# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6793 | 0 | 0.9910 | Interplays between cyanobacterial blooms and antibiotic resistance genes. Cyanobacterial harmful algal blooms (cyanoHABs), which are a form of microbial dysbiosis in freshwater environments, are an emerging environmental and public health concern. Additionally, the freshwater environment serves as a reservoir of antibiotic resistance genes (ARGs), which pose a risk of transmission during microbial dysbiosis, such as cyanoHABs. However, the interactions between potential synergistic pollutants, cyanoHABs, and ARGs remain poorly understood. During cyanoHABs, Microcystis and high microcystin levels were dominant in all the nine regions of the river sampled. The resistome, mobilome, and microbiome were interrelated and linked to the physicochemical properties of freshwater. Planktothrix and Pseudanabaena competed with Actinobacteriota and Proteobacteria during cyanoHABs. Forty two ARG carriers were identified, most of which belonged to Actinobacteriota and Proteobacteria. ARG carriers showed a strong correlation with ARGs density, which decreased with the severity of cyanoHAB. Although ARGs decreased due to a reduction of ARG carriers during cyanoHABs, mobile gene elements (MGEs) and virulence factors (VFs) genes increased. We explored the relationship between cyanoHABs and ARGs for potential synergistic interaction. Our findings demonstrated that cyanobacteria compete with freshwater commensal bacteria such as Actinobacteriota and Proteobacteria, which carry ARGs in freshwater, resulting in a reduction of ARGs levels. Moreover, cyanoHABs generate biotic and abiotic stress in the freshwater microbiome, which may lead to an increase in MGEs and VFs. Exploration of the intricate interplays between microbiome, resistome, mobilome, and pathobiome during cyanoHABs not only revealed that the mechanisms underlying the dynamics of microbial dysbiosis but also emphasizes the need to prioritize the prevention of microbial dysbiosis in the risk management of ARGs. | 2023 | 37897871 |
| 6821 | 1 | 0.9909 | Mangrove plastisphere as a hotspot for high-risk antibiotic resistance genes and pathogens. Microplastics (MPs) are critical vectors for the dissemination of antibiotic resistance genes (ARGs); however, the prevalence and ecological risks of high-risk ARGs in mangrove ecosystems-globally vital yet understudied coastal habitats-remain poorly understood. To address this gap, this study investigated polyethylene, polystyrene, and polyvinyl chloride incubated in mangrove sediments for one month, focusing on high-risk ARGs, virulence gene (VGs), and pathogenic antibiotic-resistant bacteria within the mangrove plastisphere. High-throughput PCR and metagenomic analyses revealed that high-risk ARGs, VGs, and mobile genetic elements (MGEs) were significantly enriched on MPs compared to surrounding sediments. Pathogenic bacteria and MGEs were also more abundant in the plastisphere, highlighting its role as a hotspot for ARG dispersal. Metagenome-assembled genome analysis identified Pseudomonas and Bacillus as key hosts for ARGs, MGEs, and VGs, particularly multidrug resistance genes, integrase genes, and adherence factors. Notably, polystyrene harbored the highest abundance of pathogenic bacteria carrying ARGs, MGEs, and VGs, and mangrove root exudates were found to amplify horizontal gene transfer on MPs, uncovering a previously overlooked mechanism driving antibiotic resistance in coastal ecosystems. These findings not only elucidate how MPs accelerate the spread of ARGs, but also underscore the urgent need for targeted mitigation strategies to address the adverse impacts microplastic pollution on human, animal, and environmental health. | 2025 | 40043931 |
| 6907 | 2 | 0.9907 | Deciphering the impact of organic loading rate and digestate recirculation on the occurrence patterns of antibiotics and antibiotic resistance genes in dry anaerobic digestion of kitchen waste. Organic loading rate (OLR) is crucial for determining the stability of dry anaerobic digestion (AD). Digestate recirculation contributes to reactor stability and enhances methane production. Nevertheless, the understanding of how OLR and digestate recirculation affect the abundance and diversity of antibiotics and antibiotic resistance genes (ARGs), as well as the mechanisms involved in the dissemination of ARGs, remains limited. This study thoroughly investigated this critical issue through a long-term pilot-scale experiment. The metabolome analyses revealed the enrichment of various antibiotics, such as aminoglycoside, tetracycline, and macrolide, under low OLR conditions (OLR ≤ 4.0 g·VS/L·d) and the reactor instability. Antibiotics abundance decreased by approximately 19.66-31.69 % during high OLR operation (OLR ≥ 6.0 g·VS/L·d) with digestate recirculation. The metagenome analyses demonstrated that although low OLR promoted reactor stability, it facilitated the proliferation of antibiotic-resistant bacteria, such as Pseudomonas, and triggered functional profiles related to ATP generation, oxidative stress response, EPS secretion, and cell membrane permeability, thereby facilitating horizontal gene transfer (HGT) of ARGs. However, under stable operation at an OLR of 6.0 g·VS/L·d, there was a decrease in ARGs abundance but a notable increase in human pathogenic bacteria (HPB) and mobile genetic elements (MGEs). Subsequently, during reactor instability, the abundance of ARGs and HPB increased. Notably, during digestate recirculation at OLR levels of 6.0 and 7.0 g·VS/L·d, the process attenuated the risk of ARGs spread by reducing the diversity of ARGs hosts, minimizing interactions among ARGs hosts, ARGs, and MGEs, and weakening functional profiles associated with HGT of ARGs. Overall, digestate recirculation aids in reducing the abundance of antibiotics and ARGs under high OLR conditions. These findings provide advanced insights into how OLR and digestate recirculation affect the occurrence patterns of antibiotics and ARGs in dry AD. | 2024 | 38968733 |
| 6802 | 3 | 0.9906 | Distinct species turnover patterns shaped the richness of antibiotic resistance genes on eight different microplastic polymers. Elucidating the formation mechanism of plastisphere antibiotic resistance genes (ARGs) on different polymers is necessary to understand the ecological risks of plastisphere ARGs. Here, we explored the turnover and assembly mechanism of plastisphere ARGs on 8 different microplastic polymers (4 biodegradable (bMPs) and 4 non-biodegradable microplastics (nMPs)) by metagenomic sequencing. Our study revealed the presence of 479 ARGs with abundance ranging from 41.37 to 58.17 copies/16S rRNA gene in all plastispheres. These ARGs were predominantly multidrug resistance genes. The richness of plastisphere ARGs on different polymers had a significant correlation with the contribution of species turnover to plastisphere ARGs β diversity. Furthermore, polymer type was the most critical factor affecting the composition of plastisphere ARGs. More opportunistic pathogens carrying diverse ARGs on BMPs (PBAT, PBS, and PHA) with higher horizontal gene transfer potential may further magnify the ecological risks and human health threats. For example, the opportunistic pathogens Riemerella anatipestifer, Vibrio campbellii, and Vibrio cholerae are closely related to human production and life, which were the important potential hosts of many plastisphere ARGs and mobile genetic elements on BMPs. Thus, we emphasize the urgency of developing the formation mechanism of plastisphere ARGs and the necessity of controlling BMPs and ARG pollution, especially BMPs, with ever-increasing usage in daily life. | 2024 | 38971360 |
| 6805 | 4 | 0.9906 | Environmentally persistent microbial contamination in agricultural soils: High risk of pathogenicity and antibiotic resistance. Persistent microbial contamination commonly occurs in the environment. However, the characteristics and associated risks remain largely unknown. The coexistence of virulence factor genes (VFGs) and "last-resort" antibiotic resistance genes (LARGs) on human bacterial pathogens (HBPs) are notorious, creating ecological concerns and health risks. Herein, we explored the pathogenicity and antibiotic resistance levels of LARG-harboring HBPs in agricultural soils. Our findings revealed a high distribution level of VFGs and LARGs in soils (an absolute abundance up to 4.7 × 10(7) gene copies/g soil) by quantitative PCR (qPCR). Furthermore, most isolated LARG-harboring HBPs exhibited a 100 % lethality rate to Galleria mellonella. LARG-carrying plasmids had a low fitness cost to their host bacteria, implying the high adaptation of these plasmids within the HBPs. Most importantly, multiple LARG and VFG plasmid fusion and core genetic arrangements suggested that these LARG/VFG-linked plasmids endowed the stable and persistent horizontal spread of these genes in and/or cross the species and environments. This study not only unveiled high risk, multisource, compliance and stability aspects of environmentally persistent microbial contamination but also illuminated the importance of linking the phenotype-genotype-niche colonization of environmental microbial contamination within "One Health" framework. | 2024 | 39059024 |
| 3172 | 5 | 0.9904 | Metagenomic and Culturomics Analysis of Microbial Communities within Surface Sediments and the Prevalence of Antibiotic Resistance Genes in a Pristine River: The Zaqu River in the Lancang River Source Region, China. Microbial communities inhabiting sedimentary environments in river source regions serve as pivotal indicators of pristine river ecosystems. While the correlation between antibiotic resistome and pathogenicity with core gut bacteria in humans is well established, there exists a significant knowledge gap concerning the interaction of antibiotic resistance genes (ARGs) and human pathogenic bacteria (HPB) with specific microbes in river source basins, often referred to as "terrestrial gut". Understanding the microbial composition, including bacteria and resident genetic elements such as ARGs, HPB, Mobile Genetic Elements (MGEs), and Virulence Factors (VFs), within natural habitats against the backdrop of global change, is imperative. To address this gap, an enrichment-based culturomics complementary along with metagenomics was conducted in this study to characterize the microbial biobank and provide preliminary ecological insights into profiling the dissemination of ARGs in the Lancang River Source Basin. Based on our findings, in the main stream of the Lancang River Source Basin, 674 strains of bacteria, comprising 540 strains under anaerobic conditions and 124 under aerobic conditions, were successfully isolated. Among these, 98 species were identified as known species, while 4 were potential novel species. Of these 98 species, 30 were HPB relevant to human health. Additionally, bacA and bacitracin emerged as the most abundant ARGs and antibiotics in this river, respectively. Furthermore, the risk assessment of ARGs predominantly indicated the lowest risk rank (Rank Ⅳ) in terms of endangering human health. In summary, enrichment-based culturomics proved effective in isolating rare and unknown bacteria, particularly under anaerobic conditions. The emergence of ARGs showed limited correlation with MGEs, indicating minimal threats to human health within the main stream of the Lancang River Source Basin. | 2024 | 38792738 |
| 6425 | 6 | 0.9903 | Freshwater plastisphere: a review on biodiversity, risks, and biodegradation potential with implications for the aquatic ecosystem health. The plastisphere, a unique microbial biofilm community colonizing plastic debris and microplastics (MPs) in aquatic environments, has attracted increasing attention owing to its ecological and public health implications. This review consolidates current state of knowledge on freshwater plastisphere, focussing on its biodiversity, community assembly, and interactions with environmental factors. Current biomolecular approaches revealed a variety of prokaryotic and eukaryotic taxa associated with plastic surfaces. Despite their ecological importance, the presence of potentially pathogenic bacteria and mobile genetic elements (i.e., antibiotic resistance genes) raises concerns for ecosystem and human health. However, the extent of these risks and their implications remain unclear. Advanced sequencing technologies are promising for elucidating the functions of plastisphere, particularly in plastic biodegradation processes. Overall, this review emphasizes the need for comprehensive studies to understand plastisphere dynamics in freshwater and to support effective management strategies to mitigate the impact of plastic pollution on freshwater resources. | 2024 | 38699475 |
| 6383 | 7 | 0.9903 | Metagenomic analysis of microbiological risk in bioaerosols during biowaste valorization using Musca domestica. Bioconversion using insects has gradually become a promising technology for biowaste management and protein production. However, knowledge about microbiological risk of insect related bioaerosols is sparse and conventional methods failed to provide higher resolved information of environmental microbe. In this study, a metagenomic analysis including microorganisms, antibiotic resistance genes (ARGs), virulence factor genes (VFGs), mobile gene elements (MGEs), and endotoxin distribution in bioaerosols during biowaste conversion via Musca domestica revealed that bioaerosols in Fly rearing room possess the highest ARGs abundances and MGEs diversity. Through a metagenome-assembled genomes (MAGs)-based pipeline, compelling evidence of ARGs/VFGs host assignment and ARG-VFG co-occurrence pattern were provided from metagenomic perspective. Bioaerosols in Bioconversion and Maggot separation zone were identified to own high density of MAGs carrying both ARGs and VFGs. Bacteria in Proteobacteria, Actinobacteriota, and Firmicutes phyla were predominate hosts of ARGs and VFGs. Multidrug-Motility, Multidrug-Adherence, and Beta lactam-Motility pairs were the most common ARG-VFG co-occurrence pattern in this study. Results obtained are of great significance for microbiological risk assessment during housefly biowaste conversion process. | 2023 | 36681377 |
| 6829 | 8 | 0.9902 | Metagenomic insights into the characteristics and co-migration of antibiotic resistome and metal(loid) resistance genes in urban landfill soil and groundwater. The heavy metals and antibiotic resistance genes (ARGs) in landfills showed a significant correlation; however, the relationship between metal(loid) resistance genes (MRGs) and ARGs in contaminated environments, as well as whether they co-migrate with human pathogenic bacteria (HPB), remains unclear. This study is the first to report the characteristics and co-migration of ARGs and MRGs in the soil and groundwater of aged urban landfill sites. Our findings indicated that quinolone, efflux, and macrolide-lincosamide-streptogramin represented the most abundant ARGs identified. Notably, ARG abundance was higher in groundwater compared to soil, with subtype diversity reflecting a similar trend; however, microbial diversity in soil was greater. Metagenome-assembled genomes data indicated a higher risk of antibiotic-resistant HPB in groundwater. It is imperative to focus on HPB that co-carry ARGs and MRGs alongside mobile genetic elements (MGEs), such as Ralstonia pickettii and Pseudomonas stutzeri. Genes conferring resistance to copper and mercury, as well as MGEs such as qacEdelta and intI1, played a critical role in promoting horizontal gene transfer of antibiotic resistance. MRG may promote ARG migration by affecting the permeability of the cell membrane. Procrustes analysis revealed a strong similarity (87 %) between heavy metals and MRG structures. Variance partitioning analyses demonstrated that both heavy metals and biological factors jointly governed landfill ARGs (96.2 %), exerting a more substantial influence in groundwater than in soil. This study serves as a reference for managing landfill, while emphasizing the importance of addressing the co-migration of MRGs and ARGs in pathogens when controlling the spread of risks. | 2025 | 40614847 |
| 6803 | 9 | 0.9902 | As a reservoir of antibiotic resistance genes and pathogens, the hydrodynamic characteristics drive their distribution patterns in Lake Victoria. Antibiotic resistance genes (ARGs) and pathogenic bacteria pose significant challenges to human health, and hydrodynamic processes complicate their transmission mechanisms in lake ecosystems, particularly in tropical regions. Lake Victoria supports abundant water resources and provides livelihoods for millions of people, yet the environmental behavior of ARGs and pathogenic bacteria remains unclear. Herein, the novel insights into the co-occurrence patterns and transmission mechanisms of ARGs and pathogenic bacteria in Lake Victoria was investigated via molecular techniques and a hydrodynamic model. The results showed that as a large reservoir of ARGs and pathogenic bacteria, a total of 172 ARG subtypes and 93 pathogenic bacteria were identified in Lake Victoria. ARGs were spread through mobile genetic elements (tnpA4 and int2), enhancing the antibiotic resistance and virulence factors (secretion systems, regulatory factors, and toxins) of various pathogenic bacteria. The hydrodynamic model indicated that surface wind-driven currents and bottom compensatory flows shaped the outward dispersion of ARGs and pathogenic bacteria from the gulf. The NCM model suggested that water exchange accelerated the diffusion of antibiotics and pathogens, likely enhancing the deterministic assembly process of ARGs and the stochastic assembly process of pathogens. The PLS-PM model revealed that hydrodynamics directly influenced the accumulation of ARGs and pathogenic bacteria, and subsequently affected the diffusion and distribution patterns of ARGs and pathogens by facilitating the propagation of MGEs. Our study overcomes the limitations associated with lake and microenvironmental scale, providing insights and understanding into the transmission mechanisms of ARGs and pathogenic bacteria. | 2025 | 39988254 |
| 6936 | 10 | 0.9902 | Pivotal role of earthworm gut protists in mediating antibiotic resistance genes under microplastic and sulfamethoxazole stress in soil-earthworm systems. Microplastics (MPs) are currently receiving widespread attention worldwide, and their co-occurrence with antibiotics is unavoidable. However, our understanding of how protists respond to co-pollution and mediate antibiotic resistance genes (ARGs) profiles remains exceedingly limited, particularly within non-target animals' guts. To bridge these gaps, we investigated the individual and combined effects of polyethylene and sulfamethoxazole (SMZ) on microbial communities and ARGs in soil and earthworm guts. We found that the MP-SMZ combination significantly elevated the abundance and richness of ARGs in the soil and earthworm. Protistan compositions (particularly consumers) responded more strongly to pollutants than did bacterial and fungal communities, especially under combined pollution. Interkingdom cooccurrence network analysis revealed that protists had stronger and more effective interactions with the resistome in the earthworm guts, suggesting that the impact of these protists on ARGs compositional changes was potentially modulated through the "top-down" regulation of bacteria and fungi. Meta-cooccurrence networks further confirmed that protist-related networks had more keystone pollution-sensitive ASVs (psASVs) and these psASVs were mostly associated with protistan consumers. Our study highlights protists as promising agents for regulating and monitoring microbial functions, as well as the ecological risks of the antibiotic resistome associated with MPs and SMZ pollution in agricultural ecosystems. | 2025 | 40412325 |
| 6937 | 11 | 0.9902 | Differential responses of bacterial and archaeal communities to biodegradable and non-biodegradable microplastics in river. Microplastics are widespread environmental pollutants that pose risks to ecosystems, yet their effects on bacterial and archaeal communities in aquatic ecosystems remain understudied. In this study, we performed a 14-day microcosm experiment combined with metagenomic sequencing to compare bacterial and archaeal responses to a biodegradable microplastic (polylactic acid, PLA) and a non-biodegradable microplastic (polyvinyl chloride, PVC). Microplastics selectively enriched distinct microbial assemblages, with Pseudomonadota and Euryarchaeota identified as the dominant bacterial and archaeal phyla, accounting for 67.83 % and 15.95 %, respectively. Archaeal community in surrounding water were more sensitive to colonization time than bacterial community. Compared to the surrounding water, the plastisphere displayed simpler and more loosely connected microbial networks. Notably, co-occurrence networks of both bacteria and archaea in the PVC plastisphere were predominantly shaped by symbiotic interactions. Both bacteria and archaea carried diverse antibiotic resistance genes (ARGs), but PLS-PM indicated that bacteria were the primary drivers of ARG dissemination (path coefficient = 0.952). While the PVC plastisphere showed higher ARG abundance than the PLA plastisphere, elevated intI1 expression in the PLA plastisphere suggests a potentially greater risk of ARG dissemination associated with PLA microplastics. These findings reveal the distinct effects of PLA and PVC microplastics on microbial communities and highlight the role of microplastics in ARG dissemination, emphasizing their ecological risks in aquatic ecosystems. | 2025 | 40712359 |
| 6796 | 12 | 0.9902 | Assessing the pig microbial health impacts of smallholder farming. The livestock industry has long been a hotspot environment for antibiotic resistance genes, with smallholder farming still holding a significant position in pig farming. However, the microbial antibiotic resistance and pathogen risks in pigs under the smallholder farming model remain unclear. We systematically analyzed the antibiotic resistance and microbial composition of pig feces from smallholder and large-scale farming models in Sichuan. The results indicated a lower abundance of antibiotic resistance genes (ARGs) and similar microbial composition in smallholder farming compared to large-scale farming. Beneficial bacteria were more abundant in small-scale farming, whereas large-scale farming exhibited more ARGs, virulence genes, and human pathogenic bacteria (HPBs), including ESBL Escherichia coli strains closely related to human strains, indicating higher zoonotic risk. The findings suggest that smallholder farming presents a relatively better microbial composition and resistance profile, highlighting its advantages over large-scale farming in terms of pig and human health. It is noteworthy that a considerable proportion of HPBs carrying ARGs still exist in the feces from smallholder farming, and given the openness of fecal handling, there remains a high risk of transmitting ARGs and pathogens to humans. | 2024 | 39454358 |
| 6434 | 13 | 0.9901 | Unraveling the role of microplastics in antibiotic resistance: Insights from long-read metagenomics on ARG mobility and host dynamics. As two emerging pollutants, microplastics (MPs) potentially serve as vectors for antibiotic resistance genes (ARGs) in aquatic environments, but the mechanisms driving ARG enrichment remain unclear. This study used long-read metagenomics to investigate ARG mobility and hosts dynamics within the biofilms of MPs and rocks in different water environments. We identified distinct enrichment patterns for microbial communities and ARGs, highlighting the significant role of horizontal gene transfer in ARG enrichment. Specifically, plasmid-encoded ARGs varied significantly among MP biofilms, rock biofilms, and water samples, while chromosome-encoded ARGs remained consistent across these environments, emphasizing the impact of plasmids on ARG enrichment. Despite this, 55.1 % of ARGs were on chromosomes, indicating that host organisms also play a crucial role. The related mechanisms driving ARG enrichment included enhanced cell adhesion, increased transmembrane transporter activity, and responses to environmental stressors, which led to an increased presence of plasmid-encoded ARGs on MP biofilms, facilitating more frequent horizontal gene transfer. Additionally, the diversity of hosts on MPs was notably lower compared to the water column, with specific bacteria, including Herbaspirillu, Limnohabitans, Polaromonas, Variovorax, Rubrivivax, and Thauera significantly driving ARG enrichment. This study highlights key mechanisms and bacterial taxa involved in ARG dynamics on MPs. | 2025 | 40056523 |
| 6880 | 14 | 0.9901 | Co-occurrence and co-expression of antibiotic, biocide, and metal resistance genes with mobile genetic elements in microbial communities subjected to long-term antibiotic pressure: Novel insights from metagenomics and metatranscriptomics. The burgeoning of antibiotic resistance has emerged as a pressing global challenge. To gain a deeper understanding of the interactions between antibiotic resistance genes (ARGs), biocide and metal resistance genes (BRGs&MRGs), and mobile genetic elements (MGEs), this study utilized metagenomics and metatranscriptomics to investigate their co-occurrence and co-expression in two consortia subjected to long-term exposure to chloramphenicol and lincomycin. Long-term exposure to these antibiotics resulted in significant disparities in resistance profiles: Consortium(CAP) harbored 130 ARGs and 150 BRGs&MRGs, while Consortium(LIN) contained 57 ARGs and 32 BRGs&MRGs. Horizontal gene transfer (HGT) events were predicted at 125 and 300 instances in Consortium(CAP) and Consortium(LIN), respectively, facilitating the emergence of multidrug-resistant bacteria, such as Caballeronia (10 ARGs, 2 BRGs&MRGs), Cupriavidus (2 ARGs, 10 BRGs&MRGs), and Bacillus (14 ARGs, 21 BRGs&MRGs). Chloramphenicol exposure significantly enriched genes linked to phenicol resistance (floR, capO) and co-expressed ARGs and BRGs&MRGs, while lincomycin exerted narrower effects on resistance genes. Additionally, both antibiotics modulated the expression of degradation genes and virulence factors, highlighting their role in altering bacterial substrate utilization and pathogenic traits. This study provides quantitative insights into the impact of antibiotics on microbial resistance profiles and functions at both DNA and RNA levels, highlighting the importance of reducing antibiotic pollution and limiting the spread of resistance genes in the environment. | 2025 | 39965334 |
| 6822 | 15 | 0.9901 | River contamination shapes the microbiome and antibiotic resistance in sharpbelly (Hemiculter leucisculus). Animals living in urban river systems play critical roles in the dissemination of microbiome and antibiotic resistance that poses a strong threat to public health. This study provides a comprehensive profile of microbiota and antibiotic resistance genes (ARGs) of sharpbelly (Hemiculter leucisculus) and the surrounding water from five sites along the Ba River. Results showed Proteobacteria, Firmicutes and Fusobacteria were the dominant bacteria in gut of H. leucisculus. With the aggravation of water pollution, bacterial biomass of fish gut significantly decreased and the proportion of Proteobacteria increased to become the most dominant phylum eventually. To quantify the contributions of influential factors on patterns of gut microbiome with structural equation model (SEM), water bacteria were confirmed to be the most stressors to perturb fish gut microbiome. SourceTracker model indicated that deteriorating living surroundings facilitated the invasion of water pathogens to fish gut eco-environments. Additionally, H. leucisculus gut is an important reservoir of ARGs in Ba River with relative abundance up to 9.86 × 10(-1)/copies. Among the ARGs, tetracycline and quinolone resistance genes were detected in dominant abundance. Deterioration of external environments elicited the accumulation of ARGs in fish gut. Intestinal class I integron, environmental heavy metal residues and gut bacteria were identified as key drivers of intestinal ARGs profiles in H. leucisculus. Analysis of SEM and co-occurrence patterns between ARGs and bacterial hosts indicated that class I integron and bacterial community played vital roles in ARGs transmission through water-fish pathway. In general, this study highlighted hazards of water contamination to microbiome and ARGs in aquatic animals and provided a new perspective to better understand the bacteria and ARGs dissemination in urban river ecosystems. | 2021 | 33120330 |
| 6818 | 16 | 0.9901 | Atmospheric antibiotic resistome driven by air pollutants. The atmosphere is an important reservoir and habitat for antibiotic resistance genes (ARGs) and is a main pathway to cause potential health risks through inhalation and ingestion. However, the distribution characteristics of ARGs in the atmosphere and whether they were driven by atmospheric pollutants remain unclear. We annotated 392 public air metagenomic data worldwide and identified 1863 ARGs, mainly conferring to tetracycline, MLS, and multidrug resistance. We quantified these ARG's risk to human health and identified their principal pathogenic hosts, Burkholderia and Staphylococcus. Additionally, we found that bacteria in particulate contaminated air carry more ARGs than in chemically polluted air. This study revealed the influence of typical pollutants in the global atmosphere on the dissemination and risk of ARGs, providing a theoretical basis for the prevention and mitigation of the global risks associated with ARGs. | 2023 | 37543315 |
| 8573 | 17 | 0.9901 | Nitrogen-transforming bacteria as key hosts and disseminators of antibiotic resistance genes in constructed wetlands: Metagenomic and metatranscriptomic evidence. Given global concerns over antibiotic resistance genes (ARGs), constructed wetlands (CWs) have emerged as a cost-effective strategy to remove nitrogen (N) and mitigate ARG-related ecological risks. The occurrence and dissemination of ARGs are mainly driven by microorganisms. Although nitrogen transformation is a key process in CWs, the relationship between nitrogen-transforming bacteria (NTB) and ARG dynamics remains unclear. In this study, metagenomic and metatranscriptomic analyses were employed to comprehensively examine the associations between N transformation and the abundance, hosts, and ecological risks of ARGs in full-scale CWs. NTB, particularly dissimilatory nitrate reducers and bacteria involved in N organic degradation and synthesis, were identified as the primary hosts of ARGs. Furthermore, CWs substantially reduced ARG-related ecological risks, achieving decreases of 79.5 % in ARG expression, 94.9 % in mobile genetic elements, and 88.0 % in antibiotic-resistant pathogens, and identified NTB as key contributors to these risks. Both the decline in NTB abundance and adaptive fitness costs were identified as key mechanisms driving ARG reduction and mitigating ecological risk. This study highlights the critical role of N transformation in shaping ARG dynamics from a microbial perspective, providing a theoretical foundation for engineering practice in the co-control of ARGs and nitrogen removal in CWs. | 2025 | 41138407 |
| 6426 | 18 | 0.9901 | Deciphering the pathogenic risks of microplastics as emerging particulate organic matter in aquatic ecosystem. Microplastics are accumulating rapidly in aquatic ecosystems, providing habitats for pathogens and vectors for antibiotic resistance genes (ARGs), potentially increasing pathogenic risks. However, few studies have considered microplastics as particulate organic matter (POM) to elucidate their pathogenic risks and underlying mechanisms. Here, we performed microcosm experiments with microplastics and natural POM (leaves, algae, soil), thoroughly investigating their distinct effects on the community compositions, functional profiles, opportunistic pathogens, and ARGs in Particle-Associated (PA) and Free-Living (FL) bacterial communities. We found that both microplastics and leaves have comparable impacts on microbial community structures and functions, enriching opportunistic pathogens and ARGs, which may pose potential environmental risks. These effects are likely driven by their influences on water properties, including dissolved organic carbon, nitrate, DO, and pH. However, microplastics uniquely promoted pathogens as keystone species and further amplified their capacity as hosts for ARGs, potentially posing a higher pathogenic risk than natural POM. Our research also emphasized the importance of considering both PA and FL bacteria when assessing microplastic impacts, as they exhibited different responses. Overall, our study elucidates the role and underlying mechanism of microplastics as an emerging POM in intensifying pathogenic risks of aquatic ecosystems in comparison with conventional natural POM. | 2024 | 38805824 |
| 6798 | 19 | 0.9901 | Diet-driven diversity of antibiotic resistance genes in wild bats: implications for public health. Wild bats may serve as reservoirs for antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria, potentially contributing to antibiotic resistance and pathogen transmission. However, current assessments of bats' antibiotic resistance potential are limited to culture-dependent bacterial snapshots. In this study, we present metagenomic evidence supporting a strong association between diet, gut microbiota, and the resistome, highlighting bats as significant vectors for ARG propagation. We characterized gut microbiota, ARGs, and mobile genetic elements (MGEs) in bats with five distinct diets: frugivory, insectivory, piscivory, carnivory, and sanguivory. Our analysis revealed high levels of ARGs in bat guts, with limited potential for horizontal transfer, encompassing 1106 ARGs conferring resistance to 26 antibiotics. Multidrug-resistant and polymyxin-resistant genes were particularly prevalent among identified ARG types. The abundance and diversity of ARGs/MGEs varied significantly among bats with different dietary habits, possibly due to diet-related differences in microbial composition. Additionally, genetic linkage between high-risk ARGs and multiple MGEs was observed on the genomes of various zoonotic pathogens, indicating a potential threat to human health from wild bats. Overall, our study provides a comprehensive analysis of the resistome in wild bats and underscores the role of dietary habits in wildlife-associated public health risks. | 2025 | 39892320 |