# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6918 | 0 | 0.9980 | Variations in antibiotic resistance genes and removal mechanisms induced by C/N ratio of substrate during composting. For a comprehensive insight into the potential mechanism of the removal of antibiotic resistance genes (ARGs) removal induced by initial substrates during composting, we tracked the dynamics of physicochemical properties, bacterial community composition, fungal community composition, the relative abundance of ARGs and mobile genetic genes (MGEs) during reed straw and cow manure composting with different carbon to nitrogen ratio. The results showed that the successive bacterial communities were mainly characterized by the dynamic balance between Firmicutes and Actinobacteria, while the fungal communities were composed of Ascomycota. During composting, the interactions between bacteria and fungi were mainly negative. After composting, the removal efficiency of ARGs in compost treatment with C/N ≈ 26 (LL) was higher than that in compost treatment with C/N ≈ 35 (HL), while MGEs were completely degraded in HL and enriched by 2.3% in LL. The large reduction in the relative abundance of ARGs was possibly due to a decrease in the potential host bacterial genera, such as Advenella, Tepidimicrobium, Proteiniphilum, Acinetobacter, Pseudomonas, Flavobacteria and Arcbacter. Partial least-squares path modeling (PLS-PM) revealed that the succession of bacterial communities played a more important role than MGEs in ARGs removal, while indirect factors of the fungal communities altered the profile of ARGs by affecting the bacterial communities. Both direct and indirect factors were affected by composting treatments. This study provides insights into the role of fungal communities in affecting ARGs and highlights the role of different composting treatments with different carbon to nitrogen ration on the underlying mechanism of ARGs removal. | 2021 | 34375241 |
| 6917 | 1 | 0.9980 | Response characteristics of antibiotic resistance genes and bacterial communities during agricultural waste composting: Focusing on biogas residue combined with biochar amendments. This research investigated biogas residue and biochar addition on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and changes in bacterial community during agricultural waste composting. Sequencing technique investigated bacterial community structure and ARGs, MGEs changes. Correlations among physicochemical factors, ARGs, MGEs, and bacterial community structure were determined using redundancy analysis. Results confirmed that biochar and biogas residue amendments effectively lowered the contents of ARGs and MGEs. The main ARGs detected was sul1. Proteobacteria and Firmicutes were the main host bacteria strongly associated with the dissemination of ARGs. The dynamic characteristics of the bacterial community were strongly correlated with pile temperature and pH (P < 0.05). Redundancy and network analysis revealed that nitrate, intI1, and Firmicutes mainly affected the in ARGs changes. Therefore, regulating these key variables would effectively suppress the ARGs spread and risk of compost use. | 2023 | 36657587 |
| 6926 | 2 | 0.9980 | Insights into the driving factors of vertical distribution of antibiotic resistance genes in long-term fertilized soils. The prevalence of antibiotic resistance genes (ARGs) in soils has aroused wide attention. However, the influence of long-term fertilization on the distribution of ARGs in different soil layers and its dominant drivers remain largely unknown. In this study, a total of 203 ARGs were analyzed in greenhouse vegetable soils (0-100 cm from a 13-year field experiment applied with different fertilizers (control, chemical fertilizer, organic manure, and mixed fertilizer). Compared with unfertilized and chemically fertilized soils, manure application significantly increased the abundance and alpha diversity of soil ARGs, where the assembly of ARG communities was strongly driven by stochastic processes. The distribution of ARGs was significantly driven by manure application within 60 cm, while it was insignificantly changed in soil below 60 cm under different fertilization regimes. The inter-correlations of ARGs with mobile genetic elements (MGEs) and microbiota were strengthened in manured soil, indicating manure application posed a higher risk for ARGs diffusion in subsurface soil. Bacteria abundance and MGEs directly influenced ARG abundance and composition, whereas soil depth and manure application indirectly influenced ARG abundance and composition by affecting antibiotics. These results strengthen our understanding of the long-term anthropogenic influence on the vertical distribution of soil ARGs and highlight the ecological risk of ARGs in subsurface soil induced by long-term manure application. | 2023 | 37247491 |
| 8094 | 3 | 0.9980 | Additive quality influences the reservoir of antibiotic resistance genes during chicken manure composting. Aerobic composting is commonly used to dispose livestock manure and is an efficient way to reduce antibiotic resistance genes (ARGs). Here, the effects of different quality substrates on the fate of ARGs were assessed during manure composting. Results showed that the total relative abundances of ARGs and intI1 in additive treatments were lower than that in control, and high quality treatment with low C/N ratio and lignin significantly decreased the relative abundance of tetW, ermB, ermC, sul1 and sul2 at the end of composting. Additionally, higher quality treatment reduced the relative abundances of some pathogens such as Actinomadura and Pusillimonas, and some thermotolerant degrading-related bacteria comprising Pseudogracilibacillus and Sinibacillus on day 42, probably owing to the change of composting properties in piles. Structural equation models (SEMs) further verified that the physiochemical properties of composting were the dominant contributor to the variations in ARGs and they could also indirectly impact ARGs by influencing bacterial community and the abundance of intI1. Overall, these findings indicated that additives with high quality reduced the reservoir of antibiotic resistance genes of livestock manure compost. | 2021 | 34139628 |
| 6919 | 4 | 0.9980 | Enhanced removal of antibiotic resistance genes during chicken manure composting after combined inoculation of Bacillus subtilis with biochar. This study explored the combined effects of Bacillus subtilis inoculation with biochar on the evolution of bacterial communities, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) during the composting of chicken manure. The results showed that B. subtilis inoculation combined with biochar increased bacterial abundance and diversity as well as prolonged the compost thermophilic period. Promoted organic matter biodegradation and facilitated the organic waste compost humification process, reduced the proliferation of ARGs by altering the bacterial composition. Firmicutes and Actinobacteriota were the main resistant bacteria related to ARGs and MGEs. The decrease in ARGs and MGEs was associated with the reduction in the abundance of related host bacteria. Compost inoculation with B. subtilis and the addition of biochar could promote nutrient transformation, reduce the increase in ARGs and MGEs, and increase the abundance of beneficial soil taxa. | 2024 | 37778803 |
| 6921 | 5 | 0.9980 | Impacts of Chemical and Organic Fertilizers on the Bacterial Communities, Sulfonamides and Sulfonamide Resistance Genes in Paddy Soil Under Rice-Wheat Rotation. The responses of sulfonamides, sulfonamide-resistance genes (sul) and soil bacterial communities to different fertilization regimes were investigated by performing a field experiment using paddy soil with no fertilizer applied, chemical fertilizer applied, organic fertilizer applied, and combination of chemical and organic fertilizer applied. Applying organic fertilizer increased the bacterial community diversity and affected the bacterial community composition. Eutrophic bacteria (Bacteroidetes, Gemmatimonadetes, and Proteobacteria) were significantly enriched by applying organic fertilizer. It was also found organic fertilizer application increased sulfamethazine content and the relative abundances of sul1 and sul2 in the soil. In contrast, applying chemical fertilizer significantly increased the abundance of Nitrospirae, Parcubacteria, and Verrucomicrobia and caused no obvious changes on sul. Correlation analysis indicated that sul enrichment was associated with the increases in sulfamethazine content and potential hosts (e.g., Novosphingobium and Rhodoplanes) population. The potential ecological risks of antibiotics in paddy soil with organic fertilizer applied cannot be ignored. | 2022 | 36547725 |
| 8101 | 6 | 0.9979 | Enhanced removal of antibiotic resistance genes and mobile genetic elements during swine manure composting inoculated with mature compost. Livestock manure is a major source of antibiotic resistance genes (ARGs) that enter the environment. This study assessed the effects of inoculation with mature compost (MC) on the fates of ARGs and the bacterial community during swine manure composting. The results showed that MC prolonged the thermophilic period and promoted the decomposition of organic matter, which was due to the rapid growth and reproduction of thermophilic bacteria (Bacillus, Thermobifida, and Thermobacillus). MC significantly reduced the relative abundances of ARGs (1.02 logs) and mobile genetic elements (MGEs) (1.70 logs) after composting, especially sulfanilamide resistance genes. The total ARGs removal rate was 1.11 times higher in MC than the control. Redundancy analysis and structural equation modeling showed that horizontal gene transfer mediated by MGEs (ISCR1 and intI1) was the main direct factor related to the changes in ARGs during composting, whereas the C/N ratio and pH were the two most important indirect factors. Network analysis showed that members of Firmicutes comprising Romboutsia, Clostridisensu_stricto_1, and Terrisporobacter were the main bacterial hosts of ARGs and MGEs. MC reduced the risk of ARGs transmission by decreasing the abundances of bacterial hosts. Thus, MC is a promising strategy for reducing the proliferation risk of ARGs. | 2021 | 33858100 |
| 6925 | 7 | 0.9979 | Multiple driving factors contribute to the variations of typical antibiotic resistance genes in different parts of soil-lettuce system. The application of manure compost may cause the transmission of antibiotic resistance genes (ARGs) in agroecological environment, which poses a global threat to public health. However, the driving factors for the transmission of ARGs from animal manure to agroecological systems remains poorly understood. Here, we explored the spatiotemporal variation in ARG abundance and bacterial community composition as well as relative driving factors in a soil-lettuce system amended with swine manure compost. The results showed that ARGs abundance had different variation trends in soil, lettuce phylloplane and endophyere after the application of swine manure compost. The temporal variations of total ARGs abundance had no significant different in soil and lettuce phylloplane, while lettuce endosphere enriched half of ARGs to the highest level at harvest. There was a significant linear correlation between ARGs and integrase genes (IGs). In contrast to the ARGs variation trend, the alpha diversity of soil and phylloplane bacteria showed increasing trends over planting time, and endosphere bacteria remained stable. Correlation analysis showed no identical ARG-related genera in the three parts, but the shared Proteobacteria, Pseudomonas, Halomonas and Chelativorans, from manure compost dominated ARG profile in the soil-lettuce system. Moreover, redundancy analysis and structural equation modelling showed the variations of ARGs may have resulted from the combination of multiple driving factors in soil-lettuce system. ARGs in soil were more affected by the IGs, antibiotic and heavy metals, and bacterial community structure and IGs were the major influencing factors of ARG profiles in the lettuce. The study provided insight into the multiple driving factors contribute to the variations of typical ARGs in different parts of soil-lettuce system, which was conducive to the risk assessment of ARGs in agroecosystem and the development of effective prevention and control measures for ARGs spread in the environment. | 2021 | 34562788 |
| 6923 | 8 | 0.9979 | Soil types influence the fate of antibiotic-resistant bacteria and antibiotic resistance genes following the land application of sludge composts. Sewage sludge was generally considered a significant reservoir of antibiotic resistance genes (ARGs) and could enter agricultural systems as fertilizer after composting. Soil types and the discrepancy of sludge composts could have influenced the fate of antibiotic-resistant bacteria (ARB) following the land application of sludge composts, which deserved to be clarified. Thus, the fate of ARB and ARGs following the land application of three types of sludge composts (A, B, and C) to three different soils (red soil, loess, and black soil) was investigated. The results showed that tetX, which was enriched the most during composting, did not affect the soil resistome, whereas tetG did. Soil types influenced the dynamics of ARB and ARGs significantly, whereas no significant difference was observed among compost types. The advantage of reducing ARGs during the composting process in compost B did not extend to land application. Land application of composts influenced the microbial community significantly at the early stage, but the microbial community returned to the control pattern gradually. Changes in the microbial community contributed more to the dynamics of ARGs in red and black soil compared with other factors, including co-selection from heavy metals, horizontal gene transfer, biomass and environmental factors, whereas horizontal gene transfer, reflected by intI1 levels, contributed the most in loess. | 2018 | 29793114 |
| 6929 | 9 | 0.9979 | Root exudates regulate soil antibiotic resistance genes via rhizosphere microbes under long-term fertilization. Organic fertilizer application promotes the prevalence of antibiotic resistance genes (ARGs), yet the factors driving temporal differences in ARG abundance under long-term organic fertilizer application remain unclear. This study investigated the temporal dynamics of ARG diversity and abundance in both bulk and rhizosphere soils over 17 years (2003-2019), and explored microbial evolution strategies, ARG hosts succession and the influence of root exudates on ARGs regulation. The results showed that the ARGs abundance in rhizosphere soil was lower than that in bulk soil under long-term fertilization, and ARGs abundance exhibited a decrease and then remained stable in rhizosphere soil over time. There was a strong association between host bacteria and dominant ARGs (p < 0.05). Structural equations demonstrated that bacterial community had a most pronounced influence on ARGs (p < 0.05), and metabolites exhibited an important mediation effect on bacterial community (p < 0.05), thereby impacting ARGs. The metabolome analysis evidenced that significant correlations were found between defensive root exudates and most ARGs abundance (p < 0.05), like, luteolin-7-glucoside was negatively correlated with tetA(58). These findings provide deeper insights into the dynamics of soil ARGs under long-term fertilization, and identify critical factors that influence ARGs colonization in soils, providing support for controlling the spread of ARGs in agriculture soils. | 2025 | 39700687 |
| 7538 | 10 | 0.9979 | Short-term thermophilic treatment cannot remove tetracycline resistance genes in pig manures but exhibits controlling effects on their accumulation and spread in soil. In this work, a microcosm experiment was conducted to merely mimic thermophilic phase in aerobic composting with pig manures in order to explore: (i) the effect of thermophilic phase in composting on the abundances of tetracycline resistance genes (TRGs); and (ii) the impacts of the treated manures on the abundances of TRGs in soil. It was found that 4days of thermophilic process reduced the abundance of TRGs in pig manures by ∼1 lg unit compared to the samples without treatments, suggesting that other phases in composting may play significant roles in removal of TRGs. Once pig manures with thermophilic treatment were applied to soil, TRGs abundances decreased to the levels in unfertilized soil. With correlation analyses, it was concluded that pig manure derived tetracycline-resistant bacteria (TRB) and nutrients exerted different effects on TRGs abundances in soil. In conclusion, short-term thermophilic treatment cannot remove tetracycline resistance genes in pig manures but exhibits controlling effects on their accumulation and spread in soil. Nutrients enrichment in soil following manuring of treated pig manures, together with a large proportion of gram-positive TRB left in treated pig manures with less risk to TRGs spread, contributed to the controlling effects. | 2017 | 28715744 |
| 6915 | 11 | 0.9979 | Industrial-scale aerobic composting of livestock manures with the addition of biochar: Variation of bacterial community and antibiotic resistance genes caused by various composting stages. The presence of large amounts of antibiotic resistance genes (ARGs) in livestock manures poses an impending, tough safety risk to ecosystems. To investigate more comprehensively the mechanisms of ARGs removal from industrial-scale composting of livestock manure based on biochar addition, we tracked the dynamics of bacterial community and ARGs at various stages of aerobic composting of livestock manures with 10% biochar. There were no significant effects of biochar on the bacterial community and the profiles of ARGs. During aerobic composting, the relative abundance of ARGs and mobile genetic elements (MGEs) showed overall trends of decreasing and then increasing. The key factor driving the dynamics of ARGs was bacterial community composition, and the potential hosts of ARGs were Caldicoprobacter, Tepidimicrobium, Ignatzschineria, Pseudogracilibacillus, Actinomadura, Flavobacterium and Planifilum. The retention of the thermophilic bacteria and the repopulation of the initial bacteria were the dominant reasons for the increase in ARGs at maturation stage. Additionally, among the MGEs, the relative abundance of transposon gene was substantially removed, while the integron genes remained at high relative abundance. Our results highlighted that the suitability of biochar addition to industrial-scale aerobic composting needs to be further explored and that effective measures are needed to prevent the increase of ARGs content on maturation stage. | 2022 | 36162559 |
| 8117 | 12 | 0.9979 | Composting of oxytetracycline fermentation residue in combination with hydrothermal pretreatment for reducing antibiotic resistance genes enrichment. Hydrothermal pretreatment can efficiently remove the residual antibiotics in oxytetracycline fermentation residue (OFR), but its effect on antibiotic resistance genes (ARGs) during composting remains unclear. This study compared the shifts in bacterial community and evolutions in ARGs and integrons during different composting processes of OFRs with and without hydrothermal pretreatment. The results demonstrated that hydrothermal pretreatment increased the bacterial alpha diversity at the initial phase, and increased the relative abundances of Proteobacteria and Actinobacteria but decreased that of Bacteroidetes at the final phase by inactivating mycelia and removing residual oxytetracycline. Composting process inevitably elevated the abundance and relative abundance of ARGs. However, the increase in ARGs was significantly reduced by hydrothermal pretreatment, because the removal of oxytetracycline decreased their potential host bacteria and inhibited their horizontal gene transfer. The results demonstrated that hydrothermal pretreatment is an efficient strategy to reduce the enrichment of ARGs during the OFR composting. | 2020 | 33099099 |
| 7011 | 13 | 0.9979 | Dynamics of bacterial composition and the fate of antibiotic resistance genes and mobile genetic elements during the co-composting with gentamicin fermentation residue and lovastatin fermentation residue. Dynamics in bacterial community composition, along with 13 antibiotic resistance genes (ARGs) and eight mobile genetic elements (MGEs), were assessed during co-composting with gentamicin and lovastatin fermentation residue (GFR and LFR, respectively). Using next generation sequencing, the key bacterial taxa associated with the different stages of composting were identified. Most importantly, Bacillus, belonging to Phylum Firmicutes, was associated with enhanced degradation of gentamicin, decomposition of organic matter (OM) and dissolved organic carbon (DOC), and also extension of the thermophilic phase of the composting cycle. During the course of composting, the patterns of different ARGs/MGEs varied. However, the total and the normalized (to bacterial numbers) copies both remained high. The abundance of various ARGs was related to bacterial abundance and community composition, and the changing pattern of individual ARGs was influenced by the selectivity of MGEs and bacteria. | 2018 | 29673993 |
| 8100 | 14 | 0.9979 | Composting temperature directly affects the removal of antibiotic resistance genes and mobile genetic elements in livestock manure. The high antibiotic resistance gene (ARGs) contents in livestock manure pose a potential risk to environment and human health. The heap composting with an ambient temperature and thermophilic composting are two methods for converting livestock manure into fertilizer. This study investigated the variations in ARGs and mobile genetic elements (MGEs) and revealed potential mechanisms for ARGs removal using the two composting methods. The ARGs abundance were enriched by 44-fold in heap composting, among them, the macrolide-resistance genes increased significantly. On the contrary, the ARGs were removed by 92% in thermophilic composting, among them, tetracycline-resistance genes decreased by 97%. The bacterial hosts of ARGs were associated with the variations of ARGs and MGEs. The tetO was correlated with the most diverse bacteria in heap composting, and Bacteroidetes was the major host bacteria. While tetT was correlated with the most diverse bacteria in thermophilic composting, and Proteobacteria was the major host bacteria. Structural equation models showed that the enrichment of ARGs in heap composting was mainly correlated with bacterial communities, whereas, the removal of ARGs in thermophilic composting was directly affect by MGEs. Composting temperature directly affected the variations in ARGs. Higher and lower temperatures significantly decreased and increased, respectively, ARGs and MGEs abundance levels. | 2022 | 35306090 |
| 6916 | 15 | 0.9979 | Mobile genetic elements in potential host microorganisms are the key hindrance for the removal of antibiotic resistance genes in industrial-scale composting with municipal solid waste. During the municipal solid waste (MSW) composting, antibiotic resistance genes (ARGs) could be one of the concerns to hinder the application of MSW composting. However, the understanding of enrichment and dissemination of ARGs during the industrial-scale composting is still not clear. Hence, this study aimed to investigate the ARG distributions at different stages in an industrial-scale MSW composting plant. Seven target ARGs and four target mobile genetic elements (MGEs) and bacterial communities were investigated. The abundances of ARGs and MGEs increased during two aerobic thermophilic stages, but they decreased in most ARGs and MGEs after composting. Network analysis showed that potential host bacteria of ARGs were mainly Firmicutes and Actinobacteria. The reduction of potential host bacteria was important to remove ARGs. MGEs were an important factor hindering ARG removal. Water-extractable S and pH were two main physicochemical factors in the changes of microbial community and the abundance of ARGs. | 2020 | 31962245 |
| 6924 | 16 | 0.9978 | Diversity of antibiotic resistance genes in soils with four different fertilization treatments. Although the enrichment of resistance genes in soil has been explored in recent years, there are still some key questions to be addressed regarding the variation of ARG composition in soil with different fertilization treatments, such as the core ARGs in soil after different fertilization treatments, the correlation between ARGs and bacterial taxa, etc. For soils after different fertilization treatments, the distribution and combination of ARG in three typical fertilization methods (organic fertilizer alone, chemical fertilizer alone, and conventional fertilizer) and non-fertilized soils were investigated in this study using high-throughput fluorescence quantitative PCR (HT-qPCR) technique. The application of organic fertilizers significantly increased the abundance and quantity of ARGs and their subtypes in the soil compared to the non-fertilized soil, where sul1 was the ARGs specific to organic fertilizers alone and in higher abundance. The conventional fertilizer application also showed significant enrichment of ARGs, which indicated that manure addition often had a more decisive effect on ARGs in soil than chemical fertilizers, and three bacteria, Pseudonocardia, Irregularibacter, and Castllaniella, were the key bacteria affecting ARG changes in soil after fertilization. In addition, nutrient factors and heavy metals also affect the distribution of ARGs in soil and are positively correlated. This paper reveals the possible reasons for the increase in the number of total soil ARGs and their relative abundance under different fertilization treatments, which has positive implications for controlling the transmission of ARGs through the soil-human pathway. | 2023 | 37928655 |
| 6935 | 17 | 0.9978 | Effects of soil protists on the antibiotic resistome under long term fertilization. Soil protists are key in regulating soil microbial communities. However, our understanding on the role of soil protists in shaping antibiotic resistome is limited. Here, we considered the diversity and composition of bacteria, fungi and protists in arable soils collected from a long-term field experiment with multiple fertilization treatments. We explored the effects of soil protists on antibiotic resistome using high-throughput qPCR. Our results showed that long term fertilization had stronger effect on the composition of protists than those of bacteria and fungi. The detected number and relative abundance of antibiotic resistance genes (ARGs) were elevated in soils amended with organic fertilizer. Co-occurrence network analysis revealed that changes in protists may contribute to the changes in ARGs composition, and the application of different fertilizers altered the communities of protistan consumers, suggesting that effects of protistan communities on ARGs might be altered by the top-down impact on bacterial composition. This study demonstrates soil protists as promising agents in monitoring and regulating ecological risk of antibiotic resistome associated with organic fertilizers. | 2022 | 35609845 |
| 8121 | 18 | 0.9978 | Bioleaching rather than chemical conditioning using Fe[III]/CaO or polyacrylamide mitigates antibiotic resistance in sludge composting via pre-removing antibiotic resistance genes and limiting horizontal gene transfer. Conditioning can drastically improve the dewaterability of sewage sludge and is widely practiced in most wastewater treatment plants (WWTPs). Sludge conditioning was also reported as a crucial step in sludge treatment to attenuate antibiotic resistance, but it remains unclear whether the attenuated antibiotic resistance by conditioning treatments would guarantee low abundance of antibiotic resistance genes (ARGs) in the compost products of municipal sewage sludge. Herein, the impacts of three conditioning treatments, including bioleaching and chemical conditioning using Fe[III]/CaO or polyacrylamide (PAM), on the abundances of 20 ARGs and 4 mobile genetic elements (MGEs) during conventional aerobic composting of dewatered sludge were investigated. It was found that the absolute and relative abundances of total ARGs in compost product of bioleached sludge accounted for only 13.8%-28.8% of that in compost products of un-conditioned, Fe[III]/CaO-conditioned, or PAM-conditioned sludges. Besides, bioleaching conditioning resulted in the lowest abundances of ARG subtypes and ARG-associated bacteria in the sludge compost product. The shift of ARG profiles in the bioleached sludge composting can be mainly ascribed to the ARG-associated bacteria, while the MGEs drove the ARG profiles during conventional composting of un-conditioned sludge and the two chemically conditioned sludge. Thus, bioleaching conditioning is superior to the chemical conditioning using Fe[III]/CaO or PAM in mitigating antibiotic resistance in sludge compost products, which was contributed by the pre-removal of ARGs prior to composting treatment and the potential limitation of ARGs transfer during conventional composting. | 2022 | 34749181 |
| 6914 | 19 | 0.9978 | Responses of antibiotic and heavy metal resistance genes to bamboo charcoal and bamboo vinegar during aerobic composting. The application of compost in agriculture has led to the accumulation of antibiotic resistance genes (ARGs) and heavy metal resistance genes (MRGs) in the soil environment. In this study, the response of ARGs and MRGs to bamboo charcoal (BC) and bamboo vinegar (BV) during aerobic composting was investigated. Results showed that BC + BV treatment reduced the abundances of ARGs and mobile genetic elements (MGEs) during the thermophilic period, as well as achieved the lowest rebound during the cooling period. BC + BV promoted the growth of Firmicutes, thereby facilitating the thermophilic period of composting. The rebound of ARGs and MGEs can be explained by increasing the abundance of Actinobacteria and Proteobacteria at the end of composting. Composting reduced the abundances of MRGs comprising pcoA, tcrB, and cueO, whereas cusA and copA indicated the selective pressure imposed by heavy metals on bacteria. The fate of ARGs was mainly driven by MGEs, and heavy metals explained most of the variation in MRGs. Interestingly, nitrogen conversion also had an important effect on ARG and MRG profiles. Our current findings suggest that the addition of BC + BV during compost preparation is an effective method in controlling the mobility of ARGs and MRGs, thereby reducing the environmental problems. | 2019 | 31252107 |