UNTIL - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
938400.9961Bacterial evolution and the cost of antibiotic resistance. Bacteria clearly benefit from the possession of an antibiotic resistance gene when the corresponding antibiotic is present. But do resistant bacteria suffer a cost of resistance (i.e., a reduction in fitness) when the antibiotic is absent? If so, then one strategy to control the spread of resistance would be to suspend the use of a particular antibiotic until resistant genotypes declined to low frequency. Numerous studies have indeed shown that resistant genotypes are less fit than their sensitive counterparts in the absence of antibiotic, indicating a cost of resistance. But there is an important caveat: these studies have put resistance genes into naive bacteria, which have no evolutionary history of association with the resistance genes. An important question, therefore, is whether bacteria can overcome the cost of resistance by evolving adaptations that counteract the harmful side-effects of resistance genes. In fact, several experiments (in vitro and in vivo) show that the cost of antibiotic resistance can be substantially diminished, even eliminated, by evolutionary changes in bacteria over rather short periods of time. As a consequence, it becomes increasingly difficult to eliminate resistant genotypes simply by suspending the use of antibiotics.199810943373
938310.9960The cost of antibiotic resistance--from the perspective of a bacterium. The possession of an antibiotic resistance gene clearly benefits a bacterium when the corresponding antibiotic is present. But does the resistant bacterium suffer a cost of resistance (i.e. a reduction in fitness) when the antibiotic is absent? If so, then one strategy to control the spread of resistance would be to suspend the use of a particular antibiotic until resistant genotypes declined to low frequency. Numerous studies have indeed shown that resistant genotypes are less fit than their sensitive counterparts in the absence of antibiotic, indicating a cost of resistance. But there is an important caveat: these studies have put antibiotic resistance genes into naïve bacteria, which have no evolutionary history of association with the resistance genes. An important question, therefore, is whether bacteria can overcome the cost of resistance by evolving adaptations that counteract the harmful side-effects of resistance genes. In fact, several experiments have shown that the cost of antibiotic resistance may be substantially diminished, even eliminated, by evolutionary changes in bacteria over rather short periods of time. As a consequence of this adaptation of bacteria to their resistance genes, it becomes increasingly difficult to eliminate resistant genotypes simply by suspending the use of antibiotics.19979189639
822020.9960Ionophore resistance of ruminal bacteria and its potential impact on human health. In recent years, there has been a debate concerning the causes of antibiotic resistance and the steps that should be taken. Beef cattle in feedlots are routinely fed a class of antibiotics known as ionophores, and these compounds increase feed efficiency by as much as 10%. Some groups have argued that ionophore resistance poses the same public health threat as conventional antibiotics, but humans are not given ionophores to combat bacterial infection. Many ruminal bacteria are ionophore-resistant, but until recently the mechanism of this resistance was not well defined. Ionophores are highly lipophilic polyethers that accumulate in cell membranes and catalyze rapid ion movement. When sensitive bacteria counteract futile ion flux with membrane ATPases and transporters, they are eventually de-energized. Aerobic bacteria and mammalian enzymes can degrade ionophores, but these pathways are oxygen-dependent and not functional in anaerobic environments like the rumen or lower GI tract. Gram-positive ruminal bacteria are in many cases more sensitive to ionophores than Gram-negative species, but this model of resistance is not always clear-cut. Some Gram-negative ruminal bacteria are initially ionophore-sensitive, and even Gram-positive bacteria can adapt. Ionophore resistance appears to be mediated by extracellular polysaccharides (glycocalyx) that exclude ionophores from the cell membrane. Because cattle not receiving ionophores have large populations of resistant bacteria, it appears that this trait is due to a physiological selection rather than a mutation per se. Genes responsible for ionophore resistance in ruminal bacteria have not been identified, but there is little evidence that ionophore resistance can be spread from one bacterium to another. Given these observations, use of ionophores in animal feed is not likely to have a significant impact on the transfer of antibiotic resistance from animals to man.200312697342
952530.9960Is there a serious risk of resistance development to azoles among fungi due to the widespread use and long-term application of azole antifungals in medicine? It is well known that development of antibiotic resistance in bacteria is not a matter of if but of when. Recently, azoles have been recommended for long-term prophylaxis of invasive fungal infections; hence, it could be argued that fungi also will become resistant to these agents. However, fungi are different from bacteria in several critical points. Bacteria display several resistance mechanisms: alteration of the target, limited access to the target and modification/inactivation of the antibacterial compound. In fungi some mechanisms of resistance to azoles are also known; with azoles for example, alterations of the 14alpha-demethylase target, as well as efflux pumps. It has been observed that these phenotypes develop in yeast populations either due to mutations or to selection processes. However, enzymes which destroy azoles are not found. Furthermore, a horizontal transfer of genes coding resistance traits does not occur in fungi, which means that an explosive expansion of resistances is unlikely to occur, especially in moulds. Indeed, in epidemiologic studies on human and environmental isolates there is convincing evidence that azole resistance is quite uncommon.200818325827
949040.9960The superbugs: evolution, dissemination and fitness. Since the introduction of antibiotics, bacteria have not only evolved elegant resistance mechanisms to thwart their effect, but have also evolved ways in which to disseminate themselves or their resistance genes to other susceptible bacteria. During the past few years, research has revealed not only how such resistance mechanisms have been able to evolve and to rapidly disseminate, but also how bacteria have, in some cases, been able to adapt to this new burden of resistance with little or no cost to their fitness. Such adaptations make the control of these superbugs all the more difficult.199810066531
917850.9959Targeting non-multiplying organisms as a way to develop novel antimicrobials. Increasing resistance and decreasing numbers of antibiotics reaching the market point to a growing need for novel antibacterial drugs. Most antibiotics are very inefficient at killing non-multiplying bacteria, which live side by side with multiplying ones of the same strain in a clinical infection. Although non-multiplying bacteria do not usually cause disease, they can revert to the multiplying state that leads to overt disease, at which time resistance can emerge. Here we discuss the concept of developing antibacterial drugs by targeting non-multiplying organisms. We define non-multiplying bacteria, discuss the efficacy of existing antibiotics, and assess whether targeting these bacteria might lead to new antibiotics that will decrease the rate of emergence of resistance. Lastly, we review the potential of new molecular targets and live non-multiplying bacteria as possible routes for the development of novel antimicrobial drugs.200818262665
946760.9959To give or not to give antibiotics is not the only question. In a 1945 Nobel Lecture, Sir Alexander Fleming warned against the overuse of antibiotics, particularly in response to public pressure. In the subsequent decades, evidence has shown that bacteria can become resistant to almost any available molecule. One key question is how the emergence and dissemination of resistant bacteria or resistance genes can be delayed. Although some clinicians remain sceptical, in this Personal View, we argue that the prescription of fewer antibiotics and shorter treatment duration is just as effective as longer regimens that remain the current guideline. Additionally, we discuss the fact that shorter antibiotic treatments exert less selective pressure on microorganisms, preventing the development of resistance. By contrast, longer treatments associated with a strong selective pressure favour the emergence of resistant clones within commensal organisms. We also emphasise that more studies are needed to identify the optimal duration of antibiotic therapy for common infections, which is important for making changes to the current guidelines, and to identify clinical biomarkers to guide antibiotic treatment in both hospital and ambulatory settings.202133347816
953770.9959Antimicrobial Resistance and Inorganic Nanoparticles. Antibiotics are being less effective, which leads to high mortality in patients with infections and a high cost for the recovery of health, and the projections that are had for the future are not very encouraging which has led to consider antimicrobial resistance as a global health problem and to be the object of study by researchers. Although resistance to antibiotics occurs naturally, its appearance and spread have been increasing rapidly due to the inappropriate use of antibiotics in recent decades. A bacterium becomes resistant due to the transfer of genes encoding antibiotic resistance. Bacteria constantly mutate; therefore, their defense mechanisms mutate, as well. Nanotechnology plays a key role in antimicrobial resistance due to materials modified at the nanometer scale, allowing large numbers of molecules to assemble to have a dynamic interface. These nanomaterials act as carriers, and their design is mainly focused on introducing the temporal and spatial release of the payload of antibiotics. In addition, they generate new antimicrobial modalities for the bacteria, which are not capable of protecting themselves. So, nanoparticles are an adjunct mechanism to improve drug potency by reducing overall antibiotic exposure. These nanostructures can overcome cell barriers and deliver antibiotics to the cytoplasm to inhibit bacteria. This work aims to give a general vision between the antibiotics, the nanoparticles used as carriers, bacteria resistance, and the possible mechanisms that occur between them.202134884695
958680.9959Antibiotic resistance. Through billions of years of evolution, microbes have developed myriad defense mechanisms designed to ensure their survival. This protection is readily transferred to their fellow life forms via transposable elements. Despite very early warnings, humans have chosen to abuse the gift of antibiotics and have created a situation where all microorganisms are resistant to some antibiotics and some microorganisms are resistant to all antibiotics. When antibiotics are used, six events may occur with only one being beneficial: when the antibiotic aids the host defenses to gain control and eliminate the infection. Alternatively, the antibiotic may cause toxicity or allergy, initiate a superinfection with resistant bacteria, promote microbial chromosomal mutations to resistance, encourage resistance gene transfer to susceptible species, or promote the expression of dormant resistance genes.200314664456
914190.9959Metallic Nanoparticles-Friends or Foes in the Battle against Antibiotic-Resistant Bacteria? The rapid spread of antibiotic resistances among bacteria demands novel strategies for infection control, and metallic nanoparticles appear as promising tools because of their unique size and tunable properties that allow their antibacterial effects to be maximized. Furthermore, their diverse mechanisms of action towards multiple cell components have suggested that bacteria could not easily develop resistance against nanoparticles. However, research published over the last decade has proven that bacteria can indeed evolve stable resistance mechanisms upon continuous exposure to metallic nanoparticles. In this review, we summarize the currently known individual and collective strategies employed by bacteria to cope with metallic nanoparticles. Importantly, we also discuss the adverse side effects that bacterial exposure to nanoparticles may have on antibiotic resistance dissemination and that might constitute a challenge for the implementation of nanoparticles as antibacterial agents. Overall, studies discussed in this review point out that careful management of these very promising antimicrobials is necessary to preserve their efficacy for infection control.202133673231
9449100.9959Conclusions and activities of previous expert groups: the Scientific Steering Committee of the EU. In 1998, the EU Commission consulted its Scientific Steering Committee (SSC) to give advice on actions against anti-microbial resistance based on scientific evidence. The SSC set up a working group and adopted in 1999 an Opinion on Antimicrobial Resistance. Statements given in the well-structured document are clear, and precise recommendations were proposed. Summarizing, the Committee stated: There is evidence to suppose a continuous flow of resistance genes between pathogenic and commensal bacteria and of transfer of these bacteria between different compartments of the biosphere, thus changing the genetic resources continuously. There exist numerous factors which influence the emergence and spread of anti-bacterial resistance. However, it is likely that restriction in the use of anti-microbials will lead to a containment or a reduction of the drug resistance problem. Actions should be taken promptly to reduce the overall use of anti-microbials in a balanced way in all areas: human medicine, veterinary medicine, animal production and plant protection.200415525374
9464110.9958Why is antibiotic resistance a deadly emerging disease? Evolution of bacteria towards resistance to antimicrobial agents, including multidrug resistance, is unavoidable because it represents a particular aspect of the general evolution of bacteria that is unstoppable. Therefore, the only means of dealing with this situation is to delay the emergence and subsequent dissemination of resistant bacteria or resistance genes. In this review, we will consider the biochemical mechanisms and the genetics that bacteria use to offset antibiotic selective pressure. The data provided are mainly, if not exclusively, taken from the work carried out in the laboratory, although there are numerous other examples in the literature.201626806259
9241120.9958Evolutionary Mechanisms Shaping the Maintenance of Antibiotic Resistance. Antibiotics target essential cellular functions but bacteria can become resistant by acquiring either exogenous resistance genes or chromosomal mutations. Resistance mutations typically occur in genes encoding essential functions; these mutations are therefore generally detrimental in the absence of drugs. However, bacteria can reduce this handicap by acquiring additional mutations, known as compensatory mutations. Genetic interactions (epistasis) either with the background or between resistances (in multiresistant bacteria) dramatically affect the fitness cost of antibiotic resistance and its compensation, therefore shaping dissemination of antibiotic resistance mutations. This Review summarizes current knowledge on the evolutionary mechanisms influencing maintenance of resistance mediated by chromosomal mutations, focusing on their fitness cost, compensatory evolution, epistasis, and the effect of the environment on these processes.201829439838
4274130.9958Antibiotic resistance: counting the cost. Acquisition of drug resistance should impose a cost on bacteria. Recent studies, however, suggest that natural selection acts to reduce, or eliminate, the growth disadvantage of resistant bacteria, making it difficult to reverse the high levels of antibiotic resistance currently found in hospitals and the community.19968939559
9500140.9958Antibiotic and biocide resistance in bacteria: introduction. Drug resistance in bacteria is increasing and the pace at which new antibiotics are being produced is slowing. It is now almost commonplace to hear about methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), multi-drug resistance in Mycobacterium tuberculosis (MDRTB) strains and multi-drug-resistant (MDR) Gram-negative bacteria. So-called new and emerging pathogens add to the gravity of the situation. Reduced susceptibility to biocides is also apparently increasing, but is more likely to be low level in nature and to concentrations well below those used in hospital, domestic an industrial practice. A particular problem, however, is found with bacteria and other micro-organisms present in biofilms, where a variety of factors can contribute to greater insusceptibility compared with cells in planktonic culture. Also of potential concern is the possibility that widespread usage of biocides is responsible for the selection and maintenance of antibiotic-resistant bacteria. The basic mechanisms of action of, and bacterial resistance to, antibiotics are generally well documented, although data continue to accumulate about the nature and importance of efflux systems. In contrast, the modes of action of most biocides are poorly understood and consequently, detailed evaluation of bacterial resistance mechanisms is often disappointing. During this Symposium, the mechanisms of bacterial resistance to antibiotics and biocides are discussed at length. It is hoped that this knowledge will be used to develop newer, more effective drugs and biocides that can be better and perhaps, on occasion, more logically used to combat the increasing problem of bacterial resistance.200212000607
9499150.9958Antibiotic and biocide resistance in bacteria: introduction. Drug resistance in bacteria is increasing and the pace at which new antibiotics are being produced is slowing. It is now almost commonplace to hear about methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), multi-drug resistance in Mycobacterium tuberculosis (MDRTB) strains and multi-drug-resistant (MDR) gram-negative bacteria. So-called new and emerging pathogens add to the gravity of the situation. Reduced susceptibility to biocides is also apparently increasing, but is more likely to be low level in nature and to concentrations well below those used in hospital, domestic an industrial practice. A particular problem, however, is found with bacteria and other micro-organisms present in biofilms, where a variety of factors can contribute to greater insusceptibility compared with cells in planktonic culture. Also of potential concern is the possibility that widespread usage of biocides is responsible for the selection and maintenance of antibiotic-resistant bacteria. The basic mechanisms of action of, and bacterial resistance to, antibiotics are generally well documented, although data continue to accumulate about the nature and importance of efflux systems. In contrast, the modes of action of most biocides are poorly understood and consequently, detailed evaluation of bacterial resistance mechanisms is often disappointing. During this Symposium, the mechanisms of bacterial resistance to antibiotics and biocides are discussed at length. It is hoped that this knowledge will be used to develop newer, more effective drugs and biocides that can be better and perhaps, on occasion, more logically used to combat the increasing problem of bacterial resistance.200212481823
4063160.9957The 2000 Garrod lecture. Factors impacting on the problem of antibiotic resistance. Antibiotic resistance has become a major clinical and public health problem within the lifetime of most people living today. Confronted by increasing amounts of antibiotics over the past 60 years, bacteria have responded to the deluge with the propagation of progeny no longer susceptible to them. While it is clear that antibiotics are pivotal in the selection of bacterial resistance, the spread of resistance genes and of resistant bacteria also contributes to the problem. Selection of resistant forms can occur during or after antimicrobial treatment; antibiotic residues can be found in the environment for long periods of time after treatment. Besides antibiotics, there is the mounting use of other agents aimed at destroying bacteria, namely the surface antibacterials now available in many household products. These too enter the environment. The stage is thus set for an altered microbial ecology, not only in terms of resistant versus susceptible bacteria, but also in terms of the kinds of microorganisms surviving in the treated environment. We currently face multiresistant infectious disease organisms that are difficult and, sometimes, impossible to treat successfully. In order to curb the resistance problem, we must encourage the return of the susceptible commensal flora. They are our best allies in reversing antibiotic resistance.200211751763
4273170.9957Mathematical modeling on bacterial resistance to multiple antibiotics caused by spontaneous mutations. We formulate a mathematical model that describes the population dynamics of bacteria exposed to multiple antibiotics simultaneously, assuming that acquisition of resistance is through mutations due to antibiotic exposure. Qualitative analysis reveals the existence of a free-bacteria equilibrium, resistant-bacteria equilibrium and an endemic equilibrium where both bacteria coexist.201424467935
9195180.9957Complement-resistance mechanisms of bacteria. Despite more than a century of parallel research on bacteria and the complement system, relatively little is known of the mechanisms whereby pathogenic bacteria can escape complement-related opsonophagocytosis and direct killing. It is likely that pathogenicity in bacteria has arisen more accidentally than in viruses, and on the basis of selection from natural mutants rather than by outright stealing or copying of genetic codes from the host. In this review we will discuss complement resistance as one of the features that makes a bacterium a pathogen.199910816084
9442190.9957Antibiotic resistance. Antibiotic resistance poses serious challenges to health and national security, and policy changes will be required to mitigate the consequences of antibiotic resistance. Resistance can arise in disease-causing bacteria naturally, or it can be deliberately introduced to a biological weapon. In either case, life-saving drugs are rendered ineffective. Resistant bacterial infections are difficult to treat, and there are few new antibiotics in the drug development pipeline. This article describes how antibiotic resistance affects health and national security, how bacteria become antibiotic resistant, and what should be done now so antibiotics will be available to save lives in the future.200920028245