# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2422 | 0 | 0.9983 | Gene emrC Associated with Resistance to Quaternary Ammonium Compounds Is Common among Listeria monocytogenes from Meat Products and Meat Processing Plants in Poland. (1) Background: L. monocytogenes is a food pathogen of great importance, characterized by a high mortality rate. Quaternary ammonium compounds (QACs), such as benzalkonium chloride (BC), are often used as disinfectants in food processing facilities. The effectiveness of disinfection procedures is crucial to food safety. (2) Methods: A collection of 153 isolates of L. monocytogenes from meat processing industry was analyzed for their sensitivity to BC using the agar diffusion method. Genes of interest were detected with PCR. (3) Results: Genes emrC, bcrABC, and qacH were found in 64 (41.8%), 6 (3.9%), and 1 isolate (0.7%), respectively, and 79 isolates (51.6%) were classified as having reduced sensitivity to BC. A strong correlation between carrying QACs resistance-related genes and phenotype was found (p-value < 0.0001). Among 51 isolates originating from bacon (collected over 13 months), 48 had the emrC gene, which could explain their persistent presence in a processing facility. Isolates with the ilsA gene (from LIPI-3) were significantly (p-value 0.006) less likely to carry QACs resistance-related genes. (4) Conclusions: Reduced sensitivity to QACs is common among L. monocytogenes from the meat processing industry. Persistent presence of these bacteria in a processing facility is presumably caused by emrC-induced QACs resistance. | 2024 | 39200049 |
| 5284 | 1 | 0.9982 | Long-term impact of oral surgery with or without amoxicillin on the oral microbiome-A prospective cohort study. Routine postoperative antibiotic prophylaxis is not recommended for third molar extractions. However, amoxicillin still continues to be used customarily in several clinical practices worldwide to prevent infections. A prospective cohort study was conducted in cohorts who underwent third molar extractions with (group EA, n = 20) or without (group E, n = 20) amoxicillin (250 mg three times daily for 5 days). Further, a control group without amoxicillin and extractions (group C, n = 17) was included. Salivary samples were collected at baseline, 1-, 2-, 3-, 4-weeks and 3 months to assess the bacterial shift and antibiotic resistance gene changes employing 16S rRNA gene sequencing (Illumina-Miseq) and quantitative polymerase chain reaction. A further 6-month follow-up was performed for groups E and EA. Seven operational taxonomic units reported a significant change from baseline to 3 months for group EA (adjusted p < 0.05). No significant change in relative abundance of bacteria and β-lactamase resistance genes (TEM-1) was observed over 6 months for any group (adjusted p > 0.05). In conclusion, the salivary microbiome is resilient to an antibiotic challenge by a low-dose regimen of amoxicillin. Further studies evaluating the effect of routinely used higher dose regimens of amoxicillin on gram-negative bacteria and antibiotic resistance genes are warranted. | 2019 | 31822712 |
| 2787 | 2 | 0.9982 | Multiplex Polymerase Chain Reaction/Pooled Antibiotic Susceptibility Testing Was Not Associated with Increased Antibiotic Resistance in Management of Complicated Urinary Tract Infections. OBJECTIVE: To compare antibiotic resistance results at different time points in patients with urinary tract infections (UTIs), who were either treated based upon a combined multiplex polymerase chain reaction (M-PCR) and pooled antibiotic susceptibility test (P-AST) or were not treated. METHODS: The M-PCR/P-AST test utilized here detects 30 UTI pathogens or group of pathogens, 32 antibiotic resistance (ABR) genes, and phenotypic susceptibility to 19 antibiotics. We compared the presence or absence of ABR genes and the number of resistant antibiotics, at baseline (Day 0) and 5-28 days (Day 5-28) after clinical management in the antibiotic-treated (n = 52) and untreated groups (n = 12). RESULTS: Our results demonstrated that higher percentage of patients had a reduction in ABR gene detection in the treated compared to the untreated group (38.5% reduction vs 0%, p = 0.01). Similarly, significantly more patients had reduced numbers of resistant antibiotics, as measured by the phenotypic P-AST component of the test, in the treated than in the untreated group (42.3% reduction vs 8.3%, p = 0.04). CONCLUSION: Our results with both resistance gene and phenotypic antibiotic susceptibility results demonstrated that treatment based upon rapid and sensitive M-PCR/P-AST resulted in reduction rather than induction of antibiotic resistance in symptomatic patients with suspected complicated UTI (cUTI) in an urology setting, indicating this type of test is valuable in the management of these types of patients. Further studies of the causes of gene reduction, including elimination of ABR gene-carrying bacteria and loss of ABR gene(s), are warranted. | 2023 | 37193300 |
| 2725 | 3 | 0.9980 | Hygiene practices and antibiotic resistance among dental and medical students: a comparative study. PURPOSE: Healthcare students' hand and smartphone hygiene is critical due to potential pathogenic and antibiotic-resistant bacteria transmission. This study evaluates hygiene practices in medical and dental students at Kuwait University, exploring antibiotic resistance gene prevalence. METHODS: Swab samples were collected from the hands and smartphones of 32 medical and 30 dental students. These samples were cultured on Columbia Blood Agar and McConkey Agar plates to quantify bacterial colony-forming units (CFUs). The extracted DNA from these colonies underwent RT-PCR to identify antibiotic resistance genes, including tem-1, shv, blaZ, and mecA. Additionally, a questionnaire addressing hygiene practices was distributed post-sample collection. RESULTS: Medical students exhibited more frequent hand hygiene compared to dental students (P ≤ 0.0001). Although significantly fewer bacterial CFUs were found on medical students' smartphones (mean = 35 ± 53) than dental students' (mean = 89 ± 129) (P ≤ 0.05), no significant differences were observed in CFU counts on their hands (medical: mean = 17 ± 37; dental: mean = 96 ± 229). Detection of at least one of the targeted antibiotic resistance genes on medical (89% hands, 52% smartphones) and dental students' (79% hands, 63% smartphones) was not statistically significant. However, the prevalence of two genes, tem-1 and shv, was significantly higher on medical students' hands (78% and 65%, respectively) than on dental students' hands (32% and 28%, respectively). CONCLUSION: Clinically significant prevalence of antibiotic resistance genes were found on medical and dental students' hands and smartphones, emphasizing the importance of ongoing education regarding hand hygiene and smartphone disinfection. This continuous reinforcement in the curriculum is crucial to minimizing the risk of cross-contamination. | 2024 | 38514584 |
| 5257 | 4 | 0.9980 | Removal of fecal indicator bacteria and antibiotic resistant genes in constructed wetlands. Wastewater discharge evidently increased bacterial diversity in the receiving waterbodies. The objective of this study was to evaluate the effectiveness of a constructed wetland in reducing fecal indicator bacteria (FIB) and antibiotic resistant genes (ARGs). We determined the prevalence and attenuation of fecal indicator bacteria including Escherichia coli and enterococci, along with ARGs, and human-associated Bacteroidales (HF183) markers by quantitative polymerase chain reaction (qPCR) method. Three types of water samples (inlet, intermediate, and outlet) from a constructed wetland were collected once a month from May to December in 2013. The overall reduction of E. coli was 50.0% based on culture method. According to the qPCR result, the overall removal rate of E. coli was only 6.7%. Enterococci were found in 62.5% of the wetland samples. HF183 genetic marker was detected in all final effluent samples with concentration ranging from 1.8 to 4.22 log(10) gene copies (GC)/100 ml. Of the ARGs tested, erythromycin resistance genes (ermF) were detected in 79.2% of the wetland samples. The class 1 integrase (intI1) was detected in all water samples with concentration ranging from 0.83 to 5.54 log(10) GC/100 ml. The overall removal rates of enterococci, HF183, intI1, and ermF were 84.0%, 66.6%, 67.2%, and 13.1%, respectively. | 2019 | 30758793 |
| 2727 | 5 | 0.9980 | Prevalence and Antibiotic Resistance Pattern of Streptococcus, Staphylococcus, Neisseria meningitidis and Enterobacteriaceae in Two Reference Hospitals of Yaoundé: An Overview before and during COVID-19 Pandemic Era. The COVID-19 pandemic led to tremendously use of antimicrobial due to the lack of proper treatment strategies, raising concerns about emergence of antimicrobial resistance (AMR). This study aimed at determining the prevalence and antibiotic resistance pattern of selected bacteria isolates in 02 referral health facilities in Yaoundé before and during the COVID-19 pandemic era. We conducted a retrospective study over a period of 03 years (from 1 January 2019 to 31 December 2021) in the bacteriology units of the Central and General Hospitals of Yaoundé, Cameroon. Data on bacteria genera (Streptococcus, Staphylococcus, Neisseria meningitidis and Enterobacteriaceae) as well as their corresponding specifics antibiotics: Cefixime, azythromycin and erythromycin were obtained from laboratory records. The global resistance rate of bacteria as well as their correlation with antibiotics according to COVID-19 pandemic era was determined and compared. For p < 0.05, the difference was statistically significant. In all, 426 bacterial strains were included. It appeared that the highest number of bacteria isolates and lowest rate of bacterial resistance were recorded during the pre-COVID-19 period in 2019 (160 isolates vs. 58.8% resistance rate). Conversely, lower bacteria strains but greater resistance burden were recorded during the pandemic era (2020 and 2021) with the lowest bacteria amount and peak of bacteria resistance registered in 2020, the year of COVID-19 onset (120 isolates vs. 70% resistance in 2020 and 146 isolates vs. 58.9% resistance in 2021). In contrast to almost all others groups of bacteria where the resistance burden was quite constant or decreasing over years, the Enterobacteriaceae exhibited greater resistance rate during the pandemic period [60% (48/80) in 2019 to 86.9% (60/69) in 2020 and 64.5% (61/95) in 2021)]. Concerning antibiotics, unlike erythromycin, azythromycin related resitance increased during the pandemic period and the resistance to Cefixim tends to decrease the year of the pandemic onset (2020) and re-increase one year therafter. A significant association was found between resistant Enterobacteriaceae strains and cefixime (R = 0.7; p = 0.0001) and also, between resistant Staphylococcus strains and erythromycin (R = 0.8; p = 0.0001). These retrospective data showed a herogeneous MDR bacteria rate and antibiotic resistance pattern over time before and during the COVID-19 pandemic era suggesting that antimicrobial resistance needs to be more closely monitored. | 2023 | 37237832 |
| 5260 | 6 | 0.9980 | Occurrence and Abundance of Antibiotic Resistance Genes in Chinese Traditional Pickles. With the widespread application and even misuse of antibiotics, antibiotic resistance genes (ARGs) are extensively present in various environments, from natural environment to fermented foods, posing emerging threat to public and environmental health. The real-time fluorescence quantitative PCR (qPCR) technique is commonly used to detect ARGs of environmental samples such as soil or water. In this study, eight types of pickles were collected from four regions of China and the existence of 13 resistance genes was assessed by qPCR. The results showed that a total of 11 resistance genes were detected in pickles, the blaTEM gene was detected in all samples, and the neo and cat genes were absent. The abundance of resistance genes varied, aada1 (1.09 × 10(5) to 5.94 × 10(6) copies/g), blaTEM (1.48 × 10(5) to 2.2 × 10(6) copies/g), ermc (1.01 × 10(5) to 5.35 × 10(5) copies/g), hyg (1.35 × 10(5) to 1.93 × 10(6) copies/g), aadd (4.46 × 10(5) to 1.60 × 10(6) copies/g), nat1 (1.04 × 10(5) to 5.04 × 10(5) copies/g), nptII (2.17 × 10(4) to 1.69 × 10(5) copies/g), sul1 (2.01 × 10(5) to 4.60 × 10(5) copies/g), tetl (1.23 × 10(5) to 6.18 × 10(5) copies/g), shble (1.68 × 10(4) copies/g), and stra (4.8 × 10(4) to 1.9 × 10(5)copies/g). We also discussed the specificity and sensitivity assessment of qPCR applied to ARGs analysis in pickles, verifying the feasibility and validity of the method. Bacteria were isolated and purified from pickles as well and their antimicrobial resistance was studied. This study is of great significance for the risk assessment of resistance genes in pickles. Effective and preventive solutions were proposed to reduce the spread of resistance genes and protect public dietary health. | 2025 | 40230011 |
| 7786 | 7 | 0.9979 | Effect of solar photo-Fenton process in raceway pond reactors at neutral pH on antibiotic resistance determinants in secondary treated urban wastewater. Solar photo-Fenton process in raceway pond reactors was investigated at neutral pH as a sustainable tertiary treatment of real urban wastewater. In particular, the effect on antibiotic resistance determinants was evaluated. An effective inactivation of different wild bacterial populations was achieved considering total and cefotaxime resistant bacteria. The detection limit (1 CFU mL(-1)) was achieved in the range 80-100 min (5.4-6.7 kJ L(-1) of cumulative solar energy required) for Total Coliforms (TC) (40-60 min for resistant TC, 4.3-5.2 kJ L(-1)), 60-80 min (4.5-5.4 kJ L(-1)) for Escherichia coli (E. coli) (40 min for resistant E. coli, 4.1-4.7 kJ L(-1)) and 40-60 min (3.9-4.5 kJ L(-1)) for Enterococcus sp. (Entero) (30-40 min for resistant Entero, 3.2-3.8 kJ L(-1)) with 20 mg L(-1) Fe(2+) and 50 mg L(-1) H(2)O(2). Under these mild oxidation conditions, 7 out of the 10 detected antibiotics were effectively removed (60-100%). As the removal of antibiotic resistance genes (ARGs) is of concern, no conclusive results were obtained, as sulfonamide resistance gene was reduced to some extent (relative abundance <1), meanwhile class 1 integron intI1 and ß-lactam resistance genes were not affected. Accordingly, more research and likely more intensive oxidative conditions are needed for an efficient ARGs removal. | 2019 | 31202058 |
| 3529 | 8 | 0.9979 | High dietary zinc supplementation increases the occurrence of tetracycline and sulfonamide resistance genes in the intestine of weaned pigs. BACKGROUND: Dietary zinc oxide is used in pig nutrition to combat post weaning diarrhoea. Recent data suggests that high doses (2.5 g/kg feed) increase the bacterial antibiotic resistance development in weaned pigs. Therefore, the aim of this study was to investigate the development of enterobacterial antibiotic resistance genes in the intestinal tract of weaned pigs. FINDINGS: Weaned pigs were fed diets for 4 weeks containing 57 (low), 164 (intermediate) or 2425 (high) mg kg(-1) analytical grade ZnO. DNA extracts from stomach, mid-jejunum, terminal ileum and colon ascendens were amplified by qPCR assays to quantify copy numbers for the tetracycline (tetA) and sulfonamide (sul1) resistance genes in Gram-negative bacteria. Overall, the combined data (n = 336) showed that copy numbers for tetracycline and sulfonamide resistance genes were significantly increased in the high zinc treatment compared to the low (tetA: p value < 10(-6); sul1: p value = 1 × 10(-5)) or intermediate (tetA: P < 1.6 × 10(-4); sul1: P = 3.2 × 10(-4)) zinc treatment. Regarding the time dependent development, no treatment effects were seen 1 week after weaning, but significant differences between high and low/intermediate zinc treatments evolved 2 weeks after weaning. The increased number of tetA and sul1 copies was not confined to the hind gut, but was already present in stomach contents. CONCLUSIONS: The results of this study suggest that the use of high doses of dietary zinc beyond 2 weeks after weaning should be avoided in pigs due to the possible increase of antibiotic resistance in Gram-negative bacteria. | 2015 | 26322131 |
| 3611 | 9 | 0.9979 | Tolerance to quaternary ammonium compound disinfectants may enhance growth of Listeria monocytogenes in the food industry. The antibacterial effect of disinfectants is crucial for the control of Listeria monocytogenes in food processing environments. Tolerance of L. monocytogenes to sublethal levels of disinfectants based on quaternary ammonium compounds (QAC) is conferred by the resistance determinants qacH and bcrABC. The presence and distribution of these genes have been anticipated to have a role in the survival and growth of L. monocytogenes in food processing environments where QAC based disinfectants are in common use. In this study, a panel of 680 L. monocytogenes from nine Norwegian meat- and salmon processing plants were grouped into 36 MLVA profiles. The presence of qacH and bcrABC was determined in 101 isolates from the 26 most common MLVA profiles. Five MLVA profiles contained qacH and two contained bcrABC. Isolates with qacH and bcrABC showed increased tolerance to the QAC Benzalkonium chloride (BC), with minimal inhibitory concentrations (MICs) of 5-12, 10-13 and <5ppm for strains with qacH (two allele variants observed), bcrABC, and neither gene, respectively. Isolates with qacH or bcrABC were not more tolerant to BC in bactericidal tests in suspension or in biofilms compared with isolates lacking the genes. Water residue samples collected from surfaces in meat processing plants after QAC disinfection had bactericidal effect against L. monocytogenes when the sample BC levels were high (>100ppm). A sample with lower BC concentrations (14ppm of chain length C-12 and 2.7ppm of chain length C-14) inhibited growth of L. monocytogenes not containing bcrABC or qacH, compared to strains with these genes. The study has shown that L. monocytogenes harbouring the QAC resistance genes qacH and bcrABC are prevalent in the food industry and that residuals of QAC may be present in concentrations after sanitation in the industry that result in a growth advantage for bacteria with such resistance genes. | 2017 | 27810443 |
| 3087 | 10 | 0.9979 | Diversity and abundance of antibiotic resistance of bacteria during the seedling period in marine fish cage-culture areas of Hainan, China. Antibiotic resistance has become an important focus of research in the aquaculture environment. However, few studies have evaluated antibiotic resistance during the seedling period in marine fish cage-culture areas. In this study, culture-dependent methods and quantitative polymerase chain reaction were used to identify and detect cultivable heterotrophic antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs), respectively, during the seedling period in a marine fish cage-culture areas of Hainan, China. Bacterial resistance to amoxicillin, erythromycin, and gentamicin was generally high (average on 27.67%, 23.61% and 37.32%, respectively), whereas resistance to furazolidone and nitrofurantoin was generally low (average on 0.14% and 7.425%). Alteromonas (32.72%) and Vibrio (24.77%) were the dominant genus of ARB. Most ARB were opportunistic pathogens, belonging to the phylum Proteobacteria (96.02%). The abundance of sul family genes was higher than that of tet family genes. Overall, the abundance of ARGs and the resistance rates in HW was highest. | 2019 | 30955742 |
| 5267 | 11 | 0.9979 | Diversity and antibiotic resistance of cultivable bacteria in bulk tank milk from dairy farms in Shandong Province, China. INTRODUCTION: This study systematically analyzed bacterial diversity and antimicrobial resistance (AMR) profiles in bulk tank milk from five dairy farms (n = 30) in Shandong Province, China, to assess public health risks associated with microbial contamination and provide critical data for regional quality control and AMR risk assessment in dairy production systems. METHODS: Total bacterial counts were quantified, revealing significant inter-farm variation (P < 0.05) with a range of 3.94-6.68 log CFU/mL. Among 129 bacterial isolates, genus-level dominance and species prevalence were identified. Antimicrobial susceptibility testing (AST) against 10 agents was performed using integrated resistance criteria combining Clinical and Laboratory Standards Institute (CLSI) standards and epidemiological cutoff values (ECOFFs). Nine resistance genes targeting seven antibiotic classes were detected via PCR. RESULTS: The highest resistance rate was observed for sulfadiazine (53.2%) and the lowest for levofloxacin (6.0%). Multidrug resistance was detected in 23% (20/87) of isolates, with 14 strains meeting ECOFFs-based resistance criteria. PCR analysis showed sul1 (70.5%) and ant(4')-Ia (54.3%) as the most prevalent resistance genes, while mcr-1, lnu (B), and bla (NDM-1) were absent in all isolates. Regional resistance variations correlated significantly with farm management practices. DISCUSSION: These findings underscore the impact of historical antibiotic use on AMR dissemination. Enhanced AMR surveillance in raw milk, improved antibiotic stewardship, and targeted interventions are crucial to mitigate public health risks from microbial contamination and horizontal gene transfer of resistance determinants. | 2025 | 40771950 |
| 5285 | 12 | 0.9979 | Antibiotic Use in Beekeeping: Implications for Health and Environment from a One-Health Perspective. BACKGROUND: The use of antibiotics in beekeeping has potential implications for honeybee health and environmental contamination. Recent research indicates that extensive antibiotic use in beekeeping, especially oxytetracycline, promotes antimicrobial resistance in bee-related bacteria. Honeybees can transport oxytetracycline-resistance genes during foraging, potentially establishing reservoirs of resistance in the colony and facilitating intergeneric gene transfer among various gut bacteria as well as in the microbiome of the flowers and the wider environment, where honeybees can spread antibiotic-resistance genes over a large distance. This study investigates the effects of oxytetracycline hydrochloride (OTC) treatment on honeybees from a One Health perspective, examining antibiotic residues in honey, environmental spread, and the presence of tetracycline-resistance genes (TET-RGs). METHODS: In the spring of 2022, two groups of four honeybee hives were placed near an almond grove in Central Italy. One group was treated with 1.68 g of OTC, while the other remained untreated. Samples were collected from bees, honey, hive entrances, and flowers before treatment and at 3 as well as 9 days post-treatment. OTC residues and TET-RGs were analyzed to assess contamination and resistance gene dissemination. RESULTS: OTC residues were detected in honey from both treated (day 3: 263,250.0 ± 100,854.3 µg/kg; day 9: 132,600 ± 146,753.9 µg/kg) and untreated hives (day 3: 20.5 ± 8.2 µg/kg; day 9: 135.8 ± 198.6 µg/kg), suggesting cross-contamination. Residues were also found in almond tree flowers (0.7 ± 0.1 µg/kg), with TET-RGs (tet(K), tet(L), tet(M), tet(B), tet(O), tet(D)) detected pre- and post-treatment. In honeybee gut bacteria, resistance genes (tet(M), tet(A), tet(D), tet(B)) appeared post-treatment in both groups. No significant correlation was observed between hive distance and resistance gene presence in flowers, although the presence of other farms located within the bees' flight range, in which OTC might have been used in the past, could have influenced the results. CONCLUSIONS: These findings highlight the risk of OTC-induced antibiotic cross-contamination and the spread of TET-RG, raising concerns for bee health and environmental safety. Given honeybees' social nature and the negative effects of antibiotics on their health, an antibiotic-free management approach is recommended for sustainable apiculture. | 2025 | 40298498 |
| 2859 | 13 | 0.9979 | Transmission of human-pet antibiotic resistance via aerosols in pet hospitals of Changchun. In recent years, aerosols have been recognized as a prominent medium for the transmission of antibiotic-resistant bacteria and genes. Among these, particles with a particle size of 2 μm (PM(2.5)) can directly penetrate the alveoli. However, the presence of antibiotic-resistant genes in aerosols from pet hospitals and the potential risks posed by antibiotic-resistant bacteria in these aerosols to humans and animals need to be investigated. In this study, cefotaxime-resistant bacteria were collected from 5 representative pet hospitals in Changchun using a Six-Stage Andersen Cascade Impactor. The distribution of bacteria in each stage was analyzed, and bacteria from stage 5 and 6 were isolated and identified. Minimal inhibitory concentrations of isolates against 12 antimicrobials were determined using broth microdilution method. Quantitative Polymerase Chain Reaction was employed to detect resistance genes and mobile genetic elements that could facilitate resistance spread. The results indicated that ARBs were enriched in stage 5 (1.1-2.1 μm) and stage 3 (3.3-4.7 μm) of the sampler. A total of 159 isolates were collected from stage 5 and 6. Among these isolates, the genera Enterococcus spp. (51%), Staphylococcus spp. (19%), and Bacillus spp. (14%) were the most prevalent. The isolates exhibited the highest resistance to tetracycline and the lowest resistance to cefquinome. Furthermore, 56 (73%) isolates were multidrug-resistant. Quantitative PCR revealed the expression of 165 genes in these isolates, with mobile genetic elements showing the highest expression levels. In conclusion, PM(2.5) from pet hospitals harbor a significant number of antibiotic-resistant bacteria and carry mobile genetic elements, posing a potential risk for alveolar infections and the dissemination of antibiotic resistance genes. | 2024 | 38855194 |
| 7772 | 14 | 0.9979 | Metagenomic community composition and resistome analysis in a full-scale cold climate wastewater treatment plant. BACKGROUND: Wastewater treatment plants are an essential part of maintaining the health and safety of the general public. However, they are also an anthropogenic source of antibiotic resistance genes. In this study, we characterized the resistome, the distribution of classes 1-3 integron-integrase genes (intI1, intI2, and intI3) as mobile genetic element biomarkers, and the bacterial and phage community compositions in the North End Sewage Treatment Plant in Winnipeg, Manitoba. Samples were collected from raw sewage, returned activated sludge, final effluent, and dewatered sludge. A total of 28 bacterial and viral metagenomes were sequenced over two seasons, fall and winter. Integron-integrase genes, the 16S rRNA gene, and the coliform beta-glucuronidase gene were also quantified during this time period. RESULTS: Bacterial classes observed above 1% relative abundance in all treatments were Actinobacteria (39.24% ± 0.25%), Beta-proteobacteria (23.99% ± 0.16%), Gamma-proteobacteria (11.06% ± 0.09%), and Alpha-proteobacteria (9.18 ± 0.04%). Families within the Caudovirales order: Siphoviridae (48.69% ± 0.10%), Podoviridae (23.99% ± 0.07%), and Myoviridae (19.94% ± 0.09%) were the dominant phage observed throughout the NESTP. The most abundant bacterial genera (in terms of average percent relative abundance) in influent, returned activated sludge, final effluent, and sludge, respectively, includes Mycobacterium (37.4%, 18.3%, 46.1%, and 7.7%), Acidovorax (8.9%, 10.8%, 5.4%, and 1.3%), and Polaromonas (2.5%, 3.3%, 1.4%, and 0.4%). The most abundant class of antibiotic resistance in bacterial samples was tetracycline resistance (17.86% ± 0.03%) followed by peptide antibiotics (14.24% ± 0.03%), and macrolides (10.63% ± 0.02%). Similarly, the phage samples contained a higher prevalence of macrolide (30.12% ± 0.30%), peptide antibiotic (10.78% ± 0.13%), and tetracycline (8.69% ± 0.11%) resistance. In addition, intI1 was the most abundant integron-integrase gene throughout treatment (1.14 × 10(4) gene copies/mL) followed by intI3 (4.97 × 10(3) gene copies/mL) while intI2 abundance remained low (6.4 × 10(1) gene copies/mL). CONCLUSIONS: Wastewater treatment successfully reduced the abundance of bacteria, DNA phage and antibiotic resistance genes although many antibiotic resistance genes remained in effluent and biosolids. The presence of integron-integrase genes throughout treatment and in effluent suggests that antibiotic resistance genes could be actively disseminating resistance between both environmental and pathogenic bacteria. | 2022 | 35033203 |
| 2982 | 15 | 0.9978 | Assessment of cooperative antibiotic resistance of Salmonella Typhimurium within heterogeneous population. This study was designed to investigate the cooperative resistance in the mixed culture of antibiotic-sensitive and antibiotic-resistant Salmonella Typhimurium. Strains of S. Typhimurium ATCC 19585 (ST(S)) and clinically isolated antibiotic-resistant S. Typhimurium CCARM 8009 (ST(R)) grown in single and mixture with 1 × MIC ceftriaxone (CEF) were used to determine the viability, β-lactamase activity, and gene expression. The MIC(50) values of ST(R) to CEF was increased by more than 5-fold with increasing inoculum densities from 10(2) to 10(7) CFU/mL. ST(S) was resistant to 1 × MIC CEF in the mixed culture of ST(S) and ST(R), showing the more than 10(8) CFU/mL after 20 h of incubation at 37 °C. The highest β-lactamase activity was 18 μmol/min/mL in the mixed culture, corresponding to the highest relative expression of β-lactamase-related genes (bla(TEM)). These results shed new light on the cooperative resistance of antibiotic-sensitive bacteria within a heterogeneous population including β-lactamase-producing bacteria. | 2021 | 34029657 |
| 7763 | 16 | 0.9978 | Antibiotic resistance genes fate and removal by a technological treatment solution for water reuse in agriculture. In order to mitigate the potential effects on the human health which are associated to the use of treated wastewater in agriculture, antibiotic resistance genes (ARGs) are required to be carefully monitored in wastewater reuse processes and their spread should be prevented by the development of efficient treatment technologies. Objective of this study was the assessment of ARGs reduction efficiencies of a novel technological treatment solution for agricultural reuse of municipal wastewaters. The proposed solution comprises an advanced biological treatment (Sequencing Batch Biofilter Granular Reactor, SBBGR), analysed both al laboratory and pilot scale, followed by sand filtration and two different disinfection final stages: ultraviolet light (UV) radiation and peracetic acid (PAA) treatments. By Polymerase Chain Reaction (PCR), the presence of 9 ARGs (ampC, mecA, ermB, sul1, sul2, tetA, tetO, tetW, vanA) were analysed and by quantitative PCR (qPCR) their removal was determined. The obtained results were compared to the reduction of total bacteria (16S rDNA gene) and of a faecal contamination indicator (Escherichia coli uidA gene). Only four of the analysed genes (ermB, sul1, sul2, tetA) were detected in raw wastewater and their abundance was estimated to be 3.4±0.7 x10(4) - 9.6±0.5 x10(9) and 1.0±0.3 x10(3) to 3.0±0.1 x10(7) gene copies/mL in raw and treated wastewaters, respectively. The results show that SBBGR technology is promising for the reduction of ARGs, achieving stable removal performance ranging from 1.0±0.4 to 2.8±0.7 log units, which is comparable to or higher than that reported for conventional activated sludge treatments. No reduction of the ARGs amount normalized to the total bacteria content (16S rDNA), was instead obtained, indicating that these genes are removed together with total bacteria and not specifically eliminated. Enhanced ARGs removal was obtained by sand filtration, while no reduction was achieved by both UV and PAA disinfection treatments tested in our study. | 2016 | 27450254 |
| 7761 | 17 | 0.9978 | Fate and removal of bacteria and antibiotic resistance genes in horizontal subsurface constructed wetlands: Effect of mixed vegetation and substrate type. This study aimed to investigate the influence of cropping method and substrate type on the fate and the removal of bacterial and antibiotic resistance genes (ARGs) indicators from primary wastewater by constructed wetlands (CWs) during startup and maturation stages. Four small-scale CWs differing in their plantation pattern (monoculture vs. polyculture) and substrate type were constructed and operated under field conditions. While for bacteria, the greatest impact of the cropping method and substrate type on removal was during the startup stage rather than the maturation stage, for ARGs, such impact was significant at both stages. During startup, the removal efficiencies of heterotrophic bacteria, fecal coliforms, E. coli, 16S rRNA genes and lacZ increased with the operation time. At maturation, the removal efficiencies were constant and were within the range of 89.2-99.4%, 93.7-98.9%, 89-98.8%, 94.1-99.6% and 92.9-98.7%, respectively. The removal efficiencies of intl1, tetM, intl1, sul1, ermB and total ARGs were also increased with the operation time. However, they were ARG type and configuration-dependent; at maturation they ranged between 50.7%-89.4%, 85.9%-97%, 49.6%-92.9%, 58.2%-96.7% and 79.9-94.3%, respectively. The tuff-filled serially planted CW was also the only one capable of removing these genes at similar high efficiency. Metagenomic analysis showed that none of the ARGs was among the most common ARGs in water and biofilm samples; rather most ARGs belonged to bacterial efflux transporter superfamilies. Although ARGs were removed, they were still detected in substrate biofilm and their relative concentrations were increased in the effluents. While the removal of both bacteria and ARGs was higher during summer compared to winter, the season had no effect on the removal pattern of ARGs. Hence, combination of the serial plantation with substrate having high surface area is a potential strategy that can be used to improve the performance of CWs. | 2021 | 33338689 |
| 3084 | 18 | 0.9978 | Antibiotic resistance profile of facultative deep-sea psychro-piezophile bacteria from the Arabian Sea and their relation with physicochemical factors. Antibiotic resistance (ABR) is a significant global challenge, with antibiotics from various sources ending up in the ocean and affecting marine life. Profiling ABR in deep-sea bacteria is crucial for understanding the spread of ABR from environmental microbes to clinical pathogen and vice-versa. We evaluated facultative psychro-piezophile deep-sea bacteria from different depths of the Arabian Sea for their resistance to 20 commercial antibiotics. Bacteria from Zone 5 (2000-3000 m) exhibited the highest multiple antibiotic resistance (MAR) index (0.90), identifying it as a significant reservoir of ABR. Zone 1 (5-100 m) isolates (average 20 %) showed the highest resistance to synthetic antibiotics. Zone 3 (500-1000 m) isolates were highly resistant to diverse classes of antibiotics, separating upper (zone 1 and 2 (100-500 m) and deeper sea zones (zone 4 (1000-2000 m) and 5). The identified isolates belong to Bacillus, Niallia, Escherichia, Cytobacillus, and Pseudomonas genera. Additionally, antibiotic resistance genes (ARGs) such as StrB (2 isolates) and SXT integrase (1 isolate) were detected only in Zone 5 isolates. The SulII gene (19 isolates) was present across all zones. PCA analysis revealed a negative correlation between resistance and physicochemical factors (macronutrients like phosphate (PO(4)(3-)), nitrate (NO(3)(-)), nitrite (NO(2)(-)), and ammonia (NH(3)); micronutrient and heavy metals like (iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), nickel (Ni)), aluminium (Al), cadmium (Cd), and chromium (Cr)), except for Phosphate (0.65). Overall, this study is the first to provide valuable insights into the prevalence of ABR using culture-dependent methods and its correlation with physicochemical factors in the deep-sea environments of the Arabian Sea. | 2025 | 40088632 |
| 7783 | 19 | 0.9978 | Heterologous expression of the tetracycline resistance gene tetX to enhance degradability and safety in doxycycline degradation. Microbial remediation has the potential to inexpensively yet effectively decontaminate and restore contaminated environments, but the virulence of pathogens and risk of resistance gene transmission by microorganisms during antibiotic removal often limit its implementation. Here, a cloned tetX gene with clear evolutionary history was expressed to explore doxycycline (DOX) degradation and resistance variation during the degradation process. Phylogenetic analysis of tetX genes showed high similarity with those of pathogenic bacteria, such as Riemerella sp. and Acinetobacter sp. Successful tetX expression was performed in Escherichia coli and confirmed by SDS-PAGE and Western blot. Our results showed that 95.0 ± 1.0% of the DOX (50 mg/L) was degraded by the recombinant strain (ETD-1 with tetX) within 48 h, which was significantly higher than that for the control (38.9 ± 8.7%) and the empty plasmid bacteria (8.8 ± 5.1%) (P < 0.05). The tetX gene products in ETD-1 cell extracts also exhibited an efficient DOX degradation ability, with a degradation rate of 80.5 ± 1.2% at 168 h. Furthermore, there was no significant proliferation of the tetX resistance gene during DOX degradation (P > 0.05). The efficient and safe DOX-degrading capacity of the recombinant strain ETD-1 makes it valuable and promising for antibiotic removal in the environment. | 2020 | 31968275 |