UNDOUBTEDLY - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
249300.9894Multidrug-resistant hypervirulent Klebsiella pneumoniae: an evolving superbug. Multidrug-resistant hypervirulent Klebsiella pneumoniae (MDR-hvKP) combines high pathogenicity with multidrug resistance to become a new superbug. MDR-hvKP reports continue to emerge, shattering the perception that hypervirulent K. pneumoniae (hvKP) strains are antibiotic sensitive. Patients infected with MDR-hvKP strains have been reported in Asia, particularly China. Although hvKP can acquire drug resistance genes, MDR-hvKP seems to be more easily transformed from classical K. pneumoniae (cKP), which has a strong gene uptake ability. To better understand the biology of MDR-hvKP, this review discusses the virulence factors, resistance mechanisms, formation pathways, and identification of MDR-hvKP. Given their destructive and transmissible potential, continued surveillance of these organisms and enhanced control measures should be prioritized.202540135944
481910.9891Gram-Negative Bacteria. Gram-negative bacteria (GNB) are among the world's most significant public health problems due to their high resistance to antibiotics. These microorganisms have significant clinical importance in hospitals because they put patients in the intensive care unit (ICU) at high risk and lead to high morbidity and mortality. Two large groups, Enterobacteriaceae and the non-fermenters, are responsible for most clinical isolates; nevertheless, other clinically concerning gram-negative organisms exist, including but not limited to Neisseria, Haemophilus spp., Helicobacter pylori, and Chlamydia trachomatis. Enterobacteriaceae   Enterobacteriaceae are a heterogeneous group widely dispersed in nature. They account for about 80% of gram-negative isolates with a myriad of disease-causing general/species in humans, including urinary tract infections, pneumonia, diarrhea, meningitis, sepsis, endotoxic shock, and many others. The general/species that frequently affect humans are Escherichia, Proteus, Enterobacter, Klebsiella, Citrobacter, Yersinia, Shigella, and Salmonella, among others. Laboratory characterization is an essential component when it comes to microorganisms; therefore, it is imperative to expose characteristics of Enterobacteriaceae, which are bacilli, non-sporulated, have variable motility, grow in the presence and absence of oxygen, ferment organisms of glucose, are cytochrome oxidase negative, and can reduce nitrate to nitrite. Non-Fermenters The non-fermenter, gram-negative bacilli (BNF) have a lower frequency of isolation when compared to Enterobacteriaceae; however, they are a relevant group since they cause severe, fatal infections, especially in the hospital environment. They also cause opportunistic diseases in ICU patients who undergo invasive procedures. The main BNF microorganisms that cause human disease are Pseudomonas aeruginosa, Acinetobacter baumannii, Burkholderia cepacia, Burkholderia pseudomallei, Stenotrophomonas., Alcaligenes, and Moraxella. These stand out for being aerobic and non-sporulated; they are incapable of fermenting sugars, using them through the oxidative route. The critical issue regarding BNF, when it comes to the antimicrobial sensitivity profile, is undoubtedly their intrinsic resistance since they produce a variety of genes with multiple mechanisms capable of mitigating the microbicidal action. Thus, it stands out in P. aeruginosa, cephalosporinase of type AmpC, and efflux systems that confer resistance to b-lactams. The most frequent are MexAB-OprM; and loss of OprD (which gives impermeability to the bacterial cell due to the loss of porin.) Acinetobacter baumannii naturally produces AmpC cephalosporinase and oxacillinase (OXA), leaving it spontaneously immune to many drugs. The genetic ingenuity of this microorganism goes further, and it combines high impermeability with genetic plasticity, combining with the resistance of mechanisms such as extended-spectrum b-lactamases (ESBL). The Stenotrophomonas exhibit a pattern of intrinsic multi-resistance, especially in patients who have had contact with carbapenems. Thus, Stenotrophomonas present several efflux pumps and produce two carbapenemases – L1 (resistance to all carbapenems) and L2 (cephalosporinase).  These mechanisms, associated or separate, restrict the treatment options to an alarming level. Sulfamethoxazole-trimethoprim remains the mainstay of treatment.  Antibiotic Resistance These organisms have a range of mechanisms to prevent the action of many antimicrobials used in clinical medicine. Some of the mechanisms of resistance include efflux pumps, alteration of the drug binding site and membrane permeability, degradation enzymes, and the conformational change of the drug culminating in its inactivation. GNB have two membranes, an external and an internal. The external membrane expresses a potent immune response inducer, lipopolysaccharide (LPS), which is composed of three units: a hydrophilic polysaccharide, O antigen, and a hydrophobic domain known as lipid A. Lipid A are responsible for the higher endotoxic activity of these bacteria. However, the LPS is heterogeneous in the various bacterial groups, and some bacteria manifest this antigen weakly due to genetic changes and are not recognized by Toll-like receptors. In contrast, there are BGN groups that can trigger such a response in large proportions. Thus, LPS can trigger the innate immune response through Toll-like receptors 4 (TLR4), which occurs in many immune cells such as monocytes, macrophages, dendritic cells, and neutrophils. The resulting activation of the innate immune response mediated by LPS together with TLR4 receptors culminates in an exacerbated response with the production of cytokines, chemokines, and interferons and their suppression. Enterobacteriaceae diffuse their plasmids by conjugation, which gives rise to resistance to almost all existing antibiotics. The family of enzymes carbapenemase – KPC, NDM-1, IMP, VIM, OXA-48 – is undoubtedly one of the most significant health challenges of the century, given the potential for dissemination between species and mortality rates due to infections caused by bacteria with such plasmids. Colistin, one of the few antibiotics that still treat multiresistant infections, already has a mobile resistance gene, mcr-1, and Enterobacteriaceae has a crucial role in the spread of this gene, with worldwide reports. Moreover, a further concern is that they usually associate these genes with other resistance genes (CTX-M, NDM, IMP), producing resistance to cephalosporins and carbapenems, enhancing the deleterious effects caused by these microorganisms.202530855801
249520.9890Transmission of Mobile Colistin Resistance (mcr-1) by Duodenoscope. BACKGROUND: Clinicians increasingly utilize polymyxins for treatment of serious infections caused by multidrug-resistant gram-negative bacteria. Emergence of plasmid-mediated, mobile colistin resistance genes creates potential for rapid spread of polymyxin resistance. We investigated the possible transmission of Klebsiella pneumoniae carrying mcr-1 via duodenoscope and report the first documented healthcare transmission of mcr-1-harboring bacteria in the United States. METHODS: A field investigation, including screening targeted high-risk groups, evaluation of the duodenoscope, and genome sequencing of isolated organisms, was conducted. The study site included a tertiary care academic health center in Boston, Massachusetts, and extended to community locations in New England. RESULTS: Two patients had highly related mcr-1-positive K. pneumoniae isolated from clinical cultures; a duodenoscope was the only identified epidemiological link. Screening tests for mcr-1 in 20 healthcare contacts and 2 household contacts were negative. Klebsiella pneumoniae and Escherichia coli were recovered from the duodenoscope; neither carried mcr-1. Evaluation of the duodenoscope identified intrusion of biomaterial under the sealed distal cap; devices were recalled to repair this defect. CONCLUSIONS: We identified transmission of mcr-1 in a United States acute care hospital that likely occurred via duodenoscope despite no identifiable breaches in reprocessing or infection control practices. Duodenoscope design flaws leading to transmission of multidrug-resistant organsisms persist despite recent initiatives to improve device safety. Reliable detection of colistin resistance is currently challenging for clinical laboratories, particularly given the absence of a US Food and Drug Administration-cleared test; improved clinical laboratory capacity for colistin susceptibility testing is needed to prevent the spread of mcr-carrying bacteria in healthcare settings.201930204838
376230.9889The epidemiology of antimicrobial resistance and transmission of cutaneous bacterial pathogens in domestic animals. As the primary agents of skin and soft tissue infections in animals, Staphylococcus spp and Pseudomonas aeruginosa are among the most formidable bacterial pathogens encountered by veterinarians. Staphylococci are commensal inhabitants of the surfaces of healthy skin and mucous membranes, which may gain access to deeper cutaneous tissues by circumventing the stratum corneum's barrier function. Compromised barrier function occurs in highly prevalent conditions such as atopic dermatitis, endocrinopathies, and skin trauma. P aeruginosa is an environmental saprophyte that constitutively expresses virulence and antimicrobial resistance genes that promote its success as an animal pathogen. For both organisms, infections of the urinary tract, respiratory tract, joints, central nervous system, and body cavities may occur through ascension along epithelial tracts, penetrating injuries, or hematogenous spread. When treating infections caused by these pathogens, veterinarians now face greater therapeutic challenges and more guarded outcomes for our animal patients because of high rates of predisposing factors for infection and the broad dissemination of antimicrobial resistance genes within these bacterial species. This review considers the history of the rise and expansion of multidrug resistance in staphylococci and P aeruginosa and the current state of knowledge regarding the epidemiologic factors that underly the dissemination of these pathogens across companion animal populations. Given the potential for cross-species and zoonotic transmission of pathogenic strains of these bacteria, and the clear role played by environmental reservoirs and fomites, a one-health perspective is emphasized.202336917615
250540.9888Resistance in nonfermenting gram-negative bacteria: multidrug resistance to the maximum. Nonfermenting gram-negative bacteria pose a particular difficulty for the healthcare community because they represent the problem of multidrug resistance to the maximum. Important members of the group in the United States include Pseudomonas aeruginosa, Acinetobacter baumannii, Stenotrophomonas maltophilia, and Burkholderia cepacia. These organisms are niche pathogens that primarily cause opportunistic healthcare-associated infections in patients who are critically ill or immunocompromised. Multidrug resistance is common and increasing among gram-negative nonfermenters, and a number of strains have now been identified that exhibit resistance to essentially all commonly used antibiotics, including antipseudomonal penicillins and cephalosporins, aminoglycosides, tetracyclines, fluoroquinolones, trimethoprim-sulfamethoxazole, and carbapenems. Polymyxins are the remaining antibiotic drug class with fairly consistent activity against multidrug-resistant strains of P aeruginosa, Acinetobacter spp, and S maltophilia. However, most multidrug-resistant B cepacia are not susceptible to polymyxins, and systemic polymyxins carry the risk of nephrotoxicity for all patients treated with these agents, the elderly in particular. A variety of resistance mechanisms have been identified in P aeruginosa and other gram-negative nonfermenters, including enzyme production, overexpression of efflux pumps, porin deficiencies, and target-site alterations. Multiple resistance genes frequently coexist in the same organism. Multidrug resistance in gram-negative nonfermenters makes treatment of infections caused by these pathogens both difficult and expensive. Improved methods for susceptibility testing are needed when dealing with these organisms, including emerging strains expressing metallo-beta-lactamases. Improved antibiotic stewardship and infection-control measures will be needed to prevent or slow the emergence and spread of multidrug-resistant, nonfermenting gram-negative bacilli in the healthcare setting.200616813979
250450.9888Resistance in nonfermenting gram-negative bacteria: multidrug resistance to the maximum. Nonfermenting gram-negative bacteria pose a particular difficulty for the healthcare community because they represent the problem of multidrug resistance to the maximum. Important members of the group in the United States include Pseudomonas aeruginosa, Acinetobacter baumannii, Stenotrophomonas maltophilia, and Burkholderia cepacia. These organisms are niche pathogens that primarily cause opportunistic healthcare-associated infections in patients who are critically ill or immunocompromised. Multidrug resistance is common and increasing among gram-negative nonfermenters, and a number of strains have now been identified that exhibit resistance to essentially all commonly used antibiotics, including antipseudomonal penicillins and cephalosporins, aminoglycosides, tetracyclines, fluoroquinolones, trimethoprim-sulfamethoxazole, and carbapenems. Polymyxins are the remaining antibiotic drug class with fairly consistent activity against multidrug-resistant strains of P aeruginosa, Acinetobacter spp, and S maltophilia. However, most multidrug-resistant B cepacia are not susceptible to polymyxins, and systemic polymyxins carry the risk of nephrotoxicity for all patients treated with these agents, the elderly in particular. A variety of resistance mechanisms have been identified in P aeruginosa and other gram-negative nonfermenters, including enzyme production, overexpression of efflux pumps, porin deficiencies, and target-site alterations. Multiple resistance genes frequently coexist in the same organism. Multidrug resistance in gram-negative nonfermenters makes treatment of infections caused by these pathogens both difficult and expensive. Improved methods for susceptibility testing are needed when dealing with these organisms, including emerging strains expressing metallo-beta-lactamases. Improved antibiotic stewardship and infection-control measures will be needed to prevent or slow the emergence and spread of multidrug-resistant, nonfermenting gram-negative bacilli in the healthcare setting.200616735148
504760.9888Phenotypic and Genotypic Characterization of Pan-Drug-Resistant Klebsiella pneumoniae Isolated in Qatar. In secondary healthcare, carbapenem-resistant Enterobacterales (CREs), such as those observed in Klebsiella pneumoniae, are a global public health priority with significant clinical outcomes. In this study, we described the clinical, phenotypic, and genotypic characteristics of three pan-drug-resistant (PDR) isolates that demonstrated extended resistance to conventional and novel antimicrobials. All patients had risk factors for the acquisition of multidrug-resistant organisms, while microbiological susceptibility testing showed resistance to all conventional antimicrobials. Advanced susceptibility testing demonstrated resistance to broad agents, such as ceftazidime-avibactam, ceftolozane-tazobactam, and meropenem-vaborbactam. Nevertheless, all isolates were susceptible to cefiderocol, suggested as one of the novel antimicrobials that demonstrated potent in vitro activity against resistant Gram-negative bacteria, including CREs, pointing toward its potential therapeutic role for PDR pathogens. Expanded genomic studies revealed multiple antimicrobial-resistant genes (ARGs), including bla(NMD-5) and bla(OXA) derivative types, as well as a mutated outer membrane porin protein (OmpK37).202438534710
155670.9887Resistance to Colistin in Klebsiella Pneumoniae: A 4.0 Strain? The global rise of multidrug-resistant gram-negative bacteria represents an increasing threat to patient safety. From the first observation of a carbapenem-resistant gram-negative bacteria a global spread of extended-spectrum beta-lactamases and carbapenemases producing Klebsiella pneumoniae has been observed. Treatment options for multidrug-resistant K. pneumoniae are actually limited to combination therapy with some aminoglycosides, tigecycline and to older antimicrobial agents. Unfortunately, the prevalence of colistin-resistant and tigecycline-resistant K. pneumoniae is increasing globally. Infection due to colistin-resistant K. pneumoniae represents an independent risk factor for mortality. Resistance to colistin in K. pneumoniae may be multifactorial, as it is mediated by chromosomal genes or plasmids. The emergence of transmissible, plasmid-mediated colistin resistance is an alarming finding. The absence of new agents effective against resistant Gram-negative pathogens means that enhanced surveillance, compliance with infection prevention procedures, and antimicrobial stewardship programs will be required to limit the spread of colistin-resistant K. pneumoniae.201728626539
252080.9885Antimicrobial resistance in Klebsiella pneumoniae: an overview of common mechanisms and a current Canadian perspective. Klebsiella pneumoniae is a ubiquitous opportunistic pathogen of the family Enterobacteriaceae. K. pneumoniae is a member of the ESKAPEE pathogens (Enterococcus faecium, Staphylococcus aureus, K. pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli), a group of bacteria that cause nosocomial infections and are able to resist killing by commonly relied upon antimicrobial agents. The acquisition of antimicrobial resistance (AMR) genes is increasing among community and clinical isolates of K. pneumoniae, making K. pneumoniae a rising threat to human health. In addition to the increase in AMR, K. pneumoniae is also thought to disseminate AMR genes to other bacterial species. In this review, the known mechanisms of K. pneumoniae AMR will be described and the current state of AMR K. pneumoniae within Canada will be discussed, including the impact of the coronavirus disease-2019 pandemic, current perspectives, and outlook for the future.202439213659
155790.9885Carbapenemase-producing Klebsiella pneumoniae. The continuing emergence of infections due to multidrug resistant bacteria is a serious public health problem. Klebsiella pneumoniae, which commonly acquires resistance encoded on mobile genetic elements, including ones that encode carbapenemases, is a prime example. K. pneumoniae carrying such genetic material, including both blaKPC and genes encoding metallo-β-lactamases, have spread globally. Many carbapenemase-producing K. pneumoniae are resistant to multiple antibiotic classes beyond β-lactams, including tetracyclines, aminoglycosides, and fluoroquinolones. The optimal treatment, if any, for infections due to these organisms is unclear but, paradoxically, appears to often require the inclusion of an optimally administered carbapenem.201425343037
4883100.9885New tools to mitigate drug resistance in Enterobacteriaceae - Escherichia coli and Klebsiella pneumoniae. Treatment to common bacterial infections are becoming ineffective of late, owing to the emergence and dissemination of antibiotic resistance globally. Escherichia coli and Klebsiella pneumoniae are the most notorious microorganisms and are among the critical priority pathogens listed by WHO in 2017. These pathogens are the predominant cause of sepsis, urinary tract infections (UTIs), pneumonia, meningitis and pyogenic liver abscess. Concern arises due to the resistance of bacteria to most of the beta lactam antibiotics like penicillin, cephalosporin, monobactams and carbapenems, even to the last resort antibiotics like colistin. Preventing influx by modulation of porins, extruding the antibiotics by overexpression of efflux pumps, mutations of drug targets/receptors, biofilm formation, altering the drug molecules and rendering them ineffective are few resistance mechanisms that are adapted by Enterobacteriaeceae upon exposure to antibiotics. The situation is exacerbated due to the process of horizontal gene transfer (HGT), wherein the genes encoding resistance mechanisms are transferred to the neighbouring bacteria through plasmids/phages/uptake of free DNA. Carbapenemases, other beta lactamases and mcr genes coding for colistin resistance are widely disseminated leading to limited/no therapeutic options against those infections. Development of new antibiotics can be viewed as a possible solution but it involves major investment, time and labour despite which, the bacteria can easily adapt to the new antibiotic and evolve resistance in a relatively short time. Targeting the resistance mechanisms can be one feasible alternative to tackle these multidrug resistant (MDR) pathogens. Removal of plasmid (plasmid curing) causing resistance, use of bacteriophages and bacteriotherapy can be other potential approaches to combat infections caused by MDR E. coli and K. pneumoniae. The present review discusses the efficacies of these therapies in mitigating these infections, which can be potentially used as an adjuvant therapy along with existing antibiotics.202335649163
9788110.9884Global antibacterial resistance: The never-ending story. Bacterial resistance is undoubtedly recognised as a major medical challenge in most healthcare systems. Resistance-determining genes, mostly in combination, and multidrug-resistant (MDR) pathogens are spreading with unprecedented speed. Well known resistance carriers with high clinical impact include the Gram-positive organisms Staphylococcus aureus and Enterococcus spp. In contrast to these organisms that are usually still treatable with newer alternative antibacterial drugs, some Gram-negative bacteria, especially Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter spp., have developed resistance to most or all available antibiotics. Such strains are already a reality in some Mediterranean and Asian countries. According to their resistance epidemiology (based on major drivers favouring resistance), three regions are pinpointed as high-impact resistance hot spots. Despite the clear medical need for novel antibiotics without cross-resistance issues, antibacterial research and development pipelines are nearly dry, thus failing to provide the flow of novel antibiotics required to match the fast emergence and spread of MDR bacteria. In a globalised world, only concerted global actions can mitigate a future with untreatable infectious diseases.201327873580
6045120.9884Lacticaseicin 30 and Colistin as a Promising Antibiotic Formulation against Gram-Negative β-Lactamase-Producing Strains and Colistin-Resistant Strains. Antimicrobial resistance is a global health concern across the world and it is foreseen to swell if no actions are taken now. To help curbing this well announced crisis different strategies are announced, and these include the use of antimicrobial peptides (AMP), which are remarkable molecules known for their killing activities towards pathogenic bacteria. Bacteriocins are ribosomally synthesized AMP produced by almost all prokaryotic lineages. Bacteriocins, unlike antibiotics, offer a set of advantages in terms of cytotoxicity towards eukaryotic cells, their mode of action, cross-resistance and impact of microbiota content. Most known bacteriocins are produced by Gram-positive bacteria, and specifically by lactic acid bacteria (LAB). LAB-bacteriocins were steadily reported and characterized for their activity against genetically related Gram-positive bacteria, and seldom against Gram-negative bacteria. The aim of this study is to show that lacticaseicin 30, which is one of the bacteriocins produced by Lacticaseibacillus paracasei CNCM I-5369, is active against Gram-negative clinical strains (Salmonella enterica Enteritidis H10, S. enterica Typhimurium H97, Enterobacter cloacae H51, Escherichia coli H45, E. coli H51, E. coli H66, Klebsiella oxytoca H40, K. pneumoniae H71, K. variicola H77, K. pneumoniae H79, K. pneumoniae H79), whereas antibiotics failed. In addition, lacticaseicin 30 and colistin enabled synergistic interactions towards the aforementioned target Gram-negative clinical strains. Further, the combinations of lacticaseicin 30 and colistin prompted a drastic downregulation of mcr-1 and mcr-9 genes, which are associated with the colistin resistance phenotypes of these clinical strains. This report shows that lacticaseicin 30 is active against Gram-negative clinical strains carrying a rainbow of mcr genes, and the combination of these antimicrobials constitutes a promising therapeutic option that needs to be further exploited.202135052897
2515130.9884High-risk Pseudomonas aeruginosa clones harboring β-lactamases: 2024 update. Carbapenem-resistant Pseudomonas aeruginosa is defined by the World Health Organization as a "high priority" in developing new antimicrobials. Indeed, the emergence and spread of multidrug-resistant (MDR) or extensively drug-resistant (XDR) bacteria increase the morbidity and mortality risk of infected patients. Genomic variants of P. aeruginosa that display phenotypes of MDR/XDR have been defined as high-risk global clones. In this mini-review, we describe some international high-risk clones that carry β-lactamase genes that can produce chronic colonization and increase infected patients' morbidity and mortality rates.202539850428
4852140.9884Recent trends in antibiotic resistance in European ICUs. PURPOSE OF REVIEW: Antimicrobial resistance is an emerging problem in ICUs worldwide. As numbers of published results from national/international surveillance studies rise rapidly, the amount of new information may be overwhelming. Therefore, we reviewed recent trends in antibiotic resistance in ICUs across Europe in the past 18 months. RECENT FINDINGS: In this period, infections caused by methicillin-resistant Staphylococcus aureus appeared to stabilize (and even decrease) in some countries, and infection rates due to Gram-positive bacteria resistant to vancomycin, linezolid or daptomycin have remained low. In contrast, we are witnessing a continent-wide emergence of infections caused by multiresistant Gram-negative bacteria, especially Escherichia coli and Klebsiella pneumoniae, with easily exchangeable resistance genes located on plasmids, producing enzymes such as extended spectrum β-lactamases and carbapenamases. In the absence of new antibiotics, prevention of infections, reducing unnecessary antibiotic use, optimizing adherence to universal hygienic and infection control measures, and improving implementation of diagnostic tests are our only tools to combat this threat. SUMMARY: As the epidemiology of antibiotic resistance in ICUs is rapidly changing toward more frequently occurring epidemics and endemicity of multi and panresistant Gram-negative pathogens, better infection control and improved diagnostics will become even more important than before.201121986462
2492150.9884Mobile Tigecycline Resistance: An Emerging Health Catastrophe Requiring Urgent One Health Global Intervention. Mobile tigecycline resistance (MTR) threatens the clinical efficacy of the salvage antibiotic, tigecycline (TIG) used in treating deadly infections in humans caused by superbugs (multidrug-, extensively drug-, and pandrug-resistant bacteria), including carbapenem- and colistin-resistant bacteria. Currently, non-mobile tet(X) and mobile plasmid-mediated transmissible tet(X) and resistance-nodulation-division (RND) efflux pump tmexCD-toprJ genes, conferring high-level TIG (HLT) resistance have been detected in humans, animals, and environmental ecosystems. Given the increasing rate of development and spread of plasmid-mediated resistance against the two last-resort antibiotics, colistin (COL) and TIG, there is a need to alert the global community on the emergence and spread of plasmid-mediated HLT resistance and the need for nations, especially developing countries, to increase their antimicrobial stewardship. Justifiably, MTR spread projects One Health ramifications and portends a monumental threat to global public and animal health, which could lead to outrageous health and economic impact due to limited options for therapy. To delve more into this very important subject matter, this current work will discuss why MTR is an emerging health catastrophe requiring urgent One Health global intervention, which has been constructed as follows: (a) antimicrobial activity of TIG; (b) mechanism of TIG resistance; (c) distribution, reservoirs, and traits of MTR gene-harboring isolates; (d) causes of MTR development; (e) possible MTR gene transfer mode and One Health implication; and (f) MTR spread and mitigating strategies.202235979498
2519160.9884Clinical Perspective of Antimicrobial Resistance in Bacteria. Antimicrobial resistance (AMR) has become a global clinical problem in recent years. With the discovery of antibiotics, infections were not a deadly problem for clinicians as they used to be. However, worldwide AMR comes with the overuse/misuse of antibiotics and the spread of resistance is deteriorated by a multitude of mobile genetic elements and relevant resistant genes. This review provides an overview of the current situation, mechanism, epidemiology, detection methods and clinical treatment for antimicrobial resistant genes in clinical important bacteria including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), penicillin-resistant Streptococcus pneumoniae (PRSP), extended-spectrum β-lactamase-producing Enterobacteriaceae, acquired AmpC β-lactamase-producing Enterobacteriaceae, carbapenemase-producing Enterobacteriaceae (CPE), multidrug-resistant (MDR) Acinetobacter baumannii and Pseudomonas aeruginosa.202235264857
4866170.9884Resistance to polymyxins in Gram-negative organisms. Polymyxins have recently been re-introduced into the therapeutic arsenal to combat infections caused by multidrug-resistant Gram-negative bacteria. However, the emergence of strains resistant to these last-resort drugs is becoming a critical issue in a growing number of countries. Both intrinsic and transferable mechanisms of polymyxin resistance have been characterised. These mechanisms as well as the epidemiological data regarding four relevant bacterial pathogens (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa) are considered in this review. A special focus is made on plasmid-mediated resistance and the spread of mcr genes.201728163137
4880180.9884Molecular mechanisms of tigecycline-resistance among Enterobacterales. The global emergence of antimicrobial resistance to multiple antibiotics has recently become a significant concern. Gram-negative bacteria, known for their ability to acquire mobile genetic elements such as plasmids, represent one of the most hazardous microorganisms. This phenomenon poses a serious threat to public health. Notably, the significance of tigecycline, a member of the antibiotic group glycylcyclines and derivative of tetracyclines has increased. Tigecycline is one of the last-resort antimicrobial drugs used to treat complicated infections caused by multidrug-resistant (MDR) bacteria, extensively drug-resistant (XDR) bacteria or even pan-drug-resistant (PDR) bacteria. The primary mechanisms of tigecycline resistance include efflux pumps' overexpression, tet genes and outer membrane porins. Efflux pumps are crucial in conferring multi-drug resistance by expelling antibiotics (such as tigecycline by direct expelling) and decreasing their concentration to sub-toxic levels. This review discusses the problem of tigecycline resistance, and provides important information for understanding the existing molecular mechanisms of tigecycline resistance in Enterobacterales. The emergence and spread of pathogens resistant to last-resort therapeutic options stands as a major global healthcare concern, especially when microorganisms are already resistant to carbapenems and/or colistin.202438655285
4859190.9883Nosocomial infection and its molecular mechanisms of antibiotic resistance. Nosocomial infection is a kind of infection, which is spread in various hospital environments, and leads to many serious diseases (e.g. pneumonia, urinary tract infection, gastroenteritis, and puerperal fever), and causes higher mortality than community-acquired infection. Bacteria are predominant among all the nosocomial infection-associated pathogens, thus a large number of antibiotics, such as aminoglycosides, penicillins, cephalosporins, and carbapenems, are adopted in clinical treatment. However, in recent years antibiotic resistance quickly spreads worldwide and causes a critical threat to public health. The predominant bacteria include Methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, and Acinetobacter baumannii. In these bacteria, resistance emerged from antibiotic resistant genes and many of those can be exchanged between bacteria. With technical advances, molecular mechanisms of resistance have been gradually unveiled. In this review, recent advances in knowledge about mechanisms by which (i) bacteria hydrolyze antibiotics (e.g. extended spectrum β-lactamases, (ii) AmpC β-lactamases, carbapenemases), (iii) avoid antibiotic targeting (e.g. mutated vanA and mecA genes), (iv) prevent antibiotic permeation (e.g. porin deficiency), or (v) excrete intracellular antibiotics (e.g. active efflux pump) are summarized.201626877142