USEFUL - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
974400.9985PARGT: a software tool for predicting antimicrobial resistance in bacteria. With the ever-increasing availability of whole-genome sequences, machine-learning approaches can be used as an alternative to traditional alignment-based methods for identifying new antimicrobial-resistance genes. Such approaches are especially helpful when pathogens cannot be cultured in the lab. In previous work, we proposed a game-theory-based feature evaluation algorithm. When using the protein characteristics identified by this algorithm, called 'features' in machine learning, our model accurately identified antimicrobial resistance (AMR) genes in Gram-negative bacteria. Here we extend our study to Gram-positive bacteria showing that coupling game-theory-identified features with machine learning achieved classification accuracies between 87% and 90% for genes encoding resistance to the antibiotics bacitracin and vancomycin. Importantly, we present a standalone software tool that implements the game-theory algorithm and machine-learning model used in these studies.202032620856
974310.9985Simultaneous Detection of Antibiotic Resistance Genes on Paper-Based Chip Using [Ru(phen)(2)dppz](2+) Turn-on Fluorescence Probe. Antibiotic resistance, the ability of some bacteria to resist antibiotic drugs, has been a major global health burden due to the extensive use of antibiotic agents. Antibiotic resistance is encoded via particular genes; hence the specific detection of these genes is necessary for diagnosis and treatment of antibiotic resistant cases. Conventional methods for monitoring antibiotic resistance genes require the sample to be transported to a central laboratory for tedious and sophisticated tests, which is grueling and time-consuming. We developed a paper-based chip, integrated with loop-mediated isothermal amplification (LAMP) and the "light switch" molecule [Ru(phen)(2)dppz](2+), to conduct turn-on fluorescent detection of antibiotic resistance genes. In this assay, the amplification reagents can be embedded into test spots of the chip in advance, thus simplifying the detection procedure. [Ru(phen)(2)dppz](2+) was applied to intercalate into amplicons for product analysis, enabling this assay to be operated in a wash-free format. The paper-based detection device exhibited a limit of detection (LOD) as few as 100 copies for antibiotic resistance genes. Meanwhile, it could detect antibiotic resistance genes from various bacteria. Noticeably, the approach can be applied to other genes besides antibiotic resistance genes by simply changing the LAMP primers. Therefore, this paper-based chip has the potential for point-of-care (POC) applications to detect various gene samples, especially in resource-limited conditions.201829323478
907420.9985BacAnt: A Combination Annotation Server for Bacterial DNA Sequences to Identify Antibiotic Resistance Genes, Integrons, and Transposable Elements. Whole genome sequencing (WGS) of bacteria has become a routine method in diagnostic laboratories. One of the clinically most useful advantages of WGS is the ability to predict antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs) in bacterial sequences. This allows comprehensive investigations of such genetic features but can also be used for epidemiological studies. A plethora of software programs have been developed for the detailed annotation of bacterial DNA sequences, such as rapid annotation using subsystem technology (RAST), Resfinder, ISfinder, INTEGRALL and The Transposon Registry. Unfortunately, to this day, a reliable annotation tool of the combination of ARGs and MGEs is not available, and the generation of genbank files requires much manual input. Here, we present a new webserver which allows the annotation of ARGs, integrons and transposable elements at the same time. The pipeline generates genbank files automatically, which are compatible with Easyfig for comparative genomic analysis. Our BacAnt code and standalone software package are available at https://github.com/xthua/bacant with an accompanying web application at http://bacant.net.202134367079
974530.9984Analysis of Identification Method for Bacterial Species and Antibiotic Resistance Genes Using Optical Data From DNA Oligomers. Bacterial antibiotic resistance is becoming a significant health threat, and rapid identification of antibiotic-resistant bacteria is essential to save lives and reduce the spread of antibiotic resistance. This paper analyzes the ability of machine learning algorithms (MLAs) to process data from a novel spectroscopic diagnostic device to identify antibiotic-resistant genes and bacterial species by comparison to available bacterial DNA sequences. Simulation results show that the algorithms attain from 92% accuracy (for genes) up to 99% accuracy (for species). This novel approach identifies genes and species by optically reading the percentage of A, C, G, T bases in 1000s of short 10-base DNA oligomers instead of relying on conventional DNA sequencing in which the sequence of bases in long oligomers provides genetic information. The identification algorithms are robust in the presence of simulated random genetic mutations and simulated random experimental errors. Thus, these algorithms can be used to identify bacterial species, to reveal antibiotic resistance genes, and to perform other genomic analyses. Some MLAs evaluated here are shown to be better than others at accurate gene identification and avoidance of false negative identification of antibiotic resistance.202032153541
511140.9984Antimicrobial Resistance Prediction for Gram-Negative Bacteria via Game Theory-Based Feature Evaluation. The increasing prevalence of antimicrobial-resistant bacteria drives the need for advanced methods to identify antimicrobial-resistance (AMR) genes in bacterial pathogens. With the availability of whole genome sequences, best-hit methods can be used to identify AMR genes by differentiating unknown sequences with known AMR sequences in existing online repositories. Nevertheless, these methods may not perform well when identifying resistance genes with sequences having low sequence identity with known sequences. We present a machine learning approach that uses protein sequences, with sequence identity ranging between 10% and 90%, as an alternative to conventional DNA sequence alignment-based approaches to identify putative AMR genes in Gram-negative bacteria. By using game theory to choose which protein characteristics to use in our machine learning model, we can predict AMR protein sequences for Gram-negative bacteria with an accuracy ranging from 93% to 99%. In order to obtain similar classification results, identity thresholds as low as 53% were required when using BLASTp.201931597945
511250.9983Genome-Based Prediction of Bacterial Antibiotic Resistance. Clinical microbiology has long relied on growing bacteria in culture to determine antimicrobial susceptibility profiles, but the use of whole-genome sequencing for antibiotic susceptibility testing (WGS-AST) is now a powerful alternative. This review discusses the technologies that made this possible and presents results from recent studies to predict resistance based on genome sequences. We examine differences between calling antibiotic resistance profiles by the simple presence or absence of previously known genes and single-nucleotide polymorphisms (SNPs) against approaches that deploy machine learning and statistical models. Often, the limitations to genome-based prediction arise from limitations of accuracy of culture-based AST in addition to an incomplete knowledge of the genetic basis of resistance. However, we need to maintain phenotypic testing even as genome-based prediction becomes more widespread to ensure that the results do not diverge over time. We argue that standardization of WGS-AST by challenge with consistently phenotyped strain sets of defined genetic diversity is necessary to compare the efficacy of methods of prediction of antibiotic resistance based on genome sequences.201930381421
839960.9983SYN-View: A Phylogeny-Based Synteny Exploration Tool for the Identification of Gene Clusters Linked to Antibiotic Resistance. The development of new antibacterial drugs has become one of the most important tasks of the century in order to overcome the posing threat of drug resistance in pathogenic bacteria. Many antibiotics originate from natural products produced by various microorganisms. Over the last decades, bioinformatical approaches have facilitated the discovery and characterization of these small compounds using genome mining methodologies. A key part of this process is the identification of the most promising biosynthetic gene clusters (BGCs), which encode novel natural products. In 2017, the Antibiotic Resistant Target Seeker (ARTS) was developed in order to enable an automated target-directed genome mining approach. ARTS identifies possible resistant target genes within antibiotic gene clusters, in order to detect promising BGCs encoding antibiotics with novel modes of action. Although ARTS can predict promising targets based on multiple criteria, it provides little information about the cluster structures of possible resistant genes. Here, we present SYN-view. Based on a phylogenetic approach, SYN-view allows for easy comparison of gene clusters of interest and distinguishing genes with regular housekeeping functions from genes functioning as antibiotic resistant targets. Our aim is to implement our proposed method into the ARTS web-server, further improving the target-directed genome mining strategy of the ARTS pipeline.202033396183
840570.9982Mapping Major Disease Resistance Genes in Soybean by Genome-Wide Association Studies. Soybean is one of the most valuable agricultural crops in the world. Besides, this legume is constantly attacked by a wide range of pathogens (fungi, bacteria, viruses, and nematodes) compromising yield and increasing production costs. One of the major disease management strategies is the genetic resistance provided by single genes and quantitative trait loci (QTL). Identifying the genomic regions underlying the resistance against these pathogens on soybean is one of the first steps performed by molecular breeders. In the past, genetic mapping studies have been widely used to discover these genomic regions. However, over the last decade, advances in next-generation sequencing technologies and their subsequent cost decreasing led to the development of cost-effective approaches to high-throughput genotyping. Thus, genome-wide association studies applying thousands of SNPs in large sets composed of diverse soybean accessions have been successfully done. In this chapter, a comprehensive review of the majority of GWAS for soybean diseases published since this approach was developed is provided. Important diseases caused by Heterodera glycines, Phytophthora sojae, and Sclerotinia sclerotiorum have been the focus of the several GWAS. However, other bacterial and fungi diseases also have been targets of GWAS. As such, this GWAS summary can serve as a guide for future studies of these diseases. The protocol begins by describing several considerations about the pathogens and bringing different procedures of molecular characterization of them. Advice to choose the best isolate/race to maximize the discovery of multiple R genes or to directly map an effective R gene is provided. A summary of protocols, methods, and tools to phenotyping the soybean panel is given to several diseases. We also give details of options of DNA extraction protocols and genotyping methods, and we describe parameters of SNP quality to soybean data. Websites and their online tools to obtain genotypic and phenotypic data for thousands of soybean accessions are highlighted. Finally, we report several tricks and tips in Subheading 4, especially related to composing the soybean panel as well as generating and analyzing the phenotype data. We hope this protocol will be helpful to achieve GWAS success in identifying resistance genes on soybean.202235641772
974280.9982BOCS: DNA k-mer content and scoring for rapid genetic biomarker identification at low coverage. A single, inexpensive diagnostic test capable of rapidly identifying a wide range of genetic biomarkers would prove invaluable in precision medicine. Previous work has demonstrated the potential for high-throughput, label-free detection of A-G-C-T content in DNA k-mers, providing an alternative to single-letter sequencing while also having inherent lossy data compression and massively parallel data acquisition. Here, we apply a new bioinformatics algorithm - block optical content scoring (BOCS) - capable of using the high-throughput content k-mers for rapid, broad-spectrum identification of genetic biomarkers. BOCS uses content-based sequence alignment for probabilistic mapping of k-mer contents to gene sequences within a biomarker database, resulting in a probability ranking of genes on a content score. Simulations of the BOCS algorithm reveal high accuracy for identification of single antibiotic resistance genes, even in the presence of significant sequencing errors (100% accuracy for no sequencing errors, and >90% accuracy for sequencing errors at 20%), and at well below full coverage of the genes. Simulations for detecting multiple resistance genes within a methicillin-resistant Staphylococcus aureus (MRSA) strain showed 100% accuracy at an average gene coverage of merely 0.515, when the k-mer lengths were variable and with 4% sequencing error within the k-mer blocks. Extension of BOCS to cancer and other genetic diseases met or exceeded the results for resistance genes. Combined with a high-throughput content-based sequencing technique, the BOCS algorithm potentiates a test capable of rapid diagnosis and profiling of genetic biomarkers ranging from antibiotic resistance to cancer and other genetic diseases.201931173943
907390.9982EpitoCore: Mining Conserved Epitope Vaccine Candidates in the Core Proteome of Multiple Bacteria Strains. In reverse vaccinology approaches, complete proteomes of bacteria are submitted to multiple computational prediction steps in order to filter proteins that are possible vaccine candidates. Most available tools perform such analysis only in a single strain, or a very limited number of strains. But the vast amount of genomic data had shown that most bacteria contain pangenomes, i.e., their genomic information contains core, conserved genes, and random accessory genes specific to each strain. Therefore, in reverse vaccinology methods it is of the utmost importance to define core proteins and core epitopes. EpitoCore is a decision-tree pipeline developed to fulfill that need. It provides surfaceome prediction of proteins from related strains, defines core proteins within those, calculate their immunogenicity, predicts epitopes for a given set of MHC alleles defined by the user, and then reports if epitopes are located extracellularly and if they are conserved among the core homologs. Pipeline performance is illustrated by mining peptide vaccine candidates in Mycobacterium avium hominissuis strains. From a total proteome of ~4,800 proteins per strain, EpitoCore predicted 103 highly immunogenic core homologs located at cell surface, many of those related to virulence and drug resistance. Conserved epitopes identified among these homologs allows the users to define sets of peptides with potential to immunize the largest coverage of tested HLA alleles using peptide-based vaccines. Therefore, EpitoCore is able to provide automated identification of conserved epitopes in bacterial pangenomic datasets.202032431712
9212100.9982Review of knockout technology approaches in bacterial drug resistance research. Gene knockout is a widely used method in biology for investigating gene function. Several technologies are available for gene knockout, including zinc-finger nuclease technology (ZFN), suicide plasmid vector systems, transcription activator-like effector protein nuclease technology (TALEN), Red homologous recombination technology, CRISPR/Cas, and others. Of these, Red homologous recombination technology, CRISPR/Cas9 technology, and suicide plasmid vector systems have been the most extensively used for knocking out bacterial drug resistance genes. These three technologies have been shown to yield significant results in researching bacterial gene functions in numerous studies. This study provides an overview of current gene knockout methods that are effective for genetic drug resistance testing in bacteria. The study aims to serve as a reference for selecting appropriate techniques.202337605748
8401110.9982LSTrAP-Crowd: prediction of novel components of bacterial ribosomes with crowd-sourced analysis of RNA sequencing data. BACKGROUND: Bacterial resistance to antibiotics is a growing health problem that is projected to cause more deaths than cancer by 2050. Consequently, novel antibiotics are urgently needed. Since more than half of the available antibiotics target the structurally conserved bacterial ribosomes, factors involved in protein synthesis are thus prime targets for the development of novel antibiotics. However, experimental identification of these potential antibiotic target proteins can be labor-intensive and challenging, as these proteins are likely to be poorly characterized and specific to few bacteria. Here, we use a bioinformatics approach to identify novel components of protein synthesis. RESULTS: In order to identify these novel proteins, we established a Large-Scale Transcriptomic Analysis Pipeline in Crowd (LSTrAP-Crowd), where 285 individuals processed 26 terabytes of RNA-sequencing data of the 17 most notorious bacterial pathogens. In total, the crowd processed 26,269 RNA-seq experiments and used the data to construct gene co-expression networks, which were used to identify more than a hundred uncharacterized genes that were transcriptionally associated with protein synthesis. We provide the identity of these genes together with the processed gene expression data. CONCLUSIONS: We identified genes related to protein synthesis in common bacterial pathogens and thus provide a resource of potential antibiotic development targets for experimental validation. The data can be used to explore additional vulnerabilities of bacteria, while our approach demonstrates how the processing of gene expression data can be easily crowd-sourced.202032883264
5115120.9982Search Engine for Antimicrobial Resistance: A Cloud Compatible Pipeline and Web Interface for Rapidly Detecting Antimicrobial Resistance Genes Directly from Sequence Data. BACKGROUND: Antimicrobial resistance remains a growing and significant concern in human and veterinary medicine. Current laboratory methods for the detection and surveillance of antimicrobial resistant bacteria are limited in their effectiveness and scope. With the rapidly developing field of whole genome sequencing beginning to be utilised in clinical practice, the ability to interrogate sequencing data quickly and easily for the presence of antimicrobial resistance genes will become increasingly important and useful for informing clinical decisions. Additionally, use of such tools will provide insight into the dynamics of antimicrobial resistance genes in metagenomic samples such as those used in environmental monitoring. RESULTS: Here we present the Search Engine for Antimicrobial Resistance (SEAR), a pipeline and web interface for detection of horizontally acquired antimicrobial resistance genes in raw sequencing data. The pipeline provides gene information, abundance estimation and the reconstructed sequence of antimicrobial resistance genes; it also provides web links to additional information on each gene. The pipeline utilises clustering and read mapping to annotate full-length genes relative to a user-defined database. It also uses local alignment of annotated genes to a range of online databases to provide additional information. We demonstrate SEAR's application in the detection and abundance estimation of antimicrobial resistance genes in two novel environmental metagenomes, 32 human faecal microbiome datasets and 126 clinical isolates of Shigella sonnei. CONCLUSIONS: We have developed a pipeline that contributes to the improved capacity for antimicrobial resistance detection afforded by next generation sequencing technologies, allowing for rapid detection of antimicrobial resistance genes directly from sequencing data. SEAR uses raw sequencing data via an intuitive interface so can be run rapidly without requiring advanced bioinformatic skills or resources. Finally, we show that SEAR is effective in detecting antimicrobial resistance genes in metagenomic and isolate sequencing data from both environmental metagenomes and sequencing data from clinical isolates.201526197475
5083130.9982Multiplex Microarrays in 96-Well Plates Photoactivated with 4-Azidotetrafluorobenzaldehyde for the Identification and Quantification of β-Lactamase Genes and Their RNA Transcripts. Antibiotic-resistant bacteria represent a global issue that calls for novel approaches to diagnosis and treatment. Given the variety of genetic factors that determine resistance, multiplex methods hold promise in this area. We developed a novel method to covalently attach oligonucleotide probes to the wells of polystyrene plates using photoactivation with 4-azidotetrafluorobenzaldehyde. Then, it was used to develop the technique of microarrays in the wells. It consists of the following steps: activating polystyrene, hybridizing the probes with biotinylated target DNA, and developing the result using a streptavidin-peroxidase conjugate with colorimetric detection. The first microarray was designed to identify 11 different gene types and 16 single-nucleotide polymorphisms (SNPs) of clinically relevant ESBLs and carbapenemases, which confer Gram-negative bacteria resistance to β-lactam antibiotics. The detection of bla genes in 65 clinical isolates of Enterobacteriaceae demonstrated the high sensitivity and reproducibility of the technique. The highly reproducible spot staining of colorimetric microarrays allowed us to design a second microarray that was intended to quantify four different types of bla mRNAs in order to ascertain their expressions. The combination of reliable performance, high throughput in standard 96-well plates, and inexpensive colorimetric detection makes the microarrays suitable for routine clinical application and for the study of multi-drug resistant bacteria.202338275665
5113140.9982Identification of bacterial antibiotic resistance genes in next-generation sequencing data (review of literature). The spread of antibiotic-resistant human bacterial pathogens is a serious threat to modern medicine. Antibiotic susceptibility testing is essential for treatment regimens optimization and preventing dissemination of antibiotic resistance. Therefore, development of antibiotic susceptibility testing methods is a priority challenge of laboratory medicine. The aim of this review is to analyze the capabilities of the bioinformatics tools for bacterial whole genome sequence data processing. The PubMed database, Russian scientific electronic library eLIBRARY, information networks of World health organization and European Society of Clinical Microbiology and Infectious Diseases (ESCMID) were used during the analysis. In this review, the platforms for whole genome sequencing, which are suitable for detection of bacterial genetic resistance determinants, are described. The classic step of genetic resistance determinants searching is an alignment between the query nucleotide/protein sequence and the subject (database) nucleotide/protein sequence, which is performed using the nucleotide and protein sequence databases. The most commonly used databases are Resfinder, CARD, Bacterial Antimicrobial Resistance Reference Gene Database. The results of the resistance determinants searching in genome assemblies is more correct in comparison to results of the searching in contigs. The new resistance genes searching bioinformatics tools, such as neural networks and machine learning, are discussed in the review. After critical appraisal of the current antibiotic resistance databases we designed a protocol for predicting antibiotic resistance using whole genome sequence data. The designed protocol can be used as a basis of the algorithm for qualitative and quantitative antimicrobial susceptibility testing based on whole genome sequence data.202134882354
262150.9982Genome scanning in Haemophilus influenzae for identification of essential genes. We have developed a method for identifying essential genes by using an in vitro transposition system, with a small (975 bp) insertional element containing an antibiotic resistance cassette, and mapping these inserts relative to the deduced open reading frames of Haemophilus influenzae by PCR and Southern analysis. Putative essential genes are identified by two methods: mutation exclusion or zero time analysis. Mutation exclusion consists of growing an insertional library and identifying open reading frames that do not contain insertional elements: in a growing population of bacteria, insertions in essential genes are excluded. Zero time analysis consists of monitoring the fate of individual insertions after transformation in a growing culture: the loss of inserts in essential genes is observed over time. Both methods of analysis permit the identification of genes required for bacterial survival. Details of the mutant library construction and the mapping strategy, examples of mutant exclusion, and zero time analysis are presented.199910438768
4624160.9982Deciphering the distance to antibiotic resistance for the pneumococcus using genome sequencing data. Advances in genome sequencing technologies and genome-wide association studies (GWAS) have provided unprecedented insights into the molecular basis of microbial phenotypes and enabled the identification of the underlying genetic variants in real populations. However, utilization of genome sequencing in clinical phenotyping of bacteria is challenging due to the lack of reliable and accurate approaches. Here, we report a method for predicting microbial resistance patterns using genome sequencing data. We analyzed whole genome sequences of 1,680 Streptococcus pneumoniae isolates from four independent populations using GWAS and identified probable hotspots of genetic variation which correlate with phenotypes of resistance to essential classes of antibiotics. With the premise that accumulation of putative resistance-conferring SNPs, potentially in combination with specific resistance genes, precedes full resistance, we retrogressively surveyed the hotspot loci and quantified the number of SNPs and/or genes, which if accumulated would confer full resistance to an otherwise susceptible strain. We name this approach the 'distance to resistance'. It can be used to identify the creep towards complete antibiotics resistance in bacteria using genome sequencing. This approach serves as a basis for the development of future sequencing-based methods for predicting resistance profiles of bacterial strains in hospital microbiology and public health settings.201728205635
8376170.9982BBSdb, an open resource for bacterial biofilm-associated proteins. Bacterial biofilms are organized heterogeneous assemblages of microbial cells encased within a self-produced matrix of exopolysaccharides, extracellular DNA and proteins. Over the last decade, more and more biofilm-associated proteins have been discovered and investigated. Furthermore, omics techniques such as transcriptomes, proteomes also play important roles in identifying new biofilm-associated genes or proteins. However, those important data have been uploaded separately to various databases, which creates obstacles for biofilm researchers to have a comprehensive access to these data. In this work, we constructed BBSdb, a state-of-the-art open resource of bacterial biofilm-associated protein. It includes 48 different bacteria species, 105 transcriptome datasets, 21 proteome datasets, 1205 experimental samples, 57,823 differentially expressed genes (DEGs), 13,605 differentially expressed proteins (DEPs), 1,930 'Top 5% differentially expressed genes', 444 'Threshold-based DEGs' and a predictor for prediction of biofilm-associated protein. In addition, 1,781 biofilm-associated proteins, including annotation and sequences, were extracted from 942 articles and public databases via text-mining analysis. We used E. coli as an example to represent how to explore potential biofilm-associated proteins in bacteria. We believe that this study will be of broad interest to researchers in field of bacteria, especially biofilms, which are involved in bacterial growth, pathogenicity, and drug resistance. Availability and implementation: The BBSdb is freely available at http://124.222.145.44/#!/.202439149420
5075180.9982Fast and Economic Microarray-Based Detection of Species-, Resistance-, and Virulence-Associated Genes in Clinical Strains of Vancomycin-Resistant Enterococci (VRE). Today, there is a continuous worldwide battle against antimicrobial resistance (AMR) and that includes vancomycin-resistant enterococci (VRE). Methods that can adequately and quickly detect transmission chains in outbreaks are needed to trace and manage this problem fast and cost-effectively. In this study, DNA-microarray-based technology was developed for this purpose. It commenced with the bioinformatic design of specific oligonucleotide sequences to obtain amplification primers and hybridization probes. Microarrays were manufactured using these synthesized oligonucleotides. A highly parallel and stringent labeling and hybridization protocol was developed and employed using isolated genomic DNA from previously sequenced (referenced) clinical VRE strains for optimal sensitivity and specificity. Microarray results showed the detection of virulence, resistance, and species-specific genes in the VRE strains. Theoretical predictions of the microarray results were also derived from the sequences of the same VRE strain and were compared to array results while optimizing protocols until the microarray result and theoretical predictions were a match. The study concludes that DNA microarray technology can be used to quickly, accurately, and economically detect specifically and massively parallel target genes in enterococci.202439409516
5077190.9982Development of a new integrated diagnostic test for identification and characterization of pathogens. Animal diseases directly cause multi-million dollar losses world-wide. Therefore a rapid, highly specific, cost-effective diagnostic test for detecting a large set of bacterial virulence and antimicrobial resistance genes simultaneously is necessary. Hence, our group, the BCBG (Bacterial Chips Bacterial Genes) group, proposes developing a powerful molecular tool (DNA microarray) to detect a broad range of infectious agents, their endogenous main virulence factors and antibiotic resistance genes simultaneously. Effectively, a 70-mer oligonucleotide microarray capable of detecting the presence or absence of 169 Escherichia coli virulence genes or virulence marker genes as well as their variants, in addition to 30 principal antimicrobial resistance genes previously characterized in E. coli strains was developed by our group. This microarray was validated with a large collection of well characterized pathogenic and reference E. coli strains. Moreover, we are developing a new powerful clinical diagnostic microarray tool, to identify pathogenic bacteria of veterinary interest. The commercialization of this assay would allow same day diagnosis of infectious agents and their antibiotic resistance resulting in early treatment. In addition, this technology is also applicable to microbial quality control of food and water.200617058497