UNRECOGNIZED - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
998600.9830Identification and characterization of thousands of bacteriophage satellites across bacteria. Bacteriophage-bacteria interactions are affected by phage satellites, elements that exploit phages for transfer between bacteria. Satellites can encode defense systems, antibiotic resistance genes, and virulence factors, but their number and diversity are unknown. We developed SatelliteFinder to identify satellites in bacterial genomes, detecting the four best described families: P4-like, phage inducible chromosomal islands (PICI), capsid-forming PICI, and PICI-like elements (PLE). We vastly expanded the number of described elements to ∼5000, finding bacterial genomes with up to three different families of satellites. Most satellites were found in Proteobacteria and Firmicutes, but some are in novel taxa such as Actinobacteria. We characterized the gene repertoires of satellites, which are variable in size and composition, and their genomic organization, which is very conserved. Phylogenies of core genes in PICI and cfPICI indicate independent evolution of their hijacking modules. There are few other homologous core genes between other families of satellites, and even fewer homologous to phages. Hence, phage satellites are ancient, diverse, and probably evolved multiple times independently. Given the many bacteria infected by phages that still lack known satellites, and the recent proposals for novel families, we speculate that we are at the beginning of the discovery of massive numbers and types of satellites.202336869669
836310.9828Hundreds of antimicrobial peptides create a selective barrier for insect gut symbionts. The spatial organization of gut microbiota is crucial for the functioning of the gut ecosystem, although the mechanisms that organize gut bacterial communities in microhabitats are only partially understood. The gut of the insect Riptortus pedestris has a characteristic microbiota biogeography with a multispecies community in the anterior midgut and a monospecific bacterial population in the posterior midgut. We show that the posterior midgut region produces massively hundreds of specific antimicrobial peptides (AMPs), the Crypt-specific Cysteine-Rich peptides (CCRs) that have membrane-damaging antimicrobial activity against diverse bacteria but posterior midgut symbionts have elevated resistance. We determined by transposon-sequencing the genetic repertoire in the symbiont Caballeronia insecticola to manage CCR stress, identifying different independent pathways, including AMP-resistance pathways unrelated to known membrane homeostasis functions as well as cell envelope functions. Mutants in the corresponding genes have reduced capacity to colonize the posterior midgut, demonstrating that CCRs create a selective barrier and resistance is crucial in gut symbionts. Moreover, once established in the gut, the bacteria differentiate into a CCR-sensitive state, suggesting a second function of the CCR peptide arsenal in protecting the gut epithelia or mediating metabolic exchanges between the host and the gut symbionts. Our study highlights the evolution of an extreme diverse AMP family that likely contributes to establish and control the gut microbiota.202438865264
917220.9828These Are the Genes You're Looking For: Finding Host Resistance Genes. Humanity's ongoing struggle with new, re-emerging and endemic infectious diseases serves as a frequent reminder of the need to understand host-pathogen interactions. Recent advances in genomics have dramatically advanced our understanding of how genetics contributes to host resistance or susceptibility to bacterial infection. Here we discuss current trends in defining host-bacterial interactions at the genome-wide level, including screens that harness CRISPR/Cas9 genome editing, natural genetic variation, proteomics, and transcriptomics. We report on the merits, limitations, and findings of these innovative screens and discuss their complementary nature. Finally, we speculate on future innovation as we continue to progress through the postgenomic era and towards deeper mechanistic insight and clinical applications.202133004258
935830.9827Single nucleotide switches confer bacteriophage resistance to Pseudomonas protegens. Phage therapy offers a promising strategy against bacterial pathogens in medicine and agriculture, but the rise of phage-resistant bacteria presents a significant challenge to its sustainability. Here, we used an environmental model bacterium, Pseudomonas protegens CHA0, to investigate phage resistance mechanisms in laboratory conditions through genomic analysis of four phage-resistant variants (C2, C4, C17, C18). Whole-genome sequencing revealed frequent deletions, insertions, and single nucleotide substitutions, particularly in genes encoding enzymes involved in cell surface modifications. The T428P mutation in AlgC, a phosphoglucomutase, and the P229T substitution in YkcC, a glycosyltransferase, each conferred resistance by altering phage receptor accessibility while preserving bacterial fitness. These findings emphasize that subtle mutations in surface-modifying enzymes enable P. protegens to evolve resistance to bacteriophages without compromising their ecological performance.202541112141
835940.9826Comparative Genomic Analysis of Acanthamoeba Endosymbionts Highlights the Role of Amoebae as a "Melting Pot" Shaping the Rickettsiales Evolution. Amoebae have been considered as a genetic "melting pot" for its symbionts, facilitating genetic exchanges of the bacteria that co-inhabit the same host. To test the "melting pot" hypothesis, we analyzed six genomes of amoeba endosymbionts within Rickettsiales, four of which belong to Holosporaceae family and two to Candidatus Midichloriaceae. For the first time, we identified plasmids in obligate amoeba endosymbionts, which suggests conjugation as a potential mechanism for lateral gene transfers (LGTs) that underpin the "melting pot" hypothesis. We found strong evidence of recent LGTs between the Rickettsiales amoeba endosymbionts, suggesting that the LGTs are continuous and ongoing. In addition, comparative genomic and phylogenomic analyses revealed pervasive and recurrent LGTs between Rickettsiales and distantly related amoeba-associated bacteria throughout the Rickettsiales evolution. Many of these exchanged genes are important for amoeba-symbiont interactions, including genes in transport system, antibiotic resistance, stress response, and bacterial virulence, suggesting that LGTs have played important roles in the adaptation of endosymbionts to their intracellular habitats. Surprisingly, we found little evidence of LGTs between amoebae and their bacterial endosymbionts. Our study strongly supports the "melting pot" hypothesis and highlights the role of amoebae in shaping the Rickettsiales evolution.201729177480
836250.9826Lifestyle evolution in symbiotic bacteria: insights from genomics. Bacteria that live only in eukaryotic cells and tissues, including chronic pathogens and mutualistic bacteriocyte associates, often possess a distinctive set of genomic traits, including reduced genome size, biased nucleotide base composition and fast polypeptide evolution. These phylogenetically diverse bacteria have lost certain functional categories of genes, including DNA repair genes, which affect mutational patterns. However, pathogens and mutualistic symbionts retain loci that underlie their unique interaction types, such as genes enabling nutrient provisioning by mutualistic bacteria-inhabiting animals. Recent genomic studies suggest that many of these bacteria are irreversibly specialized, precluding shifts between pathogenesis and mutualism.200010884696
971960.9825Dynamics of antibiotic resistance genes in plasmids and bacteriophages. This brief review explores the intricate interplay between bacteriophages and plasmids in the context of antibiotic resistance gene (ARG) dissemination. Originating from studies in the late 1950s, the review traces the evolution of knowledge regarding extrachromosomal factors facilitating horizontal gene transfer and adaptation in bacteria. Analyzing the gene repertoires of plasmids and bacteriophages, the study highlights their contributions to bacterial evolution and adaptation. While plasmids encode essential and accessory genes influencing host characteristics, bacteriophages carry auxiliary metabolic genes (AMGs) that augment host metabolism. The debate on phages carrying ARGs is explored through a critical evaluation of various studies, revealing contrasting findings from researchers. Additionally, the review addresses the interplay between prophages and plasmids, underlining their similarities and divergences. Based on the available literature evidence, we conclude that plasmids generally encode ARGs while bacteriophages typically do not contain ARGs. But extra-chromosomaly present prophages with plasmid characteristics can encode and disseminate ARGs.202538651513
835870.9824Genomic features underlying the evolutionary transitions of Apibacter to honey bee gut symbionts. The gut bacteria of honey bee recognized as a mutualistic partner with the insect host might have originated from a free-living or parasitic lifestyle. However, little is known about the genomic features underlying this lifestyle transition. Here we compared the genomes of bee gut bacteria Apibacter with their close relatives living in different lifestyles. We found that despite general reduction in the Apibacter genome, genes involved in amino acid synthesis and monosaccharide detoxification were retained, which is putatively beneficial to the host. Interestingly, the microaerobic Apibacter species specifically acquired genes encoding for the nitrate respiration (NAR). These together with nitrate transporter and enzymatic cofactor synthesis genes were found clustered in the genomes. The NAR system is also conserved in the cohabitating bee gut microbe Snodgrassella, although with a different structure. This convergence suggests a key role of respiratory nitrate reduction for microaerophilic microbiomes to colonize bee gut epithelium. Genes involved in lipid, histidine degradation were found partially or completely lost in Apibacter. Particularly, genes encoding for the conversion to the toxic intermediates in phenylacetate degradation, as well as other potential virulence factors, are specifically lost in Apibacter group. Antibiotic resistance genes are only sporadically distributed among Apibacter species, but are prevalent in their relatives, which may be related to the remotely living feature and less exposure to antibiotics of their bee hosts. Collectively, this study advanced our knowledge of genomic features specialized to bee gut symbionts.202233811731
30980.9823Evolution of a Plasmid Regulatory Circuit Ameliorates Plasmid Fitness Cost. Plasmids promote adaptation of bacteria by facilitating horizontal transfer of diverse genes, notably those conferring antibiotic resistance. Some plasmids, like those of the incompatibility group IncP-1, are known to replicate and persist in a broad range of bacteria. We investigated a poorly understood exception, the IncP-1β plasmid pBP136 from a clinical Bordetella pertussis isolate, which quickly became extinct in laboratory Escherichia coli populations. Through experimental evolution, we found that the inactivation of a previously uncharacterized plasmid gene, upf31, drastically improved plasmid persistence in E. coli. The gene inactivation caused alterations in the plasmid regulatory system, including decreased transcription of the global plasmid regulators (korA, korB, and korC) and numerous genes in their regulons. This is consistent with our findings that Upf31 represses its own transcription. It also caused secondary transcriptional changes in many chromosomal genes. In silico analyses predicted that Upf31 interacts with the plasmid regulator KorB at its C-terminal dimerization domain (CTD). We showed experimentally that adding the CTD of upf31/pBP136 to the naturally truncated upf31 allele of the stable IncP-1β archetype R751 results in plasmid destabilization in E. coli. Moreover, mutagenesis showed that upf31 alleles encoded on nearly half of the sequenced IncP-1β plasmids also possess this destabilization phenotype. While Upf31 might be beneficial in many hosts, we show that in E. coli some alleles have harmful effects that can be rapidly alleviated with a single mutation. Thus, broad-host-range plasmid adaptation to new hosts can involve fine-tuning their transcriptional circuitry through evolutionary changes in a single gene.202540138356
832890.9823The Diverse Impacts of Phage Morons on Bacterial Fitness and Virulence. The viruses that infect bacteria, known as phages, are the most abundant biological entity on earth. They play critical roles in controlling bacterial populations through phage-mediated killing, as well as through formation of bacterial lysogens. In this form, the survival of the phage depends on the survival of the bacterial host in which it resides. Thus, it is advantageous for phages to encode genes that contribute to bacterial fitness and expand the environmental niche. In many cases, these fitness factors also make the bacteria better able to survive in human infections and are thereby considered pathogenesis or virulence factors. The genes that encode these fitness factors, known as "morons," have been shown to increase bacterial fitness through a wide range of mechanisms and play important roles in bacterial diseases. This review outlines the benefits provided by phage morons in various aspects of bacterial life, including phage and antibiotic resistance, motility, adhesion and quorum sensing.201930635074
8355100.9821Ecology-relevant bacteria drive the evolution of host antimicrobial peptides in Drosophila. Antimicrobial peptides are host-encoded immune effectors that combat pathogens and shape the microbiome in plants and animals. However, little is known about how the host antimicrobial peptide repertoire is adapted to its microbiome. Here, we characterized the function and evolution of the Diptericin antimicrobial peptide family of Diptera. Using mutations affecting the two Diptericins (Dpt) of Drosophila melanogaster, we reveal the specific role of DptA for the pathogen Providencia rettgeri and DptB for the gut mutualist Acetobacter. The presence of DptA- or DptB-like genes across Diptera correlates with the presence of Providencia and Acetobacter in their environment. Moreover, DptA- and DptB-like sequences predict host resistance against infection by these bacteria across the genus Drosophila. Our study explains the evolutionary logic behind the bursts of rapid evolution of an antimicrobial peptide family and reveals how the host immune repertoire adapts to changing microbial environments.202337471548
9243110.9821Gene Transfer Potential of Outer Membrane Vesicles of Gram-Negative Bacteria. The increasing spread of multidrug-resistant pathogenic bacteria is one of the major threats to public health worldwide. Bacteria can acquire antibiotic resistance and virulence genes through horizontal gene transfer (HGT). A novel horizontal gene transfer mechanism mediated by outer membrane vesicles (OMVs) has been recently identified. OMVs are rounded nanostructures released during their growth by Gram-negative bacteria. Biologically active toxins and virulence factors are often entrapped within these vesicles that behave as molecular carriers. Recently, OMVs have been reported to contain DNA molecules, but little is known about the vesicle packaging, release, and transfer mechanisms. The present review highlights the role of OMVs in HGT processes in Gram-negative bacteria.202134205995
9583120.9821Bacteriophages presence in nature and their role in the natural selection of bacterial populations. Phages are the obligate parasite of bacteria and have complex interactions with their hosts. Phages can live in, modify, and shape bacterial communities by bringing about changes in their abundance, diversity, physiology, and virulence. In addition, phages mediate lateral gene transfer, modify host metabolism and reallocate bacterially-derived biochemical compounds through cell lysis, thus playing an important role in ecosystem. Phages coexist and coevolve with bacteria and have developed several antidefense mechanisms in response to bacterial defense strategies against them. Phages owe their existence to their bacterial hosts, therefore they bring about alterations in their host genomes by transferring resistance genes and genes encoding toxins in order to improve the fitness of the hosts. Application of phages in biotechnology, environment, agriculture and medicines demands a deep insight into the myriad of phage-bacteria interactions. However, to understand their complex interactions, we need to know how unique phages are to their bacterial hosts and how they exert a selective pressure on the microbial communities in nature. Consequently, the present review focuses on phage biology with respect to natural selection of bacterial populations.202033170167
9375130.9821Multistep diversification in spatiotemporal bacterial-phage coevolution. The evolutionary arms race between phages and bacteria, where bacteria evolve resistance to phages and phages retaliate with resistance-countering mutations, is a major driving force of molecular innovation and genetic diversification. Yet attempting to reproduce such ongoing retaliation dynamics in the lab has been challenging; laboratory coevolution experiments of phage and bacteria are typically performed in well-mixed environments and often lead to rapid stagnation with little genetic variability. Here, co-culturing motile E. coli with the lytic bacteriophage T7 on swimming plates, we observe complex spatiotemporal dynamics with multiple genetically diversifying adaptive cycles. Systematically quantifying over 10,000 resistance-infectivity phenotypes between evolved bacteria and phage isolates, we observe diversification into multiple coexisting ecotypes showing a complex interaction network with both host-range expansion and host-switch tradeoffs. Whole-genome sequencing of these evolved phage and bacterial isolates revealed a rich set of adaptive mutations in multiple genetic pathways including in genes not previously linked with phage-bacteria interactions. Synthetically reconstructing these new mutations, we discover phage-general and phage-specific resistance phenotypes as well as a strong synergy with the more classically known phage-resistance mutations. These results highlight the importance of spatial structure and migration for driving phage-bacteria coevolution, providing a concrete system for revealing new molecular mechanisms across diverse phage-bacterial systems.202236577749
9173140.9820Bacterial defences: mechanisms, evolution and antimicrobial resistance. Throughout their evolutionary history, bacteria have faced diverse threats from other microorganisms, including competing bacteria, bacteriophages and predators. In response to these threats, they have evolved sophisticated defence mechanisms that today also protect bacteria against antibiotics and other therapies. In this Review, we explore the protective strategies of bacteria, including the mechanisms, evolution and clinical implications of these ancient defences. We also review the countermeasures that attackers have evolved to overcome bacterial defences. We argue that understanding how bacteria defend themselves in nature is important for the development of new therapies and for minimizing resistance evolution.202337095190
9240150.9820CRISPR-Cas-Mediated Phage Resistance Enhances Horizontal Gene Transfer by Transduction. A powerful contributor to prokaryotic evolution is horizontal gene transfer (HGT) through transformation, conjugation, and transduction, which can be advantageous, neutral, or detrimental to fitness. Bacteria and archaea control HGT and phage infection through CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) adaptive immunity. Although the benefits of resisting phage infection are evident, this can come at a cost of inhibiting the acquisition of other beneficial genes through HGT. Despite the ability of CRISPR-Cas to limit HGT through conjugation and transformation, its role in transduction is largely overlooked. Transduction is the phage-mediated transfer of bacterial DNA between cells and arguably has the greatest impact on HGT. We demonstrate that in Pectobacterium atrosepticum, CRISPR-Cas can inhibit the transduction of plasmids and chromosomal loci. In addition, we detected phage-mediated transfer of a large plant pathogenicity genomic island and show that CRISPR-Cas can inhibit its transduction. Despite these inhibitory effects of CRISPR-Cas on transduction, its more common role in phage resistance promotes rather than diminishes HGT via transduction by protecting bacteria from phage infection. This protective effect can also increase transduction of phage-sensitive members of mixed populations. CRISPR-Cas systems themselves display evidence of HGT, but little is known about their lateral dissemination between bacteria and whether transduction can contribute. We show that, through transduction, bacteria can acquire an entire chromosomal CRISPR-Cas system, including cas genes and phage-targeting spacers. We propose that the positive effect of CRISPR-Cas phage immunity on enhancing transduction surpasses the rarer cases where gene flow by transduction is restricted.IMPORTANCE The generation of genetic diversity through acquisition of DNA is a powerful contributor to microbial evolution and occurs through transformation, conjugation, and transduction. Of these, transduction, the phage-mediated transfer of bacterial DNA, is arguably the major route for genetic exchange. CRISPR-Cas adaptive immune systems control gene transfer by conjugation and transformation, but transduction has been mostly overlooked. Our results indicate that CRISPR-Cas can impede, but typically enhances the transduction of plasmids, chromosomal genes, and pathogenicity islands. By limiting wild-type phage replication, CRISPR-Cas immunity increases transduction in both phage-resistant and -sensitive members of mixed populations. Furthermore, we demonstrate mobilization of a chromosomal CRISPR-Cas system containing phage-targeting spacers by generalized transduction, which might partly account for the uneven distribution of these systems in nature. Overall, the ability of CRISPR-Cas to promote transduction reveals an unexpected impact of adaptive immunity on horizontal gene transfer, with broader implications for microbial evolution.201829440578
9341160.9820Horizontal gene transfers in insects. Horizontal gene transfer is the transfer of genetic material across species boundaries. Although horizontal gene transfers are relatively rare in animals, the recent rapid accumulation of genomic data has identified increasing amounts of exogenous DNA inserts in insect genomes. Most of the horizontally acquired sequences appear to be non-functional; however, there is growing evidence that some genes are truly expressed and confer novel functions on the recipient insects. These include previously unavailable metabolic properties including digesting food, degrading toxins, providing resistance to pathogens, and facilitating an obligate mutualistic relationship with intracellular bacteria. A recent analysis revealed that an aphid gene of bacterial origin encodes a protein that is transported into the obligate symbiont, paralleling the evolution of endosymbiotic organelles.201532131363
9581170.9820Lateral gene transfer, bacterial genome evolution, and the Anthropocene. Lateral gene transfer (LGT) has significantly influenced bacterial evolution since the origins of life. It helped bacteria generate flexible, mosaic genomes and enables individual cells to rapidly acquire adaptive phenotypes. In turn, this allowed bacteria to mount strong defenses against human attempts to control their growth. The widespread dissemination of genes conferring resistance to antimicrobial agents has precipitated a crisis for modern medicine. Our actions can promote increased rates of LGT and also provide selective forces to fix such events in bacterial populations. For instance, the use of selective agents induces the bacterial SOS response, which stimulates LGT. We create hotspots for lateral transfer, such as wastewater systems, hospitals, and animal production facilities. Conduits of gene transfer between humans and animals ensure rapid dissemination of recent transfer events, as does modern transport and globalization. As resistance to antibacterial compounds becomes universal, there is likely to be increasing selection pressure for phenotypes with adverse consequences for human welfare, such as enhanced virulence, pathogenicity, and transmission. Improved understanding of the ecology of LGT could help us devise strategies to control this fundamental evolutionary process.201727706829
9580180.9819Antibiotic resistance in bacterial communities. Bacteria are single-celled organisms, but the survival of microbial communities relies on complex dynamics at the molecular, cellular, and ecosystem scales. Antibiotic resistance, in particular, is not just a property of individual bacteria or even single-strain populations, but depends heavily on the community context. Collective community dynamics can lead to counterintuitive eco-evolutionary effects like survival of less resistant bacterial populations, slowing of resistance evolution, or population collapse, yet these surprising behaviors are often captured by simple mathematical models. In this review, we highlight recent progress - in many cases, advances driven by elegant combinations of quantitative experiments and theoretical models - in understanding how interactions between bacteria and with the environment affect antibiotic resistance, from single-species populations to multispecies communities embedded in an ecosystem.202337054512
9335190.9819A biological role for prokaryotic ClC chloride channels. An unexpected finding emerging from large-scale genome analyses is that prokaryotes express ion channels belonging to molecular families long studied in neurons. Bacteria and archaea are now known to carry genes for potassium channels of the voltage-gated, inward rectifier and calcium-activated classes, ClC-type chloride channels, an ionotropic glutamate receptor and a sodium channel. For two potassium channels and a chloride channel, these homologues have provided a means to direct structure determination. And yet the purposes of these ion channels in bacteria are unknown. Strong conservation of functionally important sequences from bacteria to vertebrates, and of structure itself, suggests that prokaryotes use ion channels in roles more adaptive than providing high-quality protein to structural biologists. Here we show that Escherichia coli uses chloride channels of the widespread ClC family in the extreme acid resistance response. We propose that the channels function as an electrical shunt for an outwardly directed virtual proton pump that is linked to amino acid decarboxylation.200212384697