VALIDATING - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
512100.9903Rapid Nanopore Whole-Genome Sequencing for Anthrax Emergency Preparedness. Human anthrax cases necessitate rapid response. We completed Bacillus anthracis nanopore whole-genome sequencing in our high-containment laboratory from a human anthrax isolate hours after receipt. The de novo assembled genome showed no evidence of known antimicrobial resistance genes or introduced plasmid(s). Same-day genomic characterization enhances public health emergency response.202031961318
907610.9894ResiDB: An automated database manager for sequence data. The amount of publicly available DNA sequence data is drastically increasing, making it a tedious task to create sequence databases necessary for the design of diagnostic assays. The selection of appropriate sequences is especially challenging in genes affected by frequent point mutations such as antibiotic resistance genes. To overcome this issue, we have designed the webtool resiDB, a rapid and user-friendly sequence database manager for bacteria, fungi, viruses, protozoa, invertebrates, plants, archaea, environmental and whole genome shotgun sequence data. It automatically identifies and curates sequence clusters to create custom sequence databases based on user-defined input sequences. A collection of helpful visualization tools gives the user the opportunity to easily access, evaluate, edit, and download the newly created database. Consequently, researchers do no longer have to manually manage sequence data retrieval, deal with hardware limitations, and run multiple independent software tools, each having its own requirements, input and output formats. Our tool was developed within the H2020 project FAPIC aiming to develop a single diagnostic assay targeting all sepsis-relevant pathogens and antibiotic resistance mechanisms. ResiDB is freely accessible to all users through https://residb.ait.ac.at/.202133495705
907420.9894BacAnt: A Combination Annotation Server for Bacterial DNA Sequences to Identify Antibiotic Resistance Genes, Integrons, and Transposable Elements. Whole genome sequencing (WGS) of bacteria has become a routine method in diagnostic laboratories. One of the clinically most useful advantages of WGS is the ability to predict antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs) in bacterial sequences. This allows comprehensive investigations of such genetic features but can also be used for epidemiological studies. A plethora of software programs have been developed for the detailed annotation of bacterial DNA sequences, such as rapid annotation using subsystem technology (RAST), Resfinder, ISfinder, INTEGRALL and The Transposon Registry. Unfortunately, to this day, a reliable annotation tool of the combination of ARGs and MGEs is not available, and the generation of genbank files requires much manual input. Here, we present a new webserver which allows the annotation of ARGs, integrons and transposable elements at the same time. The pipeline generates genbank files automatically, which are compatible with Easyfig for comparative genomic analysis. Our BacAnt code and standalone software package are available at https://github.com/xthua/bacant with an accompanying web application at http://bacant.net.202134367079
508430.9893Cloth-based hybridization array system for the identification of antibiotic resistance genes in Salmonella. A simple macroarray system based on the use of polyester cloth as the solid phase for DNA hybridization has been developed for the identification and characterization of bacteria on the basis of the presence of various virulence and toxin genes. In this approach, a multiplex polymerase chain reaction (PCR) incorporating digoxigenin-dUTP is used to simultaneously amplify different marker genes, with subsequent rapid detection of the amplicons by hybridization with an array of probes immobilized on polyester cloth and immunoenzymatic assay of the bound label. As an example of the applicability of this cloth-based hybridization array system (CHAS) in the characterization of foodborne pathogens, a method has been developed enabling the detection of antibiotic resistance and other marker genes associated with the multidrug-resistant food pathogen Salmonella enterica subsp. enterica serotype Typhimurium DT104. The CHAS is a simple, cost-effective tool for the simultaneous detection of amplicons generated in a multiplex PCR, and the concept is broadly applicable to the identification of key pathogen-specific marker genes in bacterial isolates.200718363231
477740.9893Identification of Bacterial Strains and Development of anmRNA-Based Vaccine to Combat Antibiotic Resistance in Staphylococcus aureus via In Vitro and In Silico Approaches. The emergence of antibiotic-resistant microorganisms is a significant concern in global health. Antibiotic resistance is attributed to various virulent factors and genetic elements. This study investigated the virulence factors of Staphylococcus aureus to create an mRNA-based vaccine that could help prevent antibiotic resistance. Distinct strains of the bacteria were selected for molecular identification of virulence genes, such as spa, fmhA, lukD, and hla-D, which were performed utilizing PCR techniques. DNA extraction from samples of Staphylococcus aureus was conducted using the Cetyl Trimethyl Ammonium Bromide (CTAB) method, which was confirmed and visualized using a gel doc; 16S rRNA was utilized to identify the bacterial strains, and primers of spa, lukD, fmhA, and hla-D genes were employed to identify the specific genes. Sequencing was carried out at Applied Bioscience International (ABI) in Malaysia. Phylogenetic analysis and alignment of the strains were subsequently constructed. We also performed an in silico analysis of the spa, fmhA, lukD, and hla-D genes to generate an antigen-specific vaccine. The virulence genes were translated into proteins, and a chimera was created using various linkers. The mRNA vaccine candidate was produced utilizing 18 epitopes, linkers, and an adjuvant, known as RpfE, to target the immune system. Testing determined that this design covered 90% of the population conservancy. An in silico immunological vaccine simulation was conducted to verify the hypothesis, including validating and predicting secondary and tertiary structures and molecular dynamics simulations to evaluate the vaccine's long-term viability. This vaccine design may be further evaluated through in vivo and in vitro testing to assess its efficacy.202337189657
477850.9892DNA extraction of microbial DNA directly from infected tissue: an optimized protocol for use in nanopore sequencing. Identification of bacteria causing tissue infections can be comprehensive and, in the cases of non- or slow-growing bacteria, near impossible with conventional methods. Performing shotgun metagenomic sequencing on bacterial DNA extracted directly from the infected tissue may improve time to diagnosis and targeted treatment considerably. However, infected tissue consists mainly of human DNA (hDNA) which hampers bacterial identification. In this proof of concept study, we present a modified version of the Ultra-Deep Microbiome Prep kit for DNA extraction procedure, removing additional human DNA. Tissue biopsies from 3 patients with orthopedic implant-related infections containing varying degrees of Staphylococcus aureus were included. Subsequent DNA shotgun metagenomic sequencing using Oxford Nanopore Technologies' (ONT) MinION platform and ONTs EPI2ME WIMP and ARMA bioinformatic workflows for microbe and antibiotic resistance genes identification, respectively. The modified DNA extraction protocol led to an additional ~10-fold reduction of human DNA while preserving S. aureus DNA. Including the DNA sequencing and bioinformatics analyses, the presented protocol has the potential of identifying the infection-causing pathogen in infected tissue within 7 hours after biopsy. However, due to low number of S. aureus reads, positive identification of antibiotic resistance genes was not possible.202032076089
974260.9892BOCS: DNA k-mer content and scoring for rapid genetic biomarker identification at low coverage. A single, inexpensive diagnostic test capable of rapidly identifying a wide range of genetic biomarkers would prove invaluable in precision medicine. Previous work has demonstrated the potential for high-throughput, label-free detection of A-G-C-T content in DNA k-mers, providing an alternative to single-letter sequencing while also having inherent lossy data compression and massively parallel data acquisition. Here, we apply a new bioinformatics algorithm - block optical content scoring (BOCS) - capable of using the high-throughput content k-mers for rapid, broad-spectrum identification of genetic biomarkers. BOCS uses content-based sequence alignment for probabilistic mapping of k-mer contents to gene sequences within a biomarker database, resulting in a probability ranking of genes on a content score. Simulations of the BOCS algorithm reveal high accuracy for identification of single antibiotic resistance genes, even in the presence of significant sequencing errors (100% accuracy for no sequencing errors, and >90% accuracy for sequencing errors at 20%), and at well below full coverage of the genes. Simulations for detecting multiple resistance genes within a methicillin-resistant Staphylococcus aureus (MRSA) strain showed 100% accuracy at an average gene coverage of merely 0.515, when the k-mer lengths were variable and with 4% sequencing error within the k-mer blocks. Extension of BOCS to cancer and other genetic diseases met or exceeded the results for resistance genes. Combined with a high-throughput content-based sequencing technique, the BOCS algorithm potentiates a test capable of rapid diagnosis and profiling of genetic biomarkers ranging from antibiotic resistance to cancer and other genetic diseases.201931173943
974170.9891ARGai 1.0: A GAN augmented in silico approach for identifying resistant genes and strains in E. coli using vision transformer. The emergence of infectious disease and antibiotic resistance in bacteria like Escherichia coli (E. coli) shows the necessity for novel computational techniques for identifying essential genes that contribute to resistance. The task of identifying resistant strains and multi-drug patterns in E. coli is a major challenge with whole genome sequencing (WGS) and next-generation sequencing (NGS) data. To address this issue, we suggest ARGai 1.0 a deep learning architecture enhanced with generative adversarial networks (GANs). We mitigate data scarcity difficulties by augmenting limited experimental datasets with synthetic data generated by GANs. Our in-silico method (augmentation with feature selection) improves the identification of resistance genes in E. coli by using feature extraction techniques to identify valuable features from actual and GAN-generated data. Employing comprehensive validation, we exhibit the effectiveness of our ARGai 1.0 in precisely identifying the informative and resistant genes. In addition, our ARGai 1.0 identifies the resistant strains with a classification accuracy of 98.96 % on Deep Convolutional Generative Adversarial Network (DCGAN) augmented data. Additionally, ARGai 1.0 achieves more than 98 % of sensitivity and specificity. We also benchmark our ARGai 1.0 with several state-of-the-art AI models for resistant strain classification. In the fight against antibiotic resistance, ARGai 1.0 offers a promising avenue for computational genomics. With implications for research and clinical practice, this work shows the potential of deep networks with GAN augmentation as a practical and successful method for gene identification in E. coli.202539813877
974480.9890PARGT: a software tool for predicting antimicrobial resistance in bacteria. With the ever-increasing availability of whole-genome sequences, machine-learning approaches can be used as an alternative to traditional alignment-based methods for identifying new antimicrobial-resistance genes. Such approaches are especially helpful when pathogens cannot be cultured in the lab. In previous work, we proposed a game-theory-based feature evaluation algorithm. When using the protein characteristics identified by this algorithm, called 'features' in machine learning, our model accurately identified antimicrobial resistance (AMR) genes in Gram-negative bacteria. Here we extend our study to Gram-positive bacteria showing that coupling game-theory-identified features with machine learning achieved classification accuracies between 87% and 90% for genes encoding resistance to the antibiotics bacitracin and vancomycin. Importantly, we present a standalone software tool that implements the game-theory algorithm and machine-learning model used in these studies.202032620856
506890.9889Ultrasensitive Label-Free Detection of Unamplified Multidrug-Resistance Bacteria Genes with a Bimodal Waveguide Interferometric Biosensor. Infections by multidrug-resistant bacteria are becoming a major healthcare emergence with millions of reported cases every year and an increasing incidence of deaths. An advanced diagnostic platform able to directly detect and identify antimicrobial resistance in a faster way than conventional techniques could help in the adoption of early and accurate therapeutic interventions, limiting the actual negative impact on patient outcomes. With this objective, we have developed a new biosensor methodology using an ultrasensitive nanophotonic bimodal waveguide interferometer (BiMW), which allows a rapid and direct detection, without amplification, of two prevalent and clinically relevant Gram-negative antimicrobial resistance encoding sequences: the extended-spectrum betalactamase-encoding gene blaCTX-M-15 and the carbapenemase-encoding gene blaNDM-5 We demonstrate the extreme sensitivity and specificity of our biosensor methodology for the detection of both gene sequences. Our results show that the BiMW biosensor can be employed as an ultrasensitive (attomolar level) and specific diagnostic tool for rapidly (less than 30 min) identifying drug resistance. The BiMW nanobiosensor holds great promise as a powerful tool for the control and management of healthcare-associated infections by multidrug-resistant bacteria.202033086716
5125100.9888Do we still need Illumina sequencing data? Evaluating Oxford Nanopore Technologies R10.4.1 flow cells and the Rapid v14 library prep kit for Gram negative bacteria whole genome assemblies. The best whole genome assemblies are currently built from a combination of highly accurate short-read sequencing data and long-read sequencing data that can bridge repetitive and problematic regions. Oxford Nanopore Technologies (ONT) produce long-read sequencing platforms and they are continually improving their technology to obtain higher quality read data that is approaching the quality obtained from short-read platforms such as Illumina. As these innovations continue, we evaluated how much ONT read coverage produced by the Rapid Barcoding Kit v14 (SQK-RBK114) is necessary to generate high-quality hybrid and long-read-only genome assemblies for a panel of carbapenemase-producing Enterobacterales bacterial isolates. We found that 30× long-read coverage is sufficient if Illumina data are available, and that more (at least 100× long-read coverage is recommended for long-read-only assemblies. Illumina polishing is still improving single nucleotide variants (SNVs) and INDELs in long-read-only assemblies. We also examined if antimicrobial resistance genes could be accurately identified in long-read-only data, and found that Flye assemblies regardless of ONT coverage detected >96% of resistance genes at 100% identity and length. Overall, the Rapid Barcoding Kit v14 and long-read-only assemblies can be an optimal sequencing strategy (i.e., plasmid characterization and AMR detection) but finer-scale analyses (i.e., SNV) still benefit from short-read data.202438354391
5124110.9887Oxford nanopore long-read sequencing enables the generation of complete bacterial and plasmid genomes without short-read sequencing. INTRODUCTION: Genome-based analysis is crucial in monitoring antibiotic-resistant bacteria (ARB)and antibiotic-resistance genes (ARGs). Short-read sequencing is typically used to obtain incomplete draft genomes, while long-read sequencing can obtain genomes of multidrug resistance (MDR) plasmids and track the transmission of plasmid-borne antimicrobial resistance genes in bacteria. However, long-read sequencing suffers from low-accuracy base calling, and short-read sequencing is often required to improve genome accuracy. This increases costs and turnaround time. METHODS: In this study, a novel ONT sequencing method is described, which uses the latest ONT chemistry with improved accuracy to assemble genomes of MDR strains and plasmids from long-read sequencing data only. Three strains of Salmonella carrying MDR plasmids were sequenced using the ONT SQK-LSK114 kit with flow cell R10.4.1, and de novo genome assembly was performed with average read accuracy (Q > 10) of 98.9%. RESULTS AND DISCUSSION: For a 5-Mb-long bacterial genome, finished genome sequences with accuracy of >99.99% could be obtained at 75× sequencing coverage depth using Flye and Medaka software. Thus, this new ONT method greatly improves base-calling accuracy, allowing for the de novo assembly of high-quality finished bacterial or plasmid genomes without the need for short-read sequencing. This saves both money and time and supports the application of ONT data in critical genome-based epidemiological analyses. The novel ONT approach described in this study can take the place of traditional combination genome assembly based on short- and long-read sequencing, enabling pangenomic analyses based on high-quality complete bacterial and plasmid genomes to monitor the spread of antibiotic-resistant bacteria and antibiotic resistance genes.202337256057
5120120.9887ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Antimicrobial resistance (AMR) is one of the major threats to human and animal health worldwide, yet few high-throughput tools exist to analyse and predict the resistance of a bacterial isolate from sequencing data. Here we present a new tool, ARIBA, that identifies AMR-associated genes and single nucleotide polymorphisms directly from short reads, and generates detailed and customizable output. The accuracy and advantages of ARIBA over other tools are demonstrated on three datasets from Gram-positive and Gram-negative bacteria, with ARIBA outperforming existing methods.201729177089
5877130.9885Comparative genomics of four lactic acid bacteria identified with Vitek MS (MALDI-TOF) and whole-genome sequencing. Lactic acid bacteria (LAB) can be used as a probiotic or starter culture in dairy, meat, and vegetable fermentation. Therefore, their isolation and identification are essential. Recent advances in omics technologies and high-throughput sequencing have made the identification and characterization of bacteria. This study firstly aimed to demonstrate the sensitivity of the Vitek MS (MALDI-TOF) system in the identification of lactic acid bacteria and, secondly, to characterize bacteria using various bioinformatics approaches. Probiotic potency-related genes and secondary metabolite biosynthesis gene clusters were examined. The Vitek MS (MALDI-TOF) system was able to identify all of the bacteria at the genus level. According to whole genome sequencing, the bacteria were confirmed to be Lentilactobacillus buchneri, Levilactobacillus brevis, Lactiplantibacillus plantarum, Levilactobacillus namurensis. Bacteria had most of the probiotic potency-related genes, and different toxin-antitoxin systems such as PemIK/MazEF, Hig A/B, YdcE/YdcD, YefM/YoeB. Also, some of the secondary metabolite biosynthesis gene clusters, some toxic metabolite-related genes, and antibiotic resistance-related genes were detected. In addition, Lentilactobacillus buchneri Egmn17 had a type II-A CRISPR/Cas system. Lactiplantibacillus plantarum Gmze16 had a bacteriocin, plantaricin E/F.202438472540
5194140.9885Evaluation of the CosmosID Bioinformatics Platform for Prosthetic Joint-Associated Sonicate Fluid Shotgun Metagenomic Data Analysis. We previously demonstrated that shotgun metagenomic sequencing can detect bacteria in sonicate fluid, providing a diagnosis of prosthetic joint infection (PJI). A limitation of the approach that we used is that data analysis was time-consuming and specialized bioinformatics expertise was required, both of which are barriers to routine clinical use. Fortunately, automated commercial analytic platforms that can interpret shotgun metagenomic data are emerging. In this study, we evaluated the CosmosID bioinformatics platform using shotgun metagenomic sequencing data derived from 408 sonicate fluid samples from our prior study with the goal of evaluating the platform vis-à-vis bacterial detection and antibiotic resistance gene detection for predicting staphylococcal antibacterial susceptibility. Samples were divided into a derivation set and a validation set, each consisting of 204 samples; results from the derivation set were used to establish cutoffs, which were then tested in the validation set for identifying pathogens and predicting staphylococcal antibacterial resistance. Metagenomic analysis detected bacteria in 94.8% (109/115) of sonicate fluid culture-positive PJIs and 37.8% (37/98) of sonicate fluid culture-negative PJIs. Metagenomic analysis showed sensitivities ranging from 65.7 to 85.0% for predicting staphylococcal antibacterial resistance. In conclusion, the CosmosID platform has the potential to provide fast, reliable bacterial detection and identification from metagenomic shotgun sequencing data derived from sonicate fluid for the diagnosis of PJI. Strategies for metagenomic detection of antibiotic resistance genes for predicting staphylococcal antibacterial resistance need further development.201930429253
5489150.9885Identification of a novel mutation involved in colistin resistance in Klebsiella pneumoniae through Next-Generation Sequencing (NGS) based approaches. The spread of multidrug-resistant (MDR) K. pneumoniae carbapenemase-producing bacteria (KPC) is one of the most serious threats to global public health. Due to the limited antibiotic options, colis- tin often represents a therapeutic choice. In this study, we performed Whole-Genome Sequencing (WGS) by Illumina and Nanopore platforms on four colistin-resistant K. pneumoniae isolates (CoRKp) to explore the resistance profile and the mutations involved in colistin resistance. Mapping reads with reference sequence of the most com- mon genes involved in colistin resistance did not show the presence of mobile colistin resistance (mcr) genes in all CoRKp. Complete or partial deletions of mgrB gene were observed in three out of four CoRKp, while in one CoRKp the mutation V24G on phoQ was identified. Complementation assay with proper wild type genes restored colistin susceptibility, validating the role of the amino acid substitution V24G and, as already described in the literature, confirming the key role of mgrB alterations in colistin resistance. In conclusion, this study allowed the identification of the novel mutation on phoQ gene involved in colistin resistance phenotype.202235920875
9745160.9885Analysis of Identification Method for Bacterial Species and Antibiotic Resistance Genes Using Optical Data From DNA Oligomers. Bacterial antibiotic resistance is becoming a significant health threat, and rapid identification of antibiotic-resistant bacteria is essential to save lives and reduce the spread of antibiotic resistance. This paper analyzes the ability of machine learning algorithms (MLAs) to process data from a novel spectroscopic diagnostic device to identify antibiotic-resistant genes and bacterial species by comparison to available bacterial DNA sequences. Simulation results show that the algorithms attain from 92% accuracy (for genes) up to 99% accuracy (for species). This novel approach identifies genes and species by optically reading the percentage of A, C, G, T bases in 1000s of short 10-base DNA oligomers instead of relying on conventional DNA sequencing in which the sequence of bases in long oligomers provides genetic information. The identification algorithms are robust in the presence of simulated random genetic mutations and simulated random experimental errors. Thus, these algorithms can be used to identify bacterial species, to reveal antibiotic resistance genes, and to perform other genomic analyses. Some MLAs evaluated here are shown to be better than others at accurate gene identification and avoidance of false negative identification of antibiotic resistance.202032153541
8701170.9885Assembling a genome for novel nitrogen-fixing bacteria with capabilities for utilization of aromatic hydrocarbons. Metagenome from refinery wastewater treatment plant running under nitrogen stress was analyzed for mining of novel aromatic hydrocarbon-degrading bacteria. The sequence data were assembled using metaspade followed by binning using the Metabat tool to assemble genome; where coverage and depth were calculated using bowtie and samtools. The analysis picked a novel genome belonging to family Bradyrhizobiaceae, identified based on 16S rDNA gene which was supported by CheckM and Kraken analysis. Using RAST, the assembled genome showed the capabilities for nitrogen fixation with the utilization of multiple hydrocarbon substrates with 14 different types of oxygenases as mapped by Minpath. An additional genetic feature like genes for stress and resistance towards heavy metals and antibiotic suggested that the genome has gone through the rigorous process of adaptation. If such bacteria could be cultivated then it will open the broad window of bioremediation strategies under nitrogen stress environment.201930552976
5148180.9885Unveiling the whole genomic features and potential probiotic characteristics of novel Lactiplantibacillus plantarum HMX2. This study investigates the genomic features and probiotic potential of Lactiplantibacillus plantarum HMX2, isolated from Chinese Sauerkraut, using whole-genome sequencing (WGS) and bioinformatics for the first time. This study also aims to find genetic diversity, antibiotic resistance genes, and functional capabilities to help us better understand its food safety applications and potential as a probiotic. L. plantarum HMX2 was cultured, and DNA was extracted for WGS. Genomic analysis comprised average nucleotide identity (ANI) prediction, genome annotation, pangenome, and synteny analysis. Bioinformatics techniques were used to identify CoDing Sequences (CDSs), transfer RNA (tRNA) and ribosomal RNA (rRNA) genes, and antibiotic resistance genes, as well as to conduct phylogenetic analysis to establish genetic diversity and evolution. The study found a significant genetic similarity (99.17% ANI) between L. plantarum HMX2 and the reference strain. Genome annotation revealed 3,242 coding sequences, 65 tRNA genes, and 16 rRNA genes. Significant genetic variety was found, including 25 antibiotic resistance genes. A phylogenetic study placed L. plantarum HMX2 among closely related bacteria, emphasizing its potential for probiotic and food safety applications. The genomic investigation of L. plantarum showed essential genes, including plnJK and plnEF, which contribute to antibacterial action against foodborne pathogens. Furthermore, genes such as MurA, Alr, and MprF improve food safety and probiotic potential by promoting bacterial survival under stress conditions in food and the gastrointestinal tract. This study introduces the new genomic features of L. plantarum HMX2 about specific genetics and its possibility of relevant uses in food security and technologies. These findings of specific genes involved in antimicrobial activity provide fresh possibilities for exploiting this strain in forming probiotic preparations and food preservation methods. The future research should focus on the experimental validation of antibiotic resistance genes, comparative genomics to investigate functional diversity, and the development of novel antimicrobial therapies that take advantage of L. plantarum's capabilities.202439611087
9066190.9885VRprofile: gene-cluster-detection-based profiling of virulence and antibiotic resistance traits encoded within genome sequences of pathogenic bacteria. VRprofile is a Web server that facilitates rapid investigation of virulence and antibiotic resistance genes, as well as extends these trait transfer-related genetic contexts, in newly sequenced pathogenic bacterial genomes. The used backend database MobilomeDB was firstly built on sets of known gene cluster loci of bacterial type III/IV/VI/VII secretion systems and mobile genetic elements, including integrative and conjugative elements, prophages, class I integrons, IS elements and pathogenicity/antibiotic resistance islands. VRprofile is thus able to co-localize the homologs of these conserved gene clusters using HMMer or BLASTp searches. With the integration of the homologous gene cluster search module with a sequence composition module, VRprofile has exhibited better performance for island-like region predictions than the other widely used methods. In addition, VRprofile also provides an integrated Web interface for aligning and visualizing identified gene clusters with MobilomeDB-archived gene clusters, or a variety set of bacterial genomes. VRprofile might contribute to meet the increasing demands of re-annotations of bacterial variable regions, and aid in the real-time definitions of disease-relevant gene clusters in pathogenic bacteria of interest. VRprofile is freely available at http://bioinfo-mml.sjtu.edu.cn/VRprofile.201828077405