UNION - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
252500.9905Review of antimicrobial resistance surveillance programmes in livestock and meat in EU with focus on humans. OBJECTIVES: In this review, we describe surveillance programmes reporting antimicrobial resistance (AMR) and resistance genes in bacterial isolates from livestock and meat and compare them with those relevant for human health. METHODS: Publications on AMR in European countries were assessed. PubMed was reviewed and AMR monitoring programmes were identified from reports retrieved by Internet searches and by contacting national authorities in EU/European Economic Area (EEA) member states. RESULTS: Three types of systems were identified: EU programmes, industry-funded supranational programmes and national surveillance systems. The mandatory EU-financed programme has led to some harmonization in national monitoring and provides relevant information on AMR and extended-spectrum β-lactamase/AmpC- and carbapenemase-producing bacteria. At the national level, AMR surveillance systems in livestock apply heterogeneous sampling, testing and reporting modalities, resulting in results that cannot be compared. Most reports are not publicly available or are written in a local language. The industry-funded monitoring systems undertaken by the Centre Européen d'Etudes pour la Santé Animale (CEESA) examines AMR in bacteria in food-producing animals. CONCLUSIONS: Characterization of AMR genes in livestock is applied heterogeneously among countries. Most antibiotics of human interest are included in animal surveillance, although results are difficult to compare as a result of lack of representativeness of animal samples. We suggest that EU/EEA countries provide better uniform AMR monitoring and reporting in livestock and link them better to surveillance systems in humans. Reducing the delay between data collection and publication is also important to allow prompt identification of new resistance patterns.201828970159
175010.9896The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021. Antimicrobial resistance (AMR) data on zoonotic and indicator bacteria from humans, animals and food are collected annually by the EU Member States (MSs) and reporting countries, jointly analysed by EFSA and ECDC and presented in a yearly EU Summary Report. This report provides an overview of the main findings of the 2020-2021 harmonised AMR monitoring in Salmonella spp., Campylobacter jejuni and C. coli in humans and food-producing animals (broilers, laying hens and turkeys, fattening pigs and bovines under 1 year of age) and relevant meat thereof. For animals and meat thereof, indicator E. coli data on the occurrence of AMR and presumptive Extended spectrum β-lactamases (ESBL)-/AmpC β-lactamases (AmpC)-/carbapenemases (CP)-producers, as well as the occurrence of methicillin-resistant Staphylococcus aureus are also analysed. In 2021, MSs submitted for the first time AMR data on E. coli isolates from meat sampled at border control posts. Where available, monitoring data from humans, food-producing animals and meat thereof were combined and compared at the EU level, with emphasis on multidrug resistance, complete susceptibility and combined resistance patterns to selected and critically important antimicrobials, as well as Salmonella and E. coli isolates exhibiting ESBL-/AmpC-/carbapenemase phenotypes. Resistance was frequently found to commonly used antimicrobials in Salmonella spp. and Campylobacter isolates from humans and animals. Combined resistance to critically important antimicrobials was mainly observed at low levels except in some Salmonella serotypes and in C. coli in some countries. The reporting of a number of CP-producing E. coli isolates (harbouring bla (OXA-48), bla (OXA-181), and bla (NDM-5) genes) in pigs, bovines and meat thereof by a limited number of MSs (4) in 2021, requests a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC- producers) showed that encouraging progress have been registered in reducing AMR in food-producing animals in several EU MSs over the last years.202336891283
669120.9888The antimicrobial resistance monitoring and research (ARMoR) program: the US Department of Defense response to escalating antimicrobial resistance. Responding to escalating antimicrobial resistance (AMR), the US Department of Defense implemented an enterprise-wide collaboration, the Antimicrobial Resistance Monitoring and Research Program, to aid in infection prevention and control. It consists of a network of epidemiologists, bioinformaticists, microbiology researchers, policy makers, hospital-based infection preventionists, and healthcare providers who collaborate to collect relevant AMR data, conduct centralized molecular characterization, and use AMR characterization feedback to implement appropriate infection prevention and control measures and influence policy. A particularly concerning type of AMR, carbapenem-resistant Enterobacteriaceae, significantly declined after the program was launched. Similarly, there have been no further reports or outbreaks of another concerning type of AMR, colistin resistance in Acinetobacter, in the Department of Defense since the program was initiated. However, bacteria containing AMR-encoding genes are increasing. To update program stakeholders and other healthcare systems facing such challenges, we describe the processes and impact of the program.201424795331
174930.9888The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2021-2022. This report by the European Food Safety Authority and the European Centre for Disease prevention and Control, provides an overview of the main findings of the 2021-2022 harmonised Antimicrobial Resistance (AMR) monitoring in Salmonella spp., Campylobacter jejuni and C. coli from humans and food-producing animals (broilers, laying hens and fattening turkeys, fattening pigs and cattle under one year of age) and relevant meat thereof. For animals and meat thereof, AMR data on indicator commensal Escherichia coli, presumptive extended-spectrum beta-lactamases (ESBL)-/AmpC beta-lactamases (AmpC)-/carbapenemase (CP)-producing E. coli, and the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) are also analysed. Generally, resistance levels differed greatly between reporting countries and antimicrobials. Resistance to commonly used antimicrobials was frequently found in Salmonella and Campylobacter isolates from humans and animals. In humans, increasing trends in resistance to one of two critically antimicrobials (CIA) for treatment was observed in poultry-associated Salmonella serovars and Campylobacter, in at least half of the reporting countries. Combined resistance to CIA was however observed at low levels except in some Salmonella serovars and in C. coli from humans and animals in some countries. While CP-producing Salmonella isolates were not detected in animals in 2021-2022, nor in 2021 for human cases, in 2022 five human cases of CP-producing Salmonella were reported (four harbouring bla (OXA-48) or bla (OXA-48-like) genes). The reporting of a number of CP-producing E. coli isolates (harbouring bla (OXA-48), bla (OXA-181), bla (NDM-5) and bla (VIM-1) genes) in fattening pigs, cattle under 1 year of age, poultry and meat thereof by a limited number of MSs (5) in 2021 and 2022, requires a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC-producers in E. coli) showed an encouraging progress in reducing AMR in food-producing animals in several EU MSs over the last 7 years.202438419967
182040.9888Intensive farming as a source of bacterial resistance to antimicrobial agents in sedentary and migratory vultures: Implications for local and transboundary spread. The role of wild birds in the carriage and transmission of human and food animal bacteria with resistant genotypes has repeatedly been highlighted. However, few studies have focussed on the specific exposure sources and places of acquisition and selection for antimicrobial-resistant bacteria in vultures relying on livestock carcasses across large areas and different continents. The occurrence of bacterial resistance to antimicrobial agents was assessed in the faecal microbiota of sedentary Griffon vultures (Gyps fulvus) and trans-Saharan migratory Egyptian vultures (Neophron percnopterus) in central Spain. High rates (generally >50%) of resistant Escherichia coli and other enterobacteria to amoxicillin, cotrimoxazole and tetracycline were found. About 25-30% of samples were colonised by extended-spectrum beta-lactamases (ESBL) producing bacteria, while 5-17% were positive for plasmid mediated quinolone resistance (PMQR) phenotypes, depending on vulture species and age. In total, nine ESBL types were recorded (7 in griffon vultures and 5 in Egyptian vultures), with CTX-M-1 the most prevalent in both species. The most prevalent PMQR was mediated by qnrS genes. We found no clear differences in the occurrence of antimicrobial resistance in adult vultures of each species, or between nestling and adult Egyptian vultures. This supports the hypothesis that antimicrobial resistance is acquired in the European breeding areas of both species. Bacterial resistance can directly be driven by the regular ingestion of multiple active antimicrobials found in medicated livestock carcasses from factory farms, which should be not neglected as a contributor to the emergence of novel resistance clones. The One Health framework should consider the potential transboundary carriage and spread of epidemic resistance from high-income European to low-income African countries via migratory birds.202032758969
420450.9888Antimicrobial Resistance in Bacteria from Meat and Meat Products: A One Health Perspective. According to the 2030 Agenda of the United Nations, one of the sustainable development goals is to ensure sustainable consumption and production patterns. The need to ensure food safety includes, other than microbiological hazards, concerns with antimicrobial-resistant (AMR) bacteria. The emergence of resistant bacteria in the food industry is essentially due to the abusive, and sometimes incorrect, administration of antimicrobials. Although not allowed in Europe, antimicrobials are often administered to promote animal growth. Each time antimicrobials are used, a selective pressure is applied to AMR bacteria. Moreover, AMR genes can be transmitted to humans through the consumption of meat-harbouring-resistant bacteria, which highlights the One Health dimension of antimicrobial resistance. Furthermore, the appropriate use of antimicrobials to ensure efficacy and the best possible outcome for the treatment of infections is regulated through the recommendations of antimicrobial stewardship. The present manuscript aims to give the current state of the art about the transmission of AMR bacteria, particularly methicillin-resistant S. aureus, ESBL-producing Enterobacteriaceae, and vancomycin-resistant Enterococcus spp., along with other ESKAPE bacteria, from animals to humans through the consumption of meat and meat products, with emphasis on pork meat and pork meat products, which are considered the most consumed worldwide.202337894239
660960.9887Antimicrobial-resistant bacteria in international travelers. PURPOSE OF REVIEW: Antimicrobial resistance (AMR) in bacteria poses a major risk to global public health, with many factors contributing to the observed increase in AMR. International travel is one recognized contributor. The purpose of this review is to summarize current knowledge regarding the acquisition, carriage and spread of AMR bacteria by international travelers. RECENT FINDINGS: Recent studies have highlighted that travel is an important risk factor for the acquisition of AMR bacteria, with approximately 30% of studied travelers returning with an acquired AMR bacterium. Epidemiological studies have shown there are three major risk factors for acquisition: travel destination, antimicrobial usage and travelers' diarrhea (TD). Analyses have begun to illustrate the AMR genes that are acquired and spread by travelers, risk factors for acquisition and carriage of AMR bacteria, and local transmission of imported AMR organisms. SUMMARY: International travel is a contributor to the acquisition and dissemination of AMR organisms globally. Efforts to reduce the burden of AMR organisms should include a focus on international travelers. Routine genomic surveillance would further elucidate the role of international travel in the global spread of AMR bacteria.202134267046
501270.9887Extended-spectrum beta-lactamases-producing gram-negative bacteria in companion animals: action is clearly warranted! Extended-spectrum beta-lactamases (ESBL)-producing Gram-negative bacteria pose a serious threat to Public Health in human medicine as well as increasingly in the veterinary context worldwide. Several studies reported the transmission of zoonotic multidrug resistant bacteria between food-producing animals and humans, whilst the contribution of companion animals to this scenario is rather unknown. Within the last decades a change in the social role of companion animals has taken place, resulting in a very close contact between owners and their pets. As a consequence, humans may obtain antimicrobial resistant bacteria or the corresponding resistance genes not only from food-producing animals but also via close contact to their pets.This may give rise to bacterial infections with limited therapeutic options and an increased risk of treatment failure. As beta-lactams constitute one of the most important groups of antimicrobial agents in veterinary medicine, retaliatory actions in small animal and equine practices are urgently needed. This review addresses the increasing burden of extended-spectrum beta-lactam resistance among Enterobacteriaceae isolated from companion animals. It should emphasize the urgent need for the implementation of antibiotic stewardship as well as surveillance and monitoring programs of multi resistant bacteria in particular in view of new putative infection cycles between humans and their pets.201121462862
420880.9887Antimicrobial Resistance in the Food Chain: Trends, Mechanisms, Pathways, and Possible Regulation Strategies. Antimicrobial resistance (AMR) remains of major interest for different types of food stakeholders since it can negatively impact human health on a global scale. Antimicrobial-resistant bacteria and/or antimicrobial resistance genes (transfer in pathogenic bacteria) may contaminate food at any stage, from the field to retail. Research demonstrates that antimicrobial-resistant bacterial infection(s) occur more frequently in low- and middle-income countries (LMICs) than in developed countries. Worldwide, foodborne pathogens are a primary cause of morbidity and mortality. The spread of pathogenic bacteria from food to consumers may occur by direct or indirect routes. Therefore, an array of approaches both at the national and international level to control the spread of foodborne pathogens and promote food safety and security are essential. Zoonotic microbes can spread through the environment, animals, humans, and the food chain. Antimicrobial drugs are used globally to treat infections in humans and animals and prophylactically in production agriculture. Research highlights that foods may become contaminated with AMR bacteria (AMRB) during the continuum from the farm to processing to retail to the consumer. To mitigate the risk of AMRB in humans, it is crucial to control antibiotic use throughout food production, both for animal and crop agriculture. The main inferences of this review are (1) routes by which AMRB enters the food chain during crop and animal production and other modes, (2) prevention and control steps for AMRB, and (3) impact on human health if AMR is not addressed globally. A thorough perspective is presented on the gaps in current systems for surveillance of antimicrobial use in food production and/ or AMR in the food chain.202236230040
658090.9887Transmission of antimicrobial resistance (AMR) during animal transport. The transmission of antimicrobial resistance (AMR) between food-producing animals (poultry, cattle and pigs) during short journeys (< 8 h) and long journeys (> 8 h) directed to other farms or to the slaughterhouse lairage (directly or with intermediate stops at assembly centres or control posts, mainly transported by road) was assessed. Among the identified risk factors contributing to the probability of transmission of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), the ones considered more important are the resistance status (presence of ARB/ARGs) of the animals pre-transport, increased faecal shedding, hygiene of the areas and vehicles, exposure to other animals carrying and/or shedding ARB/ARGs (especially between animals of different AMR loads and/or ARB/ARG types), exposure to contaminated lairage areas and duration of transport. There are nevertheless no data whereby differences between journeys shorter or longer than 8 h can be assessed. Strategies that would reduce the probability of AMR transmission, for all animal categories include minimising the duration of transport, proper cleaning and disinfection, appropriate transport planning, organising the transport in relation to AMR criteria (transport logistics), improving animal health and welfare and/or biosecurity immediately prior to and during transport, ensuring the thermal comfort of the animals and animal segregation. Most of the aforementioned measures have similar validity if applied at lairage, assembly centres and control posts. Data gaps relating to the risk factors and the effectiveness of mitigation measures have been identified, with consequent research needs in both the short and longer term listed. Quantification of the impact of animal transportation compared to the contribution of other stages of the food-production chain, and the interplay of duration with all risk factors on the transmission of ARB/ARGs during transport and journey breaks, were identified as urgent research needs.202236304831
2500100.9887The crisis of carbapenemase-mediated carbapenem resistance across the human-animal-environmental interface in India. Carbapenems are the decision-making antimicrobials used to combat severe Gram-negative bacterial infections in humans. Carbapenem resistance poses a potential public health emergency, especially in developing countries such as India, accounting for high morbidity, mortality, and healthcare cost. Emergence and transmission of plasmid-mediated "big five" carbapenemase genes including KPC, NDM, IMP, VIM and OXA-48-type among Gram-negative bacteria is spiralling the issue. Carbapenemase-producing carbapenem-resistant organisms (CP-CRO) cause multi- or pan-drug resistance by co-harboring several antibiotic resistance determinants. In addition of human origin, animals and even environmental sites are also the reservoir of CROs. Spillage in food-chains compromises food safety and security and increases the chance of cross-border transmission of these superbugs. Metallo-β-lactamases, mainly NDM-1 producing CROs, are commonly shared between human, animal and environmental interfaces worldwide, including in India. Antimicrobial resistance (AMR) surveillance using the One Health approach has been implemented in Europe, the United-Kingdom and the United-States to mitigate the crisis. This concept is still not implemented in most developing countries, including India, where the burden of antibiotic-resistant bacteria is high. Lack of AMR surveillance in animal and environmental sectors underestimates the cumulative burden of carbapenem resistance resulting in the silent spread of these superbugs. In-depth indiscriminate AMR surveillance focusing on carbapenem resistance is urgently required to develop and deploy effective national policies for preserving the efficacy of carbapenems as last-resort antibiotics in India. Tracking and mapping of international high-risk clones are pivotal for containing the global spread of CP-CRO.202336241158
5011110.9887Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in cattle production - a threat around the world. Food producing animal is a global challenge in terms of antimicrobial resistance spread. Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae are relevant opportunistic pathogens that may spread in many ecological niches of the One Health approach as human, animal and environment due to intestinal selection of antimicrobial resistant commensals in food production animals. Cattle production is a relevant ecological niche for selection of commensal bacteria with antimicrobial resistance from microbiota. Enterobacteriaceae show importance in terms of circulation of resistant-bacteria and antimicrobial resistance genes via food chain creating a resistance reservoir, setting up a threat for colonization of humans and consequent health risk. ESBL-producing Enterobacteriaceae are a threat in terms of human health responsible for life threatening outbreaks and silent enteric colonization of community populations namely the elder population. Food associated colonization is a risk difficult to handle and control. In a time of globalization of food trading, population intestinal colonization is a mirror of food production and in that sense this work aims to make a picture of ESBL-producing Enterobacteriaceae in animal production for food over the world in order to make some light in this reality of selection of resistant threats in food producing animal.202032042963
6649120.9886 The development of antibiotics has provided much success against infectious diseases in animals and humans. But the intensive and extensive use of antibiotics over the years has resulted in the emergence of drug-resistant bacterial pathogens. The existence of a reservoir(s) of antibiotic resistant bacteria and antibiotic resistance genes in an interactive environment of animals, plants, and humans provides the opportunity for further transfer and dissemination of antibiotic resistance. The emergence of antibiotic resistant bacteria has created growing concern about its impact on animal and human health. To specifically address the impact of antibiotic resistance resulting from the use of antibiotics in agriculture, the American Academy of Microbiology convened a colloquium, “Antibiotic Resistance and the Role of Antimicrobials in Agriculture: A Critical Scientific Assessment,” in Santa Fe, New Mexico, November 2–4, 2001. Colloquium participants included academic, industrial, and government researchers with a wide range of expertise, including veterinary medicine, microbiology, food science, pharmacology, and ecology. These scientists were asked to provide their expert opinions on the current status of antibiotic usage and antibiotic resistance, current research information, and provide recommendations for future research needs. The research areas to be addressed were roughly categorized under the following areas: ▪ Origins and reservoirs of resistance; ▪ Transfer of resistance; ▪ Overcoming/modulating resistance by altering usage; and ▪ Interrupting transfer of resistance. The consensus of colloquium participants was that the evaluation of antibiotic usage and its impact were complex and subject to much speculation and polarization. Part of the complexity stems from the diverse array of animals and production practices for food animal production. The overwhelming consensus was that any use of antibiotics creates the possibility for the development of antibiotic resistance, and that there already exist pools of antibiotic resistance genes and antibiotic resistant bacteria. Much discussion revolved around the measurement of antibiotic usage, the measurement of antibiotic resistance, and the ability to evaluate the impact of various types of usage (animal, human) on overall antibiotic resistance. Additionally, many participants identified commensal bacteria as having a possible role in the continuance of antibiotic resistance as reservoirs. Participants agreed that many of the research questions could not be answered completely because of their complexity and the need for better technologies. The concept of the “smoking gun” to indicate that a specific animal source was important in the emergence of certain antibiotic resistant pathogens was discussed, and it was agreed that ascribing ultimate responsibility is likely to be impossible. There was agreement that expanded and more improved surveillance would add to current knowledge. Science-based risk assessments would provide better direction in the future. As far as preventive or intervention activities, colloquium participants reiterated the need for judicious/prudent use guidelines. Yet they also emphasized the need for better dissemination and incorporation by end-users. It is essential that there are studies to measure the impact of educational efforts on antibiotic usage. Other recommendations included alternatives to antibiotics, such as commonly mentioned vaccines and probiotics. There also was an emphasis on management or production practices that might decrease the need for antibiotics. Participants also stressed the need to train new researchers and to interest students in postdoctoral work, through training grants, periodic workshops, and comprehensive conferences. This would provide the expertise needed to address these difficult issues in the future. Finally, the participants noted that scientific societies and professional organizations should play a pivotal role in providing technical advice, distilling and disseminating information to scientists, media, and consumers, and in increasing the visibility and funding for these important issues. The overall conclusion is that antibiotic resistance remains a complex issue with no simple answers. This reinforces the messages from other meetings. The recommendations from this colloquium provide some insightful directions for future research and action.200232687288
6690130.9886Antimicrobial resistance situation in animal health of Bangladesh. Antimicrobial resistance (AMR) is a crucial multifactorial and complex global problem and Bangladesh poses a regional and global threat with a high degree of antibiotic resistance. Although the routine application of antimicrobials in the livestock industry has largely contributed to the health and productivity, it correspondingly plays a significant role in the evolution of different pathogenic bacterial strains having multidrug resistance (MDR) properties. Bangladesh is implementing the National Action Plan (NAP) for containing AMR in human, animal, and environment sectors through "One Health" approach where the Department of Livestock Services (DLS) is the mandated body to implement NAP strategies in the animal health sector of the country. This review presents a "snapshot" of the predisposing factors, and current situations of AMR along with the weakness and strength of DLS to contain the problem in animal farming practices in Bangladesh. In the present review, resistance monitoring data and risk assessment identified several direct and/or indirect predisposing factors to be potentially associated with AMR development in the animal health sector of Bangladesh. The predisposing factors are inadequate veterinary healthcare, monitoring and regulatory services, intervention of excessive informal animal health service providers, and farmers' knowledge gap on drugs, and AMR which have resulted in the misuse and overuse of antibiotics, ultimate in the evolution of antibiotic-resistant bacteria and genes in all types of animal farming settings of Bangladesh. MDR bacteria with extreme resistance against antibiotics recommended to use in both animals and humans have been reported and been being a potential public health hazard in Bangladesh. Execution of extensive AMR surveillance in veterinary practices and awareness-building programs for stakeholders along with the strengthening of the capacity of DLS are recommended for effective containment of AMR emergence and dissemination in the animal health sector of Bangladesh.202033487990
6650140.9886 Antibiotic resistance is never going to go away. No matter how many drugs we throw at it, no matter how much money and resources are sacrificed to wage a war on resistance, it will always prevail. Humans are forced to coexist with the fact of antibiotic resistance. Public health officials, clinicians, and scientists must find effective ways to cope with antibiotic resistant bacteria harmful to humans and animals and to control the development of new types of resistance. The American Academy of Microbiology convened a colloquium October 12–14, 2008, to discuss antibiotic resistance and the factors that influence the development and spread of resistance. Participants, whose areas of expertise included medicine, microbiology, and public health, made specific recommendations for needed research, policy development, a surveillance network, and treatment guidelines. Antibiotic resistance issues specific to the developing world were discussed and recommendations for improvements were made. Each antibiotic is injurious only to a certain segment of the microbial world, so for a given antibacterial there are some species of bacteria that are susceptible and others not. Bacterial species insusceptible to a particular drug are “naturally resistant.” Species that were once sensitive but eventually became resistant to it are said to have “acquired resistance.” It is important to note that “acquired resistance” affects a subset of strains in the entire species; that is why the prevalence of “acquired resistance” in a species is different according to location. Antibiotic resistance, the acquired ability of a pathogen to withstand an antibiotic that kills off its sensitive counterparts, originally arises from random mutations in existing genes or from intact genes that already serve a similar purpose. Exposure to antibiotics and other antimicrobial products, whether in the human body, in animals, or the environment, applies selective pressure that encourages resistance to emerge favoring both “naturally resistant” strains and strains which have “acquired resistance.” Horizontal gene transfer, in which genetic information is passed between microbes, allows resistance determinants to spread within harmless environmental or commensal microorganisms and pathogens, thus creating a reservoir of resistance. Resistance is also spread by the replication of microbes that carry resistance genes, a process that produces genetically identical (or clonal) progeny. Rapid diagnostic methods and surveillance are some of the most valuable tools in preventing the spread of resistance. Access to more rapid diagnostic tests that could determine the causative agent and antibiotic susceptibility of infections would inform better decision making with respect to antibiotic use, help slow the selection of resistant strains in clinical settings, and enable better disease surveillance. A rigorous surveillance network to track the evolution and spread of resistance is also needed and would probably result in significant savings in healthcare. Developing countries face unique challenges when it comes to antibiotic resistance; chief among them may be the wide availability of antibiotics without a prescription and also counterfeit products of dubious quality. Lack of adequate hygiene, poor water quality, and failure to manage human waste also top the list. Recommendations for addressing the problems of widespread resistance in the developing world include: proposals for training and infrastructure capacity building; surveillance programs; greater access to susceptibility testing; government controls on import, manufacture and use; development and use of vaccines; and incentives for pharmaceutical companies to supply drugs to these countries. Controlling antibiotic resistant bacteria and subsequent infections more efficiently necessitates the prudent and responsible use of antibiotics. It is mandatory to prevent the needless use of antibiotics (e.g., viral infections; unnecessary prolonged treatment) and to improve the rapid prescription of appropriate antibiotics to a patient. Delayed or inadequate prescriptions reduce the efficacy of treatment and favor the spread of the infection. Prudent use also applies to veterinary medicine. For example, antibiotics used as “growth promoters” have been banned in Europe and are subject to review in some other countries. There are proven techniques for limiting the spread of resistance, including hand hygiene, but more rapid screening techniques are needed in order to effectively track and prevent spread in clinical settings. The spread of antibiotic resistance on farms and in veterinary hospitals may also be significant and should not be neglected. Research is needed to pursue alternative approaches, including vaccines, antisense therapy, public health initiatives, and others. The important messages about antibiotic resistance are not getting across from scientists and infectious diseases specialists to prescribers, stakeholders, including the public, healthcare providers, and public officials. Innovative and effective communication initiatives are needed, as are carefully tailored messages for each of the stakeholder groups.200932644325
6713150.9885Human Colonization with Antibiotic-Resistant Bacteria from Nonoccupational Exposure to Domesticated Animals in Low- and Middle-Income Countries: A Critical Review. Data on community-acquired antibiotic-resistant bacterial infections are particularly sparse in low- and middle-income countries (LMICs). Limited surveillance and oversight of antibiotic use in food-producing animals, inadequate access to safe drinking water, and insufficient sanitation and hygiene infrastructure in LMICs could exacerbate the risk of zoonotic antibiotic resistance transmission. This critical review compiles evidence of zoonotic exchange of antibiotic-resistant bacteria (ARB) or antibiotic resistance genes (ARGs) within households and backyard farms in LMICs, as well as assesses transmission mechanisms, risk factors, and environmental transmission pathways. Overall, substantial evidence exists for exchange of antibiotic resistance between domesticated animals and in-contact humans. Whole bacteria transmission and horizontal gene transfer between humans and animals were demonstrated within and between households and backyard farms. Further, we identified water, soil, and animal food products as environmental transmission pathways for exchange of ARB and ARGs between animals and humans, although directionality of transmission is poorly understood. Herein we propose study designs, methods, and topical considerations for priority incorporation into future One Health research to inform effective interventions and policies to disrupt zoonotic antibiotic resistance exchange in low-income communities.202235947446
4185160.9885Containment of antimicrobial resistance due to use of antimicrobial agents in animals intended for food: WHO perspective. The use of antimicrobial agents in humans and food-producing animals has important consequences for human and animal health, as it can lead to the development of resistant bacteria (pathogens and/or commensals with resistance genes). Moreover, resistant bacteria in animals can be transferred to people--usually through the consumption of food, but also through direct contact with food-producing animals or through environmental spread. Ultimately, this can result in human infections with bacteria that are resistant to antimicrobial agents and that can therefore be difficult or impossible to cure. Of special concern is resistance to antimicrobial agents classified by the World Health Organization (WHO) as critically important for human medicine, such as fluoroquinolones, third- and fourth-generation cephalosporins, and macrolides. WHO encourages the agricultural, food, veterinary and health sectors to work together to eliminate the burden of antimicrobial resistance arising from the use of antimicrobial agents in food-producing animals. Joint efforts should be made to reduce the inappropriate use of antimicrobial agents (e.g. the use of antimicrobials as growth promoters) and limit the spread of bacteria resistant to antimicrobial agents. WHO will continueto address this issue in conjunction with the Food and Agriculture Organization of the United Nations, the World Organisation for Animal Health, the animal health/production industry and other important stakeholders. It will also continue to enhance the capacity of its Member States (through training courses and sentinel studies), particularly developing countries, to conduct integrated surveillance of antimicrobial use and resistance, to carry out risk assessments to support the selection of risk management options and to implement strategies for the containment of antimicrobial resistance.201222849282
6628170.9885Campylobacter and antimicrobial resistance in dogs and humans: "One health" in practice. Increasing antimicrobial resistance in both medicine and agriculture is recognised as a major emerging public health concern. Since 2005, campylobacteriosis has been the most zoonotic disease reported in humans in the European Union. Human infections due to Campylobacter spp. primarily comes from food. However, the human-animal interface is a potential space for the bidirectional movement of zoonotic agents, including antimicrobial resistant strains. Dogs have been identified as carriers of the Campylobacter species and their role as a source of infection for humans has been demonstrated. Furthermore, dogs may play an important role as a reservoir of resistant bacteria or resistance genes. Human beings may also be a reservoir of Campylobacter spp. for their pets. This review analyses the current literature related to the risk of Campylobacter antimicrobial resistance at the dog-human interface.201931599545
6661180.9885Country Income Is Only One of the Tiles: The Global Journey of Antimicrobial Resistance among Humans, Animals, and Environment. Antimicrobial resistance (AMR) is one of the most complex global health challenges today: decades of overuse and misuse in human medicine, animal health, agriculture, and dispersion into the environment have produced the dire consequence of infections to become progressively untreatable. Infection control and prevention (IPC) procedures, the reduction of overuse, and the misuse of antimicrobials in human and veterinary medicine are the cornerstones required to prevent the spreading of resistant bacteria. Purified drinking water and strongly improved sanitation even in remote areas would prevent the pollution from inadequate treatment of industrial, residential, and farm waste, as all these situations are expanding the resistome in the environment. The One Health concept addresses the interconnected relationships between human, animal, and environmental health as a whole: several countries and international agencies have now included a One Health Approach within their action plans to address AMR. Improved antimicrobial usage, coupled with regulation and policy, as well as integrated surveillance, infection control and prevention, along with antimicrobial stewardship, sanitation, and animal husbandry should all be integrated parts of any new action plan targeted to tackle AMR on the Earth. Since AMR is found in bacteria from humans, animals, and in the environment, we briefly summarize herein the current concepts of One Health as a global challenge to enable the continued use of antibiotics.202032752276
6665190.9885A One-Health Perspective of Antimicrobial Resistance (AMR): Human, Animals and Environmental Health. Antibiotics are essential for treating bacterial and fungal infections in plants, animals, and humans. Their widespread use in agriculture and the food industry has significantly enhanced animal health and productivity. However, extensive and often inappropriate antibiotic use has driven the emergence and spread of antimicrobial resistance (AMR), a global health crisis marked by the reduced efficacy of antimicrobial treatments. Recognized by the World Health Organization (WHO) as one of the top ten global public health threats, AMR arises when certain bacteria harbor antimicrobial resistance genes (ARGs) that confer resistance that can be horizontally transferred to other bacteria, accelerating resistance spread in the environment. AMR poses a significant global health challenge, affecting humans, animals, and the environment alike. A One-Health perspective highlights the interconnected nature of these domains, emphasizing that resistant microorganisms spread across healthcare, agriculture, and the environment. Recent scientific advances such as metagenomic sequencing for resistance surveillance, innovative wastewater treatment technologies (e.g., ozonation, UV, membrane filtration), and the development of vaccines and probiotics as alternatives to antibiotics in livestock are helping to mitigate resistance. At the policy level, global initiatives including the WHO Global Action Plan on AMR, coordinated efforts by (Food and Agriculture Organization) FAO and World Organisation for Animal Health (WOAH), and recommendations from the O'Neill Report underscore the urgent need for international collaboration and sustainable interventions. By integrating these scientific and policy responses within the One-Health framework, stakeholders can improve antibiotic stewardship, reduce environmental contamination, and safeguard effective treatments for the future.202541157271