UTILIZE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
908500.9951Mode of action and resistance studies unveil new roles for tropodithietic acid as an anticancer agent and the γ-glutamyl cycle as a proton sink. While we have come to appreciate the architectural complexity of microbially synthesized secondary metabolites, far less attention has been paid to linking their structural features with possible modes of action. This is certainly the case with tropodithietic acid (TDA), a broad-spectrum antibiotic generated by marine bacteria that engage in dynamic symbioses with microscopic algae. TDA promotes algal health by killing unwanted marine pathogens; however, its mode of action (MoA) and significance for the survival of an algal-bacterial miniecosystem remains unknown. Using cytological profiling, we herein determine the MoA of TDA and surprisingly find that it acts by a mechanism similar to polyether antibiotics, which are structurally highly divergent. We show that like polyether drugs, TDA collapses the proton motive force by a proton antiport mechanism, in which extracellular protons are exchanged for cytoplasmic cations. The α-carboxy-tropone substructure is ideal for this purpose as the proton can be carried on the carboxyl group, whereas the basicity of the tropylium ion facilitates cation export. Based on similarities to polyether anticancer agents we have further examined TDA's cytotoxicity and find it to exhibit potent, broad-spectrum anticancer activities. These results highlight the power of MoA-profiling technologies in repurposing old drugs for new targets. In addition, we identify an operon that confers TDA resistance to the producing marine bacteria. Bioinformatic and biochemical analyses of these genes lead to a previously unknown metabolic link between TDA/acid resistance and the γ-glutamyl cycle. The implications of this resistance mechanism in the context of the algal-bacterial symbiosis are discussed.201626802120
819310.9951Sinorhizobium meliloti Functions Required for Resistance to Antimicrobial NCR Peptides and Bacteroid Differentiation. Legumes of the Medicago genus have a symbiotic relationship with the bacterium Sinorhizobium meliloti and develop root nodules housing large numbers of intracellular symbionts. Members of the nodule-specific cysteine-rich peptide (NCR) family induce the endosymbionts into a terminal differentiated state. Individual cationic NCRs are antimicrobial peptides that have the capacity to kill the symbiont, but the nodule cell environment prevents killing. Moreover, the bacterial broad-specificity peptide uptake transporter BacA and exopolysaccharides contribute to protect the endosymbionts against the toxic activity of NCRs. Here, we show that other S. meliloti functions participate in the protection of the endosymbionts; these include an additional broad-specificity peptide uptake transporter encoded by the yejABEF genes and lipopolysaccharide modifications mediated by lpsB and lpxXL, as well as rpoH1, encoding a stress sigma factor. Strains with mutations in these genes show a strain-specific increased sensitivity profile against a panel of NCRs and form nodules in which bacteroid differentiation is affected. The lpsB mutant nodule bacteria do not differentiate, the lpxXL and rpoH1 mutants form some seemingly fully differentiated bacteroids, although most of the nodule bacteria are undifferentiated, while the yejABEF mutants form hypertrophied but nitrogen-fixing bacteroids. The nodule bacteria of all the mutants have a strongly enhanced membrane permeability, which is dependent on the transport of NCRs to the endosymbionts. Our results suggest that S. meliloti relies on a suite of functions, including peptide transporters, the bacterial envelope structures, and stress response regulators, to resist the aggressive assault of NCR peptides in the nodule cells. IMPORTANCE The nitrogen-fixing symbiosis of legumes with rhizobium bacteria has a predominant ecological role in the nitrogen cycle and has the potential to provide the nitrogen required for plant growth in agriculture. The host plants allow the rhizobia to colonize specific symbiotic organs, the nodules, in large numbers in order to produce sufficient reduced nitrogen for the plants' needs. Some legumes, including Medicago spp., produce massively antimicrobial peptides to keep this large bacterial population in check. These peptides, known as NCRs, have the potential to kill the rhizobia, but in nodules, they rather inhibit the division of the bacteria, which maintain a high nitrogen-fixing activity. In this study, we show that the tempering of the antimicrobial activity of the NCR peptides in the Medicago symbiont Sinorhizobium meliloti is multifactorial and requires the YejABEF peptide transporter, the lipopolysaccharide outer membrane, and the stress response regulator RpoH1.202134311575
825920.9951Secondary Metabolite Transcriptomic Pipeline (SeMa-Trap), an expression-based exploration tool for increased secondary metabolite production in bacteria. For decades, natural products have been used as a primary resource in drug discovery pipelines to find new antibiotics, which are mainly produced as secondary metabolites by bacteria. The biosynthesis of these compounds is encoded in co-localized genes termed biosynthetic gene clusters (BGCs). However, BGCs are often not expressed under laboratory conditions. Several genetic manipulation strategies have been developed in order to activate or overexpress silent BGCs. Significant increases in production levels of secondary metabolites were indeed achieved by modifying the expression of genes encoding regulators and transporters, as well as genes involved in resistance or precursor biosynthesis. However, the abundance of genes encoding such functions within bacterial genomes requires prioritization of the most promising ones for genetic manipulation strategies. Here, we introduce the 'Secondary Metabolite Transcriptomic Pipeline' (SeMa-Trap), a user-friendly web-server, available at https://sema-trap.ziemertlab.com. SeMa-Trap facilitates RNA-Seq based transcriptome analyses, finds co-expression patterns between certain genes and BGCs of interest, and helps optimize the design of comparative transcriptomic analyses. Finally, SeMa-Trap provides interactive result pages for each BGC, allowing the easy exploration and comparison of expression patterns. In summary, SeMa-Trap allows a straightforward prioritization of genes that could be targeted via genetic engineering approaches to (over)express BGCs of interest.202235580059
935830.9951Single nucleotide switches confer bacteriophage resistance to Pseudomonas protegens. Phage therapy offers a promising strategy against bacterial pathogens in medicine and agriculture, but the rise of phage-resistant bacteria presents a significant challenge to its sustainability. Here, we used an environmental model bacterium, Pseudomonas protegens CHA0, to investigate phage resistance mechanisms in laboratory conditions through genomic analysis of four phage-resistant variants (C2, C4, C17, C18). Whole-genome sequencing revealed frequent deletions, insertions, and single nucleotide substitutions, particularly in genes encoding enzymes involved in cell surface modifications. The T428P mutation in AlgC, a phosphoglucomutase, and the P229T substitution in YkcC, a glycosyltransferase, each conferred resistance by altering phage receptor accessibility while preserving bacterial fitness. These findings emphasize that subtle mutations in surface-modifying enzymes enable P. protegens to evolve resistance to bacteriophages without compromising their ecological performance.202541112141
917940.9951A detailed landscape of CRISPR-Cas-mediated plant disease and pest management. Genome editing technology has rapidly evolved to knock-out genes, create targeted genetic variation, install precise insertion/deletion and single nucleotide changes, and perform large-scale alteration. The flexible and multipurpose editing technologies have started playing a substantial role in the field of plant disease management. CRISPR-Cas has reduced many limitations of earlier technologies and emerged as a versatile toolbox for genome manipulation. This review summarizes the phenomenal progress of the use of the CRISPR toolkit in the field of plant pathology. CRISPR-Cas toolbox aids in the basic studies on host-pathogen interaction, in identifying virulence genes in pathogens, deciphering resistance and susceptibility factors in host plants, and engineering host genome for developing resistance. We extensively reviewed the successful genome editing applications for host plant resistance against a wide range of biotic factors, including viruses, fungi, oomycetes, bacteria, nematodes, insect pests, and parasitic plants. Recent use of CRISPR-Cas gene drive to suppress the population of pathogens and pests has also been discussed. Furthermore, we highlight exciting new uses of the CRISPR-Cas system as diagnostic tools, which rapidly detect pathogenic microorganism. This comprehensive yet concise review discusses innumerable strategies to reduce the burden of crop protection.202235835393
921950.9950Knowing and Naming: Phage Annotation and Nomenclature for Phage Therapy. Bacteriophages, or phages, are viruses that infect bacteria shaping microbial communities and ecosystems. They have gained attention as potential agents against antibiotic resistance. In phage therapy, lytic phages are preferred for their bacteria killing ability, while temperate phages, which can transfer antibiotic resistance or toxin genes, are avoided. Selection relies on plaque morphology and genome sequencing. This review outlines annotating genomes, identifying critical genomic features, and assigning functional labels to protein-coding sequences. These annotations prevent the transfer of unwanted genes, such as antimicrobial resistance or toxin genes, during phage therapy. Additionally, it covers International Committee on Taxonomy of Viruses (ICTV)-an established phage nomenclature system for simplified classification and communication. Accurate phage genome annotation and nomenclature provide insights into phage-host interactions, replication strategies, and evolution, accelerating our understanding of the diversity and evolution of phages and facilitating the development of phage-based therapies.202337932119
827160.9950Genome-Wide Sensitivity Analysis of the Microsymbiont Sinorhizobium meliloti to Symbiotically Important, Defensin-Like Host Peptides. The model legume species Medicago truncatula expresses more than 700 nodule-specific cysteine-rich (NCR) signaling peptides that mediate the differentiation of Sinorhizobium meliloti bacteria into nitrogen-fixing bacteroids. NCR peptides are essential for a successful symbiosis in legume plants of the inverted-repeat-lacking clade (IRLC) and show similarity to mammalian defensins. In addition to signaling functions, many NCR peptides exhibit antimicrobial activity in vitro and in vivo Bacterial resistance to these antimicrobial activities is likely to be important for symbiosis. However, the mechanisms used by S. meliloti to resist antimicrobial activity of plant peptides are poorly understood. To address this, we applied a global genetic approach using transposon mutagenesis followed by high-throughput sequencing (Tn-seq) to identify S. meliloti genes and pathways that increase or decrease bacterial competitiveness during exposure to the well-studied cationic NCR247 peptide and also to the unrelated model antimicrobial peptide polymyxin B. We identified 78 genes and several diverse pathways whose interruption alters S. meliloti resistance to NCR247. These genes encode the following: (i) cell envelope polysaccharide biosynthesis and modification proteins, (ii) inner and outer membrane proteins, (iii) peptidoglycan (PG) effector proteins, and (iv) non-membrane-associated factors such as transcriptional regulators and ribosome-associated factors. We describe a previously uncharacterized yet highly conserved peptidase, which protects S. meliloti from NCR247 and increases competitiveness during symbiosis. Additionally, we highlight a considerable number of uncharacterized genes that provide the basis for future studies to investigate the molecular basis of symbiotic development as well as chronic pathogenic interactions.IMPORTANCE Soil rhizobial bacteria enter into an ecologically and economically important symbiotic interaction with legumes, in which they differentiate into physiologically distinct bacteroids that provide essential ammonia to the plant in return for carbon sources. Plant signal peptides are essential and specific to achieve these physiological changes. These peptides show similarity to mammalian defensin peptides which are part of the first line of defense to control invading bacterial populations. A number of these legume peptides are indeed known to possess antimicrobial activity, and so far, only the bacterial BacA protein is known to protect rhizobial bacteria against their antimicrobial action. This study identified numerous additional bacterial factors that mediate protection and belong to diverse biological pathways. Our results significantly contribute to our understanding of the molecular roles of bacterial factors during legume symbioses and, second, provide insights into the mechanisms that pathogenic bacteria may use to resist the antimicrobial effects of defensins during infections.201728765224
923170.9950CRISPR: new horizons in phage resistance and strain identification. Bacteria have been widely used as starter cultures in the food industry, notably for the fermentation of milk into dairy products such as cheese and yogurt. Lactic acid bacteria used in food manufacturing, such as lactobacilli, lactococci, streptococci, Leuconostoc, pediococci, and bifidobacteria, are selectively formulated based on functional characteristics that provide idiosyncratic flavor and texture attributes, as well as their ability to withstand processing and manufacturing conditions. Unfortunately, given frequent viral exposure in industrial environments, starter culture selection and development rely on defense systems that provide resistance against bacteriophage predation, including restriction-modification, abortive infection, and recently discovered CRISPRs (clustered regularly interspaced short palindromic repeats). CRISPRs, together with CRISPR-associated genes (cas), form the CRISPR/Cas immune system, which provides adaptive immunity against phages and invasive genetic elements. The immunization process is based on the incorporation of short DNA sequences from virulent phages into the CRISPR locus. Subsequently, CRISPR transcripts are processed into small interfering RNAs that guide a multifunctional protein complex to recognize and cleave matching foreign DNA. Hypervariable CRISPR loci provide insights into the phage and host population dynamics, and new avenues for enhanced phage resistance and genetic typing and tagging of industrial strains.201222224556
826180.9950Studies on Bd0934 and Bd3507, Two Secreted Nucleases from Bdellovibrio bacteriovorus, Reveal Sequential Release of Nucleases during the Predatory Cycle. Bdellovibrio bacteriovorus is an obligate predatory bacterium that invades and kills a broad range of Gram-negative prey cells, including human pathogens. Its potential therapeutic application has been the subject of increased research interest in recent years. However, an improved understanding of the fundamental molecular aspects of the predatory life cycle is crucial for developing this bacterium as a "living antibiotic." During intracellular growth, B. bacteriovorus secretes an arsenal of hydrolases, which digest the content of the host cell to provide growth nutrients for the predator, e.g., prey DNA is completely degraded by the nucleases. Here, we have, on a genetic and molecular level, characterized two secreted DNases from B. bacteriovorus, Bd0934 and Bd3507, and determined the temporal expression profile of other putative secreted nucleases. We conclude that Bd0934 and Bd3507 are likely a part of the predatosome but are not essential for the predation, host-independent growth, prey biofilm degradation, and self-biofilm formation. The detailed temporal expression analysis of genes encoding secreted nucleases revealed that these enzymes are produced in a sequential orchestrated manner. This work contributes to our understanding of the sequential breakdown of the prey nucleic acid by the nucleases secreted during the predatory life cycle of B. bacteriovorusIMPORTANCE Antibiotic resistance is a major global concern with few available new means to combat it. From a therapeutic perspective, predatory bacteria constitute an interesting tool. They not only eliminate the pathogen but also reduce the overall pool of antibiotic resistance genes through secretion of nucleases and complete degradation of exogenous DNA. Molecular knowledge of how these secreted DNases act will give us further insight into how antibiotic resistance, and the spread thereof, can be limited through the action of predatory bacteria.202032601070
863390.9950Bacterial interactions with arsenic: Metabolic pathways, resistance mechanisms, and bioremediation approaches. Arsenic contamination in natural waters is one of the biggest threats to human health, mainly due to its carcinogenic potential. Given its toxicity, nearly all organisms have evolved to develop an arsenic resistance mechanism. Conventional techniques of arsenic remediation suffer from various limitations of their applicability, cost and/or chemical intensive nature. In past few decades, bioremediation has emerged as a potential alternative to the conventional techniques. Microbial bioremediation, bacteria in particular, offers an eco-friendly and sustainable alternative, owing to its inherent metabolic capabilities to transform, immobilize or volatilize arsenic. Diverse biochemical pathways involving oxidation of As(III) to As(V), reduction of As(V) under anaerobic respiration or detoxification, methylation and demethylation, bioleaching and biomineralization into insoluble forms are essential mechanisms for arsenic remediation. These transformations, detoxification and resistance are regulated by specific genetic systems, including the ars operon, aio, arr and arsM, accessory genes such as arsR, arsB, acr3, arsC and arsP. The metabolic regulation of arsenic detoxification involves complex cofactor-dependent enzyme systems and environmental signal-responsive transcriptional control. Integrated approaches such as immobilization of bacteria on biochar or their encapsulation have also been known to enhance stability, reusability and stress tolerance. However, bioremediation is a very complex process due to the interrelationship of various influences such as, presence of specific microorganisms, nutrients and environmental factors. Therefore, it is of utmost importance to understand the bacterial interactions with arsenic for the development of bioremediation technologies. This review article tries to discuss the current status of arsenic bioremediation using bacteria, its field applications, challenges and future perspectives. It also includes the strengths, weaknesses, opportunities, threats (SWOT) analysis to assess the merits and demerits of using bacteria for bioremediation of arsenic.202541043264
9216100.9950Mitigating Antibiotic Resistance: The Utilization of CRISPR Technology in Detection. Antibiotics, celebrated as some of the most significant pharmaceutical breakthroughs in medical history, are capable of eliminating or inhibiting bacterial growth, offering a primary defense against a wide array of bacterial infections. However, the rise in antimicrobial resistance (AMR), driven by the widespread use of antibiotics, has evolved into a widespread and ominous threat to global public health. Thus, the creation of efficient methods for detecting resistance genes and antibiotics is imperative for ensuring food safety and safeguarding human health. The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) systems, initially recognized as an adaptive immune defense mechanism in bacteria and archaea, have unveiled their profound potential in sensor detection, transcending their notable gene-editing applications. CRISPR/Cas technology employs Cas enzymes and guides RNA to selectively target and cleave specific DNA or RNA sequences. This review offers an extensive examination of CRISPR/Cas systems, highlighting their unique attributes and applications in antibiotic detection. It outlines the current utilization and progress of the CRISPR/Cas toolkit for identifying both nucleic acid (resistance genes) and non-nucleic acid (antibiotic micromolecules) targets within the field of antibiotic detection. In addition, it examines the current challenges, such as sensitivity and specificity, and future opportunities, including the development of point-of-care diagnostics, providing strategic insights to facilitate the curbing and oversight of antibiotic-resistance proliferation.202439727898
8281110.9950Exploring multiple drug and herbicide resistance in plants--spotlight on transporter proteins. Multiple drug resistance (MDR) has been extensively studied in bacteria, yeast, and mammalian cells due to the great clinical significance of this problem. MDR is not well studied in plant systems, although plant genomes contain large numbers of genes encoding putative MDR transporters (MDRTs). Biochemical pathways in the chloroplast are the targets of many herbicides and antibiotics, yet very little data is available regarding mechanisms of drug transport across the chloroplast membrane. MDRTs typically have broad substrate specificities, and may transport essential compounds and metabolites in addition to toxins. Indeed, plant transporters belonging to MDR families have also been implicated in the transport of a wide variety of compounds including auxins, flavonoids, glutathione conjugates, metal chelators, herbicides and antibiotics, although definitive evidence that a single transporter is capable of moving both toxins and metabolites has not yet been provided. Current understanding of plant MDR can be expanded via the characterization of candidate genes, especially MDRTs predicted to localize to the chloroplast, and also via traditional forward genetic approaches. Novel plant MDRTs have the potential to become endogenous selectable markers, aid in phytoremediation strategies, and help us to understand how plants have evolved to cope with toxins in their environment.201121421361
9235120.9949Investigating the Genomic Background of CRISPR-Cas Genomes for CRISPR-Based Antimicrobials. CRISPR-Cas systems are an adaptive immunity that protects prokaryotes against foreign genetic elements. Genetic templates acquired during past infection events enable DNA-interacting enzymes to recognize foreign DNA for destruction. Due to the programmability and specificity of these genetic templates, CRISPR-Cas systems are potential alternative antibiotics that can be engineered to self-target antimicrobial resistance genes on the chromosome or plasmid. However, several fundamental questions remain to repurpose these tools against drug-resistant bacteria. For endogenous CRISPR-Cas self-targeting, antimicrobial resistance genes and functional CRISPR-Cas systems have to co-occur in the target cell. Furthermore, these tools have to outplay DNA repair pathways that respond to the nuclease activities of Cas proteins, even for exogenous CRISPR-Cas delivery. Here, we conduct a comprehensive survey of CRISPR-Cas genomes. First, we address the co-occurrence of CRISPR-Cas systems and antimicrobial resistance genes in the CRISPR-Cas genomes. We show that the average number of these genes varies greatly by the CRISPR-Cas type, and some CRISPR-Cas types (IE and IIIA) have over 20 genes per genome. Next, we investigate the DNA repair pathways of these CRISPR-Cas genomes, revealing that the diversity and frequency of these pathways differ by the CRISPR-Cas type. The interplay between CRISPR-Cas systems and DNA repair pathways is essential for the acquisition of new spacers in CRISPR arrays. We conduct simulation studies to demonstrate that the efficiency of these DNA repair pathways may be inferred from the time-series patterns in the RNA structure of CRISPR repeats. This bioinformatic survey of CRISPR-Cas genomes elucidates the necessity to consider multifaceted interactions between different genes and systems, to design effective CRISPR-based antimicrobials that can specifically target drug-resistant bacteria in natural microbial communities.202235692726
9148130.9949Biofilms as Battlefield Armor for Bacteria against Antibiotics: Challenges and Combating Strategies. Bacterial biofilms are formed by communities, which are encased in a matrix of extracellular polymeric substances (EPS). Notably, bacteria in biofilms display a set of 'emergent properties' that vary considerably from free-living bacterial cells. Biofilms help bacteria to survive under multiple stressful conditions such as providing immunity against antibiotics. Apart from the provision of multi-layered defense for enabling poor antibiotic absorption and adaptive persistor cells, biofilms utilize their extracellular components, e.g., extracellular DNA (eDNA), chemical-like catalase, various genes and their regulators to combat antibiotics. The response of biofilms depends on the type of antibiotic that comes into contact with biofilms. For example, excessive production of eDNA exerts resistance against cell wall and DNA targeting antibiotics and the release of antagonist chemicals neutralizes cell membrane inhibitors, whereas the induction of protein and folic acid antibiotics inside cells is lowered by mutating genes and their regulators. Here, we review the current state of knowledge of biofilm-based resistance to various antibiotic classes in bacteria and genes responsible for biofilm development, and the key role of quorum sensing in developing biofilms and antibiotic resistance is also discussed. In this review, we also highlight new and modified techniques such as CRISPR/Cas, nanotechnology and bacteriophage therapy. These technologies might be useful to eliminate pathogens residing in biofilms by combating biofilm-induced antibiotic resistance and making this world free of antibiotic resistance.202337894253
768140.9949The multifaceted roles of phosphoethanolamine-modified lipopolysaccharides: from stress response and virulence to cationic antimicrobial resistance. SUMMARYLipopolysaccharides (LPS) are an integral part of the outer membrane of Gram-negative bacteria and play essential structural and functional roles in maintaining membrane integrity as well as in stress response and virulence. LPS comprises a membrane-anchored lipid A group, a sugar-based core region, and an O-antigen formed by repeating oligosaccharide units. 3-Deoxy-D-manno-octulosonic acid-lipid A (Kdo(2)-lipid A) is the minimum LPS component required for bacterial survival. While LPS modifications are not essential, they play multifaceted roles in stress response and host-pathogen interactions. Gram-negative bacteria encode several distinct LPS-modifying phosphoethanolamine transferases (PET) that add phosphoethanolamine (pEtN) to lipid A or the core region of LPS. The pet genes differ in their genomic locations, regulation mechanisms, and modification targets of the encoded enzyme, consistent with their various roles in different growth niches and under varied stress conditions. The discovery of mobile colistin resistance genes, which represent lipid A-modifying pet genes that are encoded on mobile elements and associated with resistance to the last-resort antibiotic colistin, has led to substantial interest in PETs and pEtN-modified LPS over the last decade. Here, we will review the current knowledge of the functional diversity of pEtN-based LPS modifications, including possible roles in niche-specific fitness advantages and resistance to host-produced antimicrobial peptides, and discuss how the genetic and structural diversities of PETs may impact their function. An improved understanding of the PET group will further enhance our comprehension of the stress response and virulence of Gram-negative bacteria and help contextualize host-pathogen interactions.202439382292
8262150.9949Advances in CRISPR-Cas systems for human bacterial disease. Prokaryotic adaptive immune systems called CRISPR-Cas systems have transformed genome editing by allowing for precise genetic alterations through targeted DNA cleavage. This system comprises CRISPR-associated genes and repeat-spacer arrays, which generate RNA molecules that guide the cleavage of invading genetic material. CRISPR-Cas is classified into Class 1 (multi-subunit effectors) and Class 2 (single multi-domain effectors). Its applications span combating antimicrobial resistance (AMR), targeting antibiotic resistance genes (ARGs), resensitizing bacteria to antibiotics, and preventing horizontal gene transfer (HGT). CRISPR-Cas3, for example, effectively degrades plasmids carrying resistance genes, providing a precise method to disarm bacteria. In the context of ESKAPE pathogens, CRISPR technology can resensitize bacteria to antibiotics by targeting specific resistance genes. Furthermore, in tuberculosis (TB) research, CRISPR-based tools enhance diagnostic accuracy and facilitate precise genetic modifications for studying Mycobacterium tuberculosis. CRISPR-based diagnostics, leveraging Cas endonucleases' collateral cleavage activity, offer highly sensitive pathogen detection. These advancements underscore CRISPR's transformative potential in addressing AMR and enhancing infectious disease management.202439266183
8243160.9949Rooteomics: the challenge of discovering plant defense-related proteins in roots. In recent years, a strong emphasis has been given in deciphering the function of genes unraveled by the completion of several genome sequencing projects. In plants, functional genomics has been massively used in order to search for gene products of agronomic relevance. As far as root-pathogen interactions are concerned, several genes are recognized to provide tolerance/resistance against potential invaders. However, very few proteins have been identified by using current proteomic approaches. One of the major drawbacks for the successful analysis of root proteomes is the inherent characteristics of this tissue, which include low volume content and high concentration of interfering substances such as pigments and phenolic compounds. The proteome analysis of plant-pathogen interactions provides important information about the global proteins expressed in roots in response to biotic stresses. Moreover, several pathogenic proteins superimpose the plant proteome and can be identified and used as targets for the control of viruses, bacteria, fungi and nematode pathogens. The present review focuses on advances in different proteomic strategies dedicated to the challenging analysis of plant defense proteins expressed during bacteria-, fungi- and nematode-root interactions. Recent developments, limitations of the current techniques, and technological perspectives for root proteomics aiming at the identification of resistance-related proteins are discussed.200818393883
9220170.9949Pathogen virulence genes: Advances, challenges and future directions in infectious disease research (Review). Pathogens, including bacteria, viruses and fungi, employ virulence genes to invade their hosts, circumvent immunity and induce diseases. The present review examines the categorization and regulatory mechanisms of virulence genes and their co‑evolution with antimicrobial resistance. The present review focused on the fimbrial adhesion H adhesion gene of Escherichia coli, the spike protein gene of severe acute respiratory syndrome coronavirus 2 and the enhanced filamentous growth protein 1 (EFG1) morphological transition gene of Candida albicans, as well as their roles in host adhesion, immune evasion and tissue damage. Application of technologies, including multi‑omics integration, artificial intelligence and CRISPR‑based genome editing, is discussed in the context of precision diagnostics, targeted therapy and vaccine development. By elucidating pathogen adaptation dynamics and host‑pathogen interactions, the present review offers a basis for reducing the global burden of drug‑resistant infections through improved surveillance and personalized interventions.202540849821
9172180.9949These Are the Genes You're Looking For: Finding Host Resistance Genes. Humanity's ongoing struggle with new, re-emerging and endemic infectious diseases serves as a frequent reminder of the need to understand host-pathogen interactions. Recent advances in genomics have dramatically advanced our understanding of how genetics contributes to host resistance or susceptibility to bacterial infection. Here we discuss current trends in defining host-bacterial interactions at the genome-wide level, including screens that harness CRISPR/Cas9 genome editing, natural genetic variation, proteomics, and transcriptomics. We report on the merits, limitations, and findings of these innovative screens and discuss their complementary nature. Finally, we speculate on future innovation as we continue to progress through the postgenomic era and towards deeper mechanistic insight and clinical applications.202133004258
9185190.9949The Age of Phage: Friend or Foe in the New Dawn of Therapeutic and Biocontrol Applications? Extended overuse and misuse of antibiotics and other antibacterial agents has resulted in an antimicrobial resistance crisis. Bacteriophages, viruses that infect bacteria, have emerged as a legitimate alternative antibacterial agent with a wide scope of applications which continue to be discovered and refined. However, the potential of some bacteriophages to aid in the acquisition, maintenance, and dissemination of negatively associated bacterial genes, including resistance and virulence genes, through transduction is of concern and requires deeper understanding in order to be properly addressed. In particular, their ability to interact with mobile genetic elements such as plasmids, genomic islands, and integrative conjugative elements (ICEs) enables bacteriophages to contribute greatly to bacterial evolution. Nonetheless, bacteriophages have the potential to be used as therapeutic and biocontrol agents within medical, agricultural, and food processing settings, against bacteria in both planktonic and biofilm environments. Additionally, bacteriophages have been deployed in developing rapid, sensitive, and specific biosensors for various bacterial targets. Intriguingly, their bioengineering capabilities show great promise in improving their adaptability and effectiveness as biocontrol and detection tools. This review aims to provide a balanced perspective on bacteriophages by outlining advantages, challenges, and future steps needed in order to boost their therapeutic and biocontrol potential, while also providing insight on their potential role in contributing to bacterial evolution and survival.202133670836