# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3498 | 0 | 0.9946 | Comparative study on the bacterial diversity and antibiotic resistance genes of urban landscape waters replenished by reclaimed water and surface water in Xi'an, China. Pathogenic bacteria and antibiotic resistance genes (ARGs) in urban landscape waters may pose a potential threat to human health. However, the investigation of their occurrence in the urban landscape waters replenished by reclaimed water (RW) and surface water (SW) is still insufficient. The water samples collected from six urban landscape waters replenished by RW or SW were used to analyze bacterial diversity using high-throughput sequencing of 16S rRNA gene and to detect 18 ARGs and 2 integron-integrase genes by means of quantitative PCR array. Results indicated that Proteobacteria was the dominant phylum in all six urban landscape waters. The bacterial species richness was lower in urban landscape waters replenished by RW than that by SW. Sulfonamide resistance genes (sulI and sulIII) were the major ARGs in these urban landscape waters. No significant difference in the relative abundance of sulfonamide resistance genes, tetracycline resistance genes, and most of beta-lactam resistance genes was observed between RW-replenished and SW-replenished urban landscape waters. By contrast, the relative abundance of bla(ampC) gene and qnrA gene in RW-replenished urban landscape waters was significantly higher than that in SW-replenished urban landscape waters (p < 0.05), which suggested that use of RW may increase the amount of specific ARGs to urban landscape waters. Interestingly, among six urban landscape waters, RW-replenished urban landscape waters had a relatively rich variety of ARGs (12-15 of 18 ARGs) but a low relative abundance of ARGs (458.90-1944.67 copies/16S × 10(6)). The RW replenishment was found to have a certain impact on the bacterial diversity and prevalence of ARGs in urban landscape waters, which provide new insight into the effect of RW replenishment on urban landscape waters. | 2021 | 33786766 |
| 7215 | 1 | 0.9942 | High-throughput qPCR profiling of antimicrobial resistance genes and bacterial loads in wastewater and receiving environments. Wastewater treatment plants (WWTPs) are hot spots for the acquisition and spread of antimicrobial resistance (AMR). This regional-based study quantified antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and bacteria in hospital and community-derived wastewater and receiving environments, using high-throughput qPCR (HT-qPCR). This is the first study to apply Resistomap's Antibiotic Resistance Gene Index (ARGI) as a standardised metric to find the overall AMR level across different WWTPs. ARGI of WWTPs ranged from 2.0 to 2.3, indicating higher relative ARG levels than the mean European ARGI of 2.0, but lower than the global mean of 2.4. The highest diversity and abundance of ARGs were observed in untreated hospital and community wastewater. The reduction of total ARGs during wastewater treatment (0.2-2 logs) and bacteria (0.3-1.5 logs) varied spatio-temporally across the WWTPs. Despite a decrease in ARG and bacterial abundance in treated effluents, substantial loads were still released into receiving environments. Notably, ARG levels in coastal sediments were comparable to those in untreated wastewater, and most ARGs were shared between wastewater and receiving environments, highlighting the impact of wastewater discharge on these ecosystems. Sewage outfall exposure increased ARGs in shellfish, emphasising risks to shellfish hygiene. This study provides evidence to inform policymaking, emphasising advanced wastewater treatment methods and combined sewer overflow (CSO) management to mitigate ARG release, protecting water users and the food chain. | 2025 | 40127809 |
| 3075 | 2 | 0.9940 | Comparison of environmental microbiomes in an antibiotic resistance-polluted urban river highlights periphyton and fish gut communities as reservoirs of concern. Natural waterways near urban areas are heavily impacted by anthropogenic activities, including their microbial communities. A contaminant of growing public health concern in rivers is antibiotic resistant genes (ARGs), which can spread between neighboring bacteria and increase the potential for transmission of AR bacteria to animals and humans. To identify the matrices of most concern for AR, we compared ARG burdens and microbial community structures between sample types from the Scioto River Watershed, Ohio, the United States, from 2017 to 2018. Five environmental matrices (water, sediment, periphyton, detritus, and fish gut) were collected from 26 river sites. Due to our focus on clinically relevant ARGs, three carbapenem resistance genes (bla(KPC), bla(NDM), and bla(OXA-48)) were quantified via DropletDigital™ PCR. At a subset of nine urbanized sites, we conducted16S rRNA gene sequencing and functional gene predictions. Carbapenem resistance genes were quantified from all matrices, with bla(KPC) being the most detected (88 % of samples), followed by bla(NDM) (64 %) and bla(OXA-48) (23 %). Fish gut samples showed higher concentrations of bla(KPC) and bla(NDM) than any other matrix, indicating potential ARG bioaccumulation, and risk of broader dissemination through aquatic and nearshore food webs. Periphyton had higher concentrations of bla(NDM) than water, sediment, or detritus. Microbial community analysis identified differences by sample type in community diversity and structure. Sediment samples had the most diverse microbial communities, and detritus, the least. Spearman correlations did not reveal significant relationships between the concentrations of the monitored ARGs and microbial community diversity. However, several differentially abundant taxa and microbial functions were identified by sample type that is definitive of these matrices' roles in the river ecosystem and habitat type. In summary, the fish gut and periphyton are a concern as AR reservoirs due to their relatively high concentration of carbapenem resistance genes, diverse microbial communities, and natural functions that promote AR. | 2022 | 35973543 |
| 7088 | 3 | 0.9940 | Small-scale wastewater treatment plants as a source of the dissemination of antibiotic resistance genes in the aquatic environment. Wastewater treatment plants (WWTPs) are significant source of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which can spread further in the environment by reaching rivers together with effluents discharged from WWTPs. In this study untreated and treated wastewater (UWW, TWW), upstream and downstream river water (URW, DRW) were collected from 4 WWTPs, in the winter and autumn seasons. The occurrence of ARB resistant to beta-lactams and tetracyclines as well as the presence of antibiotics from these classes were analysed in water and wastewater samples. Additionally, the amounts of 12 ARGs, 2 genes of mobile genetic elements (MGEs), gene uidA identifying E. coli and 16S rRNA were also determined. Resistance to beta-lactams prevailed among ARB in water and wastewater samples (constituting 82-88% of total counts of bacteria). The dominant genes in water and wastewater samples were bla(TEM), tetA, sul1. The gene bla(OXA) demonstrated high variability of its concentration in samples collected in both seasons. Despite the high per cent reduction of ARB and ARGs concentration observed during the wastewater treatment processes, their large quantities are still transmitted into the environment. The research focuses on WWTPs' role in the dissemination of ARGs and MGEs in the aquatic environment. | 2020 | 31561123 |
| 7087 | 4 | 0.9940 | Antibiotic resistance in shellfish and major inland pollution sources in the drainage basin of Kamak Bay, Republic of Korea. Shellfish-growing areas in marine environments are affected by pollutants that mainly originate from land, including streams, domestic wastewater, and the effluents of wastewater treatment plants (WWTPs), which may function as reservoirs of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs). The objective of this study was to identify the occurrence and distribution of antibiotic resistance at five oyster sampling sites and 11 major inland pollution sources in the drainage basin of Kamak Bay, Republic of Korea. Culture-based methods were used to estimate the diversity and abundance of antibiotic-resistant Escherichia coli strains isolated from oysters and major inland pollution sources. The percentages of ARB and multiple antibiotic resistance index values were significantly high in discharge water from small fishing villages without WWTPs. However, the percentages of antibiotic-resistant E. coli isolates from oysters were low, as there was no impact from major inland pollutants. Fourteen ARGs were also quantified from oysters and major inland pollution sources. Although most ARGs except for quinolones were widely distributed in domestic wastewater discharge and effluent from WWTPs, macrolide resistance genes (ermB and msrA) were detected mainly from oysters in Kamak Bay. This study will aid in tracking the sources of antibiotic contamination in shellfish to determine the correlation between shellfish and inland pollution sources. | 2021 | 34226964 |
| 3072 | 5 | 0.9940 | Faecal microbiota and antibiotic resistance genes in migratory waterbirds with contrasting habitat use. Migratory birds may have a vital role in the spread of antimicrobial resistance across habitats and regions, but empirical data remain scarce. We investigated differences in the gut microbiome composition and the abundance of antibiotic resistance genes (ARGs) in faeces from four migratory waterbirds wintering in South-West Spain that differ in their habitat use. The white stork Ciconia ciconia and lesser black-backed gull Larus fuscus are omnivorous and opportunistic birds that use highly anthropogenic habitats such as landfills and urban areas. The greylag goose Anser anser and common crane Grus grus are herbivores and use more natural habitats. Fresh faeces from 15 individuals of each species were analysed to assess the composition of bacterial communities using 16S rRNA amplicon-targeted sequencing, and to quantify the abundance of the Class I integron integrase gene (intI1) as well as genes encoding resistance to sulfonamides (sul1), beta-lactams (bla(TEM), bla(KPC) and bla(NDM)), tetracyclines (tetW), fluoroquinolones (qnrS), and colistin (mcr-1) using qPCR. Bacterial communities in gull faeces were the richest and most diverse. Beta diversity analysis showed segregation in faecal communities between bird species, but those from storks and gulls were the most similar, these being the species that regularly feed in landfills. Potential bacterial pathogens identified in faeces differed significantly between bird species, with higher relative abundance in gulls. Faeces from birds that feed in landfills (stork and gull) contained a significantly higher abundance of ARGs (sul1, bla(TEM), and tetW). Genes conferring resistance to last resort antibiotics such as carbapenems (bla(KPC)) and colistin (mcr-1) were only observed in faeces from gulls. These results show that these bird species are reservoirs of antimicrobial resistant bacteria and suggest that waterbirds may disseminate antibiotic resistance across environments (e.g., from landfills to ricefields or water supplies), and thus constitute a risk for their further spread to wildlife and humans. | 2021 | 33872913 |
| 7164 | 6 | 0.9938 | Anthropogenic pressures amplify high-risk antibiotic resistome via co-selection among biocide resistance, virulence, and antibiotic resistance genes in the Ganjiang River basin: Drivers diverge in densely versus sparsely populated reaches. As the largest river in the Poyang Lake system, the Ganjiang River faces escalating anthropogenic pressures that amplify resistance gene dissemination. This study integrated antibiotic resistance genes (ARGs), biocide resistance genes (BRGs), and virulence factor genes (VFGs) to reveal their co-selection mechanisms and divergent environmental drivers between densely (DES) and sparsely populated (SPAR) regions of the Ganjiang River basin. The microbial and viral communities and structures differed significantly between the DES and SPAR regions (PERMANOVA, p < 0.001). Midstream DES areas were hotspots for ARGs/BRGs/VFGs enrichment, with peak enrichment multiples reaching 10.2, 5.7, and 5.9-fold respectively. Procrustes analysis revealed limited dependence of ARGs transmission on mobile genetic elements (MGEs) (p > 0.05). Separately, 74 % of dominant ARGs (top 1 %) showed strong correlations with BRGs (r(2) = 0.973, p < 0.01) and VFGs (r(2) = 0.966, p < 0.01) via co-selection. Pathogenic Pseudomonas spp. carrying multidrug-resistant ARGs, BRGs, and adhesion-VFGs were identified as high-risk vectors. In SPAR areas, anthropogenic pressure directly dominated ARGs risk (RC = 54.2 %, β = 0.39, p < 0.05), with biological factors as secondary contributors (RC = 45.8 %, β = 0.33, p < 0.05). In contrast, DES regions showed anthropogenic pressure exerting broader, enduring influences across microorganisms, physicochemical parameters, and biological factors, escalating ARGs risks through diverse pathways, with BRGs/VFGs acting as direct drivers. This study proposes establishing a risk prevention system using BRGs and pathogenic microorganisms as early-warning indicators. | 2025 | 40858019 |
| 3543 | 7 | 0.9938 | Precipitation influences pathogenic bacteria and antibiotic resistance gene abundance in storm drain outfalls in coastal sub-tropical waters. Stormwater contamination can threaten the health of aquatic ecosystems and human exposed to runoff via nutrient and pathogen influxes. In this study, the concentrations of 11 bacterial pathogens and 47 antibiotic resistance genes (ARGs) were determined by using high-throughput microfluidic qPCR (MFQPCR) in several storm drain outfalls (SDOs) during dry and wet weather in Tampa Bay, Florida, USA. Data generated in this study were also compared with the levels of fecal indicator bacteria (FIB) and sewage-associated molecular markers (i.e., Bacteroides HF183 and crAssphage markers) in same SDOs collected in a recent study (Ahmed et al., 2018). Concentration of FIB, sewage-associated markers, bacterial pathogens and many ARGs in water samples were relatively high and SDOs may be potentially hotspots for microbial contamination in Tampa Bay. Mean concentrations of culturable E. coli and Enterococcus spp. were tenfold higher in wet compared to dry weather. The majority of microbiological contaminants followed this trend. E. coli eaeA, encoding the virulence factor intimin, was correlated with levels of 20 ARGs, and was more frequently detected in wet weather than dry weather samples. The bla(KPC) gene associated with carbapenem resistant Enterobacteriaceae and the beta-lactam resistant gene (bla(NPS)) were only detected in wet weather samples. Frequency of integron genes Intl2 and Intl3 detection increased by 42% in wet weather samples. Culturable E. coli and Enterococcus spp. significantly correlated with 19 of 47 (40%) ARG tested. Sewage-associated markers crAssphage and HF183 significantly correlated (p < 0.05) with the following ARGs: intl1, sul1, tet(M), ampC, mexB, and tet(W). The presence of sewage-associated marker genes along with ARGs associated with sewage suggested that aging sewage infrastructure contributed to contaminant loading in the Bay. Further research should focus on collecting spatial and temporal data on the microbiological contaminants especially viruses in SDOs. | 2018 | 29754026 |
| 7276 | 8 | 0.9938 | Antibiotic resistance in urban and hospital wastewaters and their impact on a receiving freshwater ecosystem. The main objective of this study was to investigate the antibiotic resistance (AR) levels in wastewater (WW) and the impact on the receiving river. Samples were collected once per season over one year in the WW of a hospital, in the raw and treated WW of two wastewater treatment plants (WWTPs), as well as upstream and downstream from the release of WWTPs effluents into the Zenne River (Belgium). Culture-dependent methods were used to quantify Escherichia coli and heterotrophic bacteria resistant to amoxicillin, sulfamethoxazole, nalidixic acid and tetracycline. Six antibiotic resistance genes (ARGs) were quantified in both particle-attached (PAB) and free-living (FLB) bacteria. Our results showed that WWTPs efficiently removed antibiotic resistant bacteria (ARB) regardless of its AR profile. The ARGs levels were the highest in the hospital WW and were significantly reduced in both WWTPs. However, ARB and ARGs abundances significantly increased into the Zenne River downstream from the WWTPs outfalls. The variation in the relative abundance of ARGs through WW treatment differed depending on the WWTP, fraction, and gene considered. The sul1 and sul2 genes in PAB fraction showed significantly higher relative abundances in the effluent compared to the influent of both WWTPs. This study demonstrated that WWTPs could be hotspots for AR spread with significant impacts on receiving freshwater ecosystems. This was the first comprehensive study investigating at the same time antibiotics occurrence, fecal bacteria indicators, heterotrophic bacterial communities, and ARGs (distinguishing PAB and FLB) to assess AR levels in WW and impacts on the receiving river. | 2018 | 29730567 |
| 7331 | 9 | 0.9938 | Metagenomics analysis of probable transmission of determinants of antibiotic resistance from wastewater to the environment - A case study. During mechanical-biological treatment, wastewater droplets reach the air with bioaerosols and pose a health threat to wastewater treatment plant (WWTP) employees and nearby residents. Microbiological pollutants and antimicrobial resistance determinants are discharged to water bodies with treated wastewater (TWW), which poses a potential global epidemiological risk. In the present study, the taxonomic composition of microorganisms was analyzed, and the resistome profile and mobility of genes were determined by metagenomic next-generation sequencing in samples of untreated wastewater (UWW), wastewater collected from an activated sludge (AS) bioreactor, TWW, river water collected upstream and downstream from the wastewater discharge point, and in upper respiratory tract swabs collected from WWTP employees. Wastewater and the emitted bioaerosols near WWTP's facilities presumably contributed to the transmission of microorganisms, in particular bacteria of the phylum Actinobacteria and the associated antibiotic resistance genes (ARGs) (including ermB, ant(2″)-I, tetM, penA and cfxA2) to the upper respiratory tract of WWTP employees. The discharged wastewater increased the taxonomic diversity of microorganisms and the concentrations of various ARGs (including bacA, emrE, sul1, sul2 and tetQ) in river water. This study fills in the knowledge gap on the health risks faced by WWTP employees. The study has shown that microbiological pollutants and antimicrobial resistance determinants are also in huge quantities discharged to rivers with TWW, posing a potential global epidemiological threat. | 2022 | 35259375 |
| 7781 | 10 | 0.9938 | Untreated HWWs Emerged as Hotpots for ARGs. Hospital wastewaters (HWWs) are reported to be hotspots for antibiotics and antibiotic-resistant bacteria. However, limited information involves the impact of these effluents on dissemination of antibiotic-resistance genes (ARGs). In this study, therefore, seasonally collected HWWs were monitored for overall bacterial load and seven ARGs aadA, tetA, cmlA, sul1, qnrS, ermB and bla (CTX-M )by using quantitative polymerase chain reaction method. Overall bacterial 16S rRNA copy number was found to be the lowest in winter with 10(3 )copy number/mL, while the highest copy number, with 10(5 )copy number/mL, was observed in both summer and spring. All hospitals tested displayed similar seasonal ARG copy number profile of aadA > tetA > cmlA ≈ sul1 > ermB ≈ qnrS > bla (CTX-M). The results indicated that untreated HWWs were hotspots for ARGs and required attention before discharging into public sewer. | 2020 | 31965225 |
| 7081 | 11 | 0.9937 | Seasonal variations in export of antibiotic resistance genes and bacteria in runoff from an agricultural watershed in Iowa. Seasonal variations of antimicrobial resistance (AMR) indicators in runoff water can help improve our understanding of AMR sources and transport within an agricultural watershed. This study aimed to monitor multiple areas throughout the Black Hawk Lake (BHL) watershed (5324 ha) in central Iowa during 2017 and 2018 that consists of both swine and cattle feeding operations as well as known areas with manure application. The measured indicators included plate counts for fecal indicator bacteria (FIB) E. coli, Enterococcus, antibiotic resistant fecal indicator bacteria (ARBs) tylosin resistant Enterococcus, tetracycline resistant Enterococcus, and antibiotic resistance genes (ARGs): ermB, ermF (macrolide), tetA, tetM, tetO, tetW (tetracycline), sul1, sul2 (sulfonamide), aadA2 (aminoglycoside), vgaA, and vgaB (pleuromutilin). Both the plate count and the ARG analyses showed seasonal trends. Plate counts were significantly greater during the growing season, while the ARGs were greater in the pre-planting and post-harvest seasons (Wilcoxon Rank-Sum Test p < 0.05). The ermB gene concentration was significantly correlated (p < 0.05) with E. coli and Enterococcus concentrations in 2017, suggesting a potential use of this ARG as an indicator of environmental AMR and human health risk. Flow rate was not a significant contributor to annual variations in bacteria and AMR indicators. Based on observed seasonal patterns, we concluded that manure application was the likely contributor to elevated ARG indicators observed in the BHL watershed, while the driver of elevated ARB indictors in the growing season can only be speculated. Understanding AMR export patterns in agricultural watersheds provides public health officials knowledge of seasonal periods of higher AMR load to recreational waters. | 2020 | 32806354 |
| 7167 | 12 | 0.9937 | Occurrence and distribution of antibiotic pollution and antibiotic resistance genes in seagrass meadow sediments based on metagenomics. Seagrass meadows are one of the most important coastal ecosystems that provide essential ecological and economic services. The contamination levels of antibiotic and antibiotic resistance genes (ARGs) in coastal ecosystems are severely elevated owing to anthropogenic disturbances, such as terrestrial input, aquaculture effluent, and sewage discharge. However, few studies have focused on the occurrence and distribution of antibiotics and their corresponding ARGs in this habitat. Thus, we investigated the antibiotic and ARGs profiles, microbial communities, and ARG-carrying host bacteria in typical seagrass meadow sediments collected from Swan Lake, Caofeidian shoal harbor, Qingdao Bay, and Sishili Bay in the Bohai Sea and northern Yellow Sea. The total concentrations of 30 detected antibiotics ranged from 99.35 to 478.02 μg/kg, tetracyclines were more prevalent than other antibiotics. Metagenomic analyses showed that 342 ARG subtypes associated with 22 ARG types were identified in the seagrass meadow sediments. Multidrug resistance genes and RanA were the most dominant ARG types and subtypes, respectively. Co-occurrence network analysis revealed that Halioglobus, Zeaxanthinibacter, and Aureitalea may be potential hosts at the genus level, and the relative abundances of these bacteria were higher in Sishili Bay than those in other areas. This study provided important insights into the pollution status of antibiotics and ARGs in typical seagrass meadow sediments. Effective management should be performed to control the potential ecological health risks in seagrass meadow ecosystems. | 2024 | 38782270 |
| 7234 | 13 | 0.9937 | Urban and agriculturally influenced water contribute differently to the spread of antibiotic resistance genes in a mega-city river network. The widespread of water borne antibiotic resistance genes (ARGs) represents a growing threat to the health of millions of people. Our study detected the relative abundances of 10 ARG subtypes in the Shanghai river network, where the major ARG components were strB, sul1, and ermB. These ARGs were significantly enriched by the combined sewage, tail water from urban wastewater treatment plant and runoff from agricultural areas, which reached the Suzhou (SZ), Dianpu (DP), and Huangpu (HP) River, respectively (one-way ANOVA, P < 0.01). The target ARGs were distributed in varying patterns across different rivers. bla(CTX-M) and bla(TEM) contributed to the increase of total ARGs in the rivers influenced by urban sources, particularly in the SZ River, whose distribution of ARGs was significantly related to that of the confluence of the whole river network (Mantel test, P < 0.01). The bacterial community was closely structured with ARGs and potential pathogenic bacteria's association with target ARGs became significant in downstream samples (Procrustes test, P = 0.03). Water near urban wastewater fallouts was observed to have the highest content of intl1 in the DP River, whose downstream samples' intl -ARG relationship fitted the same regression model as that of the network confluence (R = 0.84, P < 0.001). The amelioration of river water quality does not reduce ARGs, but may affect their distributional patterns in the river network in Shanghai. | 2019 | 31009830 |
| 3074 | 14 | 0.9936 | Metagenomic analysis of microbial communities and antibiotic resistant genes in the Tijuana river, and potential sources. The Tijuana River is a transborder river that flows northwest across the border from Baja California in Mexico into Southern California before discharging into the Pacific Ocean. The river is frequently contaminated with raw sewage due to inadequate sanitary infrastructure in Tijuana. To assess the type and degree of microbial contamination, water samples were collected monthly from a near-border and an estuarine site from August 2020 until May 2021. A portion of each sample was used for epifluorescent microscopy and DNA was extracted directly from the rest for shotgun metagenomic sequencing. After sequence quality checking and processing, we used the rapid taxonomic identifier tool Kaiju to characterize the microbial diversity of the metagenomes and matched the sequences against the Comprehensive Antibiotic Resistance Database (CARD) to examine antimicrobial resistance genes (ARGs). Bacterial and viral-like particle (VLP) abundance was consistently higher in the near-border samples than in the estuarine samples, while alpha diversity (within sample biodiversity) was higher in estuarine samples. Beta-diversity analysis found clear compositional separation between samples from the two sites, and the near-border samples were more dissimilar to one another than were the estuarine sites. Near-border samples were dominated by fecal-associated bacteria and bacteria associated with sewage sludge, while estuarine sites were dominated by marine bacteria. ARGs were more abundant at the near-border site, but were also readily detectable in the estuarine samples, and the most abundant ARGs had multi-resistance to beta-lactam antibiotics. SourceTracker analysis identified human feces and sewage sludge to be the largest contributors to the near-border samples, while marine waters dominated estuarine samples except for two sewage overflow dates with high fecal contamination. Overall, our research determined human sewage microbes to be common in the Tijuana River, and the prevalence of ARGs confirms the importance of planned infrastructure treatment upgrades for environmental health. | 2024 | 38043772 |
| 3206 | 15 | 0.9936 | High pollution and health risk of antibiotic resistance genes in rural domestic sewage in southeastern China: A study combining national-scale distribution and machine learning. Rural domestic sewage has emerged as an important reservoir of antibiotic resistance genes (ARGs) under rapid urbanization, while the national-scale geographical patterns and risks of ARGs remaining unclear. We investigated ARG pollution in rural domestic sewage across 39 sites in 22 Chinese provinces using metagenomic sequencing, identifying 702 ARG subtypes across 21 types. Multidrug resistance genes were predominant in the shared ARGs, accounting for 58.96 % of the total ARG abundance. Host bacteria analysis revealed Klebsiella pneumoniae and Escherichia coli were the main pathogenic-resistant bacteria. Southeastern China exhibited the highest level of ARG pollution in rural domestic sewage, followed by south-central, northern, and western. This ARG pollution was primarily caused by human/animal feces based on ARG indicators. Partial least-squares path model and partial redundancy analysis highlighted antibiotics as the primary driver, explaining 24.16 % of ARG variation, with sulfamethazine, norfloxacin, and ofloxacin identified as priority control targets. Risk assessment by calculating the risk index indicated 24.58 % of detected ARGs posed potential health threats, particularly multidrug resistance. Machine learning models predicted higher ARG risks in rural domestic sewage from southeastern China with intensive human activity. This study underscores the crucial impact of antibiotics in ARG proliferation and risk in rural domestic sewage. | 2025 | 40701495 |
| 7780 | 16 | 0.9936 | Antibiotic Resistance Genes in drinking water of China: Occurrence, distribution and influencing factors. Drinking water samples were collected from 71 cities, including 28 provincial capital cities or municipalities, 20 prefecture cities and 23 counties, of 31 provincial-level administrative regions in China from July to August in 2017. Futhermore, 24 Antibiotic Resistance Genes (ARGs), 16S rRNA and 2 integrase genes were quantified by qPCR to investigate the pollution degree of ARGs. The results revealed that the 16S ranged from 10(5) - 10(8) copies/100 mL in the drinking water, and its treatment process could effectively remove bacteria. Moreover, sulfonamides-ARGs were the most prevalent ARGs in the drinking water of China, and the abundance of bla(TEM) ranked top five in all cities among the selected ARGs, indicating that the pollution condition of the genes should be aroused more attention. The data of qPCR and correlation analyses indicated that intI1 played a more crucial role than intI2 in the propagation of ARGs in the drinking water. Additionally, the pollution degree of ARGs among different city types showed no significant difference. | 2020 | 31683044 |
| 6862 | 17 | 0.9936 | Strong variation in sedimental antibiotic resistomes among urban rivers, estuaries and coastal oceans: Evidence from a river-connected coastal water ecosystem in northern China. Sediment is thought to be a vital reservoir to spread antibiotic resistance genes (ARGs) among various natural environments. However, the spatial distribution patterns of the sedimental antibiotic resistomes around the Bohai Bay region, a river-connected coastal water ecosystem, are still poorly understood. The present study conducted a comprehensive investigation of ARGs among urban rivers (UR), estuaries (ES) and Bohai Bay (BHB) by metagenomic sequencing. Overall, a total of 169 unique ARGs conferring resistance to 15 antimicrobial classes were detected across all sediment samples. The Kruskal-Wallis test showed that the diversity and abundance of ARGs in the UR were all significantly higher than those in the ES and BHB (p < 0.05 and p < 0.01), revealing the distance dilution of the sedimental resistomes from the river to the ocean. Multidrug resistance genes contained most of the ARG subtypes, whereas rifamycin resistance genes were the most abundant ARGs in this region. Our study demonstrated that most antimicrobial resistomes were highly accumulated in urban river sediments, whereas beta-lactamase resistance genes (mainly PNGM-1) dramatically increased away from the estuary to the open ocean. The relative abundance of mobile genetic elements (MGEs) also gradually decreased from rivers to the coastal ocean, whereas the difference in pathogenic bacteria was not significant in the three classifications. Among MGEs, plasmids were recognized as the most important carriers to support the horizontal gene transfer of ARGs within and between species. According to co-occurrence networks, pathogenic Proteobacteria, Actinobacteria, and Bacteroidetes were recognized as potential and important hosts of ARGs. Heavy metals, pH and moisture content were all recognized as the vital environmental factors influencing the distribution of ARGs in sediment samples. Overall, the present study may help to understand the distribution patterns of ARGs at a watershed scale, and help to make effective policies to control the emergence, spread and evolution of different ARG subtypes in different habitats. | 2023 | 37263036 |
| 3080 | 18 | 0.9936 | Antibiotic-resistant bacteria in the Bang Yai Canal and Phuket Bay in Phuket Province, Thailand. Antimicrobial resistance (AMR) represents a critical public health challenge, with surface waters serving as reservoirs for antibiotic-resistant bacteria (ARB). Among these, gram-negative enteric bacteria (GNEB) are recognized as major carriers of resistance genes and frequent causes of human infections. As a major tourism destination in Thailand, Phuket Province is likely to face increasing AMR-related issues. This study investigates water quality and the prevalence of ARB in the Bang Yai Canal, a key urban waterway in Phuket, and its transition into Phuket Bay. Water samples were collected from nine stations during the dry and rainy seasons of 2024. Total heterotrophic bacterial counts and GNEB resistant to amoxicillin, tetracycline, norfloxacin, and meropenem were examined in relation to water quality parameters. Results revealed significant spatial variation, with urban areas contributing substantially to ARB prevalence. Amoxicillin-resistant bacteria were the most prevalent, particularly among GNEB, while meropenem-resistant bacteria were consistently detected at most stations despite their low abundance. Seasonal variations indicated higher bacterial abundance upstream during the dry season and downstream during the rainy season, potentially driven by tourism and runoff dynamics. The coastal station exhibited a notably high proportion of antibiotic-resistant marine heterotrophic bacteria. Redundancy analysis identified turbidity and dissolved oxygen as significant factors influencing bacterial counts. Cluster analysis grouped stations based on water quality, with upstream and coastal sites exhibiting distinct profiles. This study underscores the critical role of urban activities in ARB dissemination and highlights the environmental and public health implications of ARB in coastal ecosystems, necessitating targeted mitigation and monitoring strategies. | 2025 | 40976823 |
| 7158 | 19 | 0.9936 | Antibiotic resistome, potential pathogenic bacteria and associated health risk in geogenic chromium groundwater. Geogenic chromium (Cr) contamination in groundwater poses a global environmental challenge. However, with antibiotic resistance remaining a public health threat, the occurrence and associated health risks of antibiotic resistomes in Cr contaminated groundwater and their linkages to geogenic Cr are poorly understood. Here, we assessed the groundwater microbiome, potential pathogenic bacteria, and antibiotic resistomes with associated health risks in geogenic Cr impacted groundwater across shallow (<100 m) and deep (>100 m) aquifers in a plateau from Northwestern China. A total of 174 antibiotic resistance genes (ARGs) were detected with absolute abundances reaching 1.28 × 10(8) copies/L. Shallow and deep groundwater harbored distinct ARG profiles with significantly higher abundance and associated health risks presented in shallow groundwater (p < 0.01). A total of 332 potential pathogenic bacteria were identified, abundances of which 53.9 % were strongly correlated to the prevalent ARGs. Toxic Cr(VI) as a potential co-selective agent was positively associated with elevated ARG-linked potential pathogenic bacteria and mobile genetic elements (MGEs). Our findings collectively revealed the geogenic Cr contaminated groundwater as a significant reservoir of ARGs and potential pathogens, highlighting the dual risks of geogenic Cr as both a toxicant and promoter for accelerating ARGs within aquifers. | 2025 | 41072644 |