fecal samples of domestic animals and child fecal samples in Ecuador. We analyzed phenotypic and genotypic AMR, as well as clonal relationships (CRs) based on pairwise single-nucleotide polymorphisms (SNPs) analysis of 3GCR-EC core genomes. CRs were defined as isolates with fewer than 100 different SNPs. RESULTS: A total of 264 3GCR-EC isolates from children (n = 21), dogs (n = 20), and chickens (n = 18) living in the same region of Quito, Ecuador, were identified. We detected 16 CRs total, which were found between 7 children and 5 domestic animals (5 CRs) and between 19 domestic animals (11 CRs). We observed that several clonally related 3GCR-EC isolates had acquired different plasmids and AMR genes. Most CRs were observed in different homes (n = 14) at relatively large distances. Isolates from children and domestic animals shared the same blaCTX-M allelic variants, and the most prevalent were blaCTX-M-55 and blaCTX-M-65, which were found in isolates from children, dogs, and chickens. DISCUSSION: This study provides evidence of highly dynamic horizontal transfer of AMR genes and mobile genetic elements (MGEs) in the E. coli community and shows that some 3GCR-EC and (extended-spectrum β-lactamase) ESBL genes may have moved relatively large distances among domestic animals and children in semirural communities near Quito, Ecuador. Child-animal contact and the presence of domestic animal feces in the environment potentially serve as important sources of drug-resistant bacteria and ESBL genes. https://doi.org/10.1289/EHP7729. | 2021 | 33617318 |
| 1882 | 17 | 0.9939 | Genomic Characterization of Multidrug-Resistant Pathogenic Enteric Bacteria from Healthy Children in Osun State, Nigeria. Antimicrobial resistance (AMR) is responsible for the spread and persistence of bacterial infections. Surveillance of AMR in healthy individuals is usually not considered, though these individuals serve as reservoirs for continuous disease transmission. Therefore, it is essential to conduct epidemiological surveillance of AMR in healthy individuals to fully understand the dynamics of AMR transmission in Nigeria. Thirteen multidrug-resistant Citrobacter spp., Enterobacter spp., Klebsiella pneumoniae, and Escherichia coli isolated from stool samples of healthy children were subjected to whole genome sequencing (WGS) using Illumina and Oxford nanopore sequencing platforms. A bioinformatics analysis revealed antimicrobial resistance genes such as the pmrB_Y358N gene responsible for colistin resistance detected in E. coli ST219, virulence genes such as senB, and ybtP&Q, and plasmids in the isolates sequenced. All isolates harbored more than three plasmid replicons of either the Col and/or Inc type. Plasmid reconstruction revealed an integrated tetA gene, a toxin production caa gene in two E. coli isolates, and a cusC gene in K. quasivariicola ST3879, which induces neonatal meningitis. The global spread of AMR pathogenic enteric bacteria is of concern, and surveillance should be extended to healthy individuals, especially children. WGS for epidemiological surveillance will improve the detection of AMR pathogens for management and control. | 2024 | 38543556 |
| 1101 | 18 | 0.9939 | New insights into resistance to colistin and third-generation cephalosporins of Escherichia coli in poultry, Portugal: Novel bla(CTX-M-166) and bla(ESAC) genes. The increasing incidence of intestinal colonization with extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae and Gram negative organisms that has been observed in food animals such as poultry, cattle and pigs, are suggestive that animals, food and environment are potential sources of ESBL-producing bacteria. Hence, the aim of this study was to characterized commensal E. coli obtained from healthy broiler and turkey flocks at slaughter for the presence of penicillinases-, ESBL-, extended-spectrum AmpC (ESAC)-, plasmid-mediated quinolone resistance- and MCR-encoding genes. Study of clonal relatedness showed genetic diversity among CTX-M-type, SHV-12 and TEM-52 producing isolates with human isolates of the same type, was also assessed. We detected that eleven (5.4%, 11/202) and forty-five (2.2%, 45/185) E. coli isolates from broilers and turkeys, respectively, carried bla(ESBL) or bla(ESAC) genes and two isolates from turkeys carried mcr-1 gene. A new variant bla(CTX-M-166) was reported in a multidrug resistant isolate from a broiler flock. Overall, we detected a diversity of resistance mechanisms among E. coli from food-producing animals, all of them with high importance at a public health level. | 2017 | 29031106 |
| 1207 | 19 | 0.9938 | Fluoroquinolone resistance in non-typhoidal Salmonella enterica isolated from slaughtered pigs in Thailand. Introduction. The emergence and spread of non-typhoidal Salmonella enterica (NTS) serovars resistant to fluoroquinolones and third- and higher-generation cephalosporins is a matter of great concern. Antimicrobial-resistant NTS is increasingly being discovered in humans, animals, food animals, food products, and agricultural environments. Pigs are considered a major reservoir of antimicrobial-resistant Salmonella spp.Hypothesis/Gap Statement. Fluoroquinolone-resistant Salmonella spp. warrant further surveillance and characterization for a better understanding of the bacteria isolated from animals.Aim. NTS isolated from pork from slaughterhouses across Thailand were characterized in terms of their serovars; resistance to fluoroquinolones, third-generation cephalosporins, and carbapenems; and antimicrobial resistance genes.Methodology. A total of 387 NTS isolates, collected from slaughtered pigs in ten provinces across Thailand between 2014 and 2015, were characterized based on their serovars, antimicrobial resistance genes, and susceptibility to fluoroquinolones, third-generation cephalosporins, and carbapenems.Results. Among all NTS isolates, S. enterica serovar Rissen was predominant. Antimicrobial resistance was exhibited in 93/387 isolates (24 %). Although 24 (6.2 %) isolates were susceptible to all the tested antimicrobials, they were found to possess β-lactamase genes, such as bla (TEM), bla (SHV), or bla (CTX-M). Mobilized colistin-resistant genes (mcr) and resistance to colistin were not observed in any tested isolate. Carbapenem resistance was detected in ten isolates (10.7 %); however, bla (KPC), bla (NDM), bla (OXA-48-like), and bla (IMP) were not present. Among the 93 antimicrobial-resistant isolates, 87.1 % showed fluoroquinolone resistance with the quinolone resistance gene (qnrS) combined with topoisomerase genes parC (T57S) or gyrA (S83E/Y and D124E/G) substitutions, or topoisomerase gene substitutions alone.Conclusion. We found high fluoroquinolone resistance rates among the NTS isolates from pigs from slaughterhouses. The fluoroquinolone resistance mechanism in NTS was associated with the combination of qnrS and substitutions in gyrA, parC, or both. To prevent the transmission of antimicrobial-resistant NTS between animals and humans, continuous monitoring, surveillance, and regulation of Salmonella in the pork supply chain are pivotal. | 2021 | 34319224 |