# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8647 | 0 | 0.9957 | Eco-evolutionary strategies for relieving carbon limitation under salt stress differ across microbial clades. With the continuous expansion of saline soils under climate change, understanding the eco-evolutionary tradeoff between the microbial mitigation of carbon limitation and the maintenance of functional traits in saline soils represents a significant knowledge gap in predicting future soil health and ecological function. Through shotgun metagenomic sequencing of coastal soils along a salinity gradient, we show contrasting eco-evolutionary directions of soil bacteria and archaea that manifest in changes to genome size and the functional potential of the soil microbiome. In salt environments with high carbon requirements, bacteria exhibit reduced genome sizes associated with a depletion of metabolic genes, while archaea display larger genomes and enrichment of salt-resistance, metabolic, and carbon-acquisition genes. This suggests that bacteria conserve energy through genome streamlining when facing salt stress, while archaea invest in carbon-acquisition pathways to broaden their resource usage. These findings suggest divergent directions in eco-evolutionary adaptations to soil saline stress amongst microbial clades and serve as a foundation for understanding the response of soil microbiomes to escalating climate change. | 2024 | 39019914 |
| 8609 | 1 | 0.9956 | Nano-biochar regulates phage-host interactions, reducing antibiotic resistance genes in vermicomposting systems. Biochar amendment reshapes microbial community dynamics in vermicomposting, but the mechanism of how phages respond to this anthropogenic intervention and regulate the dissemination of antibiotic resistance genes (ARGs) remains unclear. In this study, we used metagenomics, viromics, and laboratory validation to explore how nano-biochar affects phage-host interactions and ARGs dissemination in vermicomposting. Our results revealed distinct niche-specific phage life strategies. In vermicompost, lytic phages dominated and used a "kill-the-winner" strategy to suppress antibiotic-resistant bacteria (ARB). In contrast, lysogenic phages prevailed in the earthworm gut, adopting a "piggyback-the-winner" strategy that promoted ARGs transduction through mutualistic host interactions. Nano-biochar induced the conversion of lysogenic to lytic phages in the earthworm gut, while concurrently reducing the abundance of lysogenic phages and their encoded auxiliary metabolic genes carried by ARB. This shift disrupted phage-host mutualism and inhibited ARGs transmission via a "phage shunting" mechanism. In vitro validation with batch culture experiments further confirmed that lysogenic phages increased transduction of ARGs in the earthworm gut, while nano-biochar reduced the spread of ARGs by enhancing lysis infectivity. Our study constructs a mechanistic framework linking nano-biochar induced shifts in phage lifestyles that suppress ARG spread, offering insights into phage-host coadaptation and resistance mitigation strategies in organic waste treatment ecosystems. | 2025 | 40838886 |
| 8658 | 2 | 0.9955 | Microplastic exposure reshapes the virome and virus-bacteria networks with implications for immune regulation in Mytilus coruscus. Microplastic pollution has emerged as a critical environmental concern, yet its impacts on host-associated viral communities and immune balance in marine bivalves remain largely unexplored. In this study, Mytilus coruscus individuals were exposed to microplastics in situ for seven days. Virome sequencing and bioinformatic analyses revealed that microplastic exposure induced divergent responses in DNA and RNA viral communities. DNA viromes exhibited suppressed diversity and downregulation of core viral metabolic pathways, potentially reflecting reduced viral replication capacity under host immune stress. In contrast, RNA viromes displayed metabolic activation and functional shifts, including enriched glycan and nucleotide metabolism, possibly linked to enhanced viral activity or immune evasion. Phage-bacteria interaction networks were also restructured, showing increased associations with opportunistic pathogens such as Vibrio cholerae and Enterobacter, potentially affecting immune surveillance. Furthermore, the expression of antibiotic resistance genes (ARGs) in viral genomes was differentially regulated, suggesting pollutant-induced microbial selection that may challenge host immune resilience. These findings suggest that microplastics not only reshape virome composition and metabolic functions but also influence virus-mediated immune interactions, with important implications for disease susceptibility and immune homeostasis in filter-feeding shellfish. | 2025 | 41056669 |
| 8612 | 3 | 0.9954 | Nano- and microplastics drive the dynamic equilibrium of amoeba-associated bacteria and antibiotic resistance genes. As emerging pollutants, microplastics have become pervasive on a global scale, inflicting significant harm upon ecosystems. However, the impact of these microplastics on the symbiotic relationship between protists and bacteria remains poorly understood. In this study, we investigated the mechanisms through which nano- and microplastics of varying sizes and concentrations influence the amoeba-bacterial symbiotic system. The findings reveal that nano- and microplastics exert deleterious effects on the adaptability of the amoeba host, with the magnitude of these effects contingent upon particle size and concentration. Furthermore, nano- and microplastics disrupt the initial equilibrium in the symbiotic relationship between amoeba and bacteria, with nano-plastics demonstrating a reduced ability to colonize symbiotic bacteria within the amoeba host when compared to their microplastic counterparts. Moreover, nano- and microplastics enhance the relative abundance of antibiotic resistance genes and heavy metal resistance genes in the bacteria residing within the amoeba host, which undoubtedly increases the potential transmission risk of both human pathogens and resistance genes within the environment. In sum, the results presented herein provide a novel perspective and theoretical foundation for the study of interactions between microplastics and microbial symbiotic systems, along with the establishment of risk assessment systems for ecological environments and human health. | 2024 | 38905974 |
| 6934 | 4 | 0.9954 | Impact of protist predation on bacterial community traits in river sediments. Sediment-associated microbial communities are pivotal in driving biogeochemical processes and serve as key indicators of ecosystem health and function. However, the ecological impact of protist predation on these microbial communities remains poorly understood. Here, sediment microcosms were established with varying concentrations of indigenous protists. Results revealed that protist predation exerted strong and differential effects on the bacterial community composition, functional capabilities, and antibiotic resistance profiles. Higher levels of protist predation pressure increased bacterial alpha diversity and relative abundance of genera associated with carbon and nitrogen cycling, such as Fusibacter, Methyloversatilis, Azospirillum, and Holophaga. KEGG analysis indicated that protist predation stimulated microbial processes related to the carbon, nitrogen, and sulfur cycles. Notably, the relative abundance and associated health risks of antibiotic resistance genes (ARGs), virulence factor genes (VFGs), and mobile genetic elements (MGEs) were affected by predation pressure. Medium protist predation pressure increased the relative abundance and potential risks associated with ARGs, whereas high protist concentrations led to a reduction in both, likely due to a decrease in the relative abundance of ARG-hosting pathogenic bacteria such as Pseudomonas, Acinetobacter, and Aeromonas. These findings provide comprehensive insights into the dynamics of bacterial communities under protist predation in river sediment ecosystems. | 2025 | 40885182 |
| 9371 | 5 | 0.9953 | Coevolutionary history of predation constrains the evolvability of antibiotic resistance in prey bacteria. Understanding how the historical contingency of biotic interactions shapes the evolvability of bacterial populations is imperative for the predictability of the eco-evolutionary dynamics of microbial communities. While microbial predators like Myxococcus xanthus influence the frequency of antibiotic-resistant bacteria in nature, the effect of adaptation to the presence of predators on the evolvability of prey bacteria to future stressors is unclear. Hence, to understand the influence of the coevolutionary history of predation on the evolvability of antibiotic resistance, we propagated variants of E. coli, pre-adapted to distinct biotic and abiotic conditions, in gradually increasing concentrations of antibiotics. We show that pre-adaptation to predators limits the evolution of a high degree of antibiotic resistance. Moreover, lower degree of resistance in the evolved strains also incurs reduced fitness costs while preserving their ancestral ability to resist predation. Together, we demonstrate that the history of biotic interactions can strongly influence the evolvability of bacteria. | 2025 | 40461734 |
| 8613 | 6 | 0.9953 | Insights into the role of extracellular polymeric substances (EPS) in the spread of antibiotic resistance genes. Antibiotic resistance genes (ARG) are prevalent in aquatic environments. Discharge from wastewater treatment plants is an important point source of ARG release into the environment. It has been reported that biological treatment processes may enhance rather than remove ARG because of their presence in sludge. Attenuation of ARG in biotechnological processes has been studied in depth, showing that many microorganisms can secrete complex extracellular polymeric substances (EPS). These EPS can serve as multifunctional elements of microbial communities, involving aspects, such as protection, structure, recognition, adhesion, and physiology. These aspects can influence the interaction between microbial cells and extracellular ARG, as well as the uptake of extracellular ARG by microbial cells, thus changing the transformative capability of extracellular ARG. However, it remains unclear whether EPS can affect horizontal ARG transfer, which is one of the main processes of ARG dissemination. In light of this knowledge gap, this review provides insight into the role of EPS in the transmission of ARGs; furthermore, the mechanism of ARG spread is analyzed, and the molecular compositions and functional properties of EPS are summarized; also, how EPS influence ARG mitigation is addressed, and factors impacting how EPS facilitate ARG during wastewater treatment are summarized. This review provides comprehensive insights into the role of EPS in controlling the transport and fate of ARG during biodegradation processes at the mechanistic level. | 2024 | 38169168 |
| 8616 | 7 | 0.9953 | Mechanisms of inhibition and recovery under multi-antibiotic stress in anammox: A critical review. With the escalating global concern for emerging pollutants, particularly antibiotics, microplastics, and nanomaterials, the potential disruption they pose to critical environmental processes like anaerobic ammonia oxidation (anammox) has become a pressing issue. The anammox process, which plays a crucial role in nitrogen removal from wastewater, is particularly sensitive to external pollutants. This paper endeavors to address this knowledge gap by providing a comprehensive overview of the inhibition mechanisms of multi-antibiotic on anaerobic ammonia-oxidizing bacteria, along with insights into their recovery processes. The paper dives deeply into the various ways antibiotics interact with anammox bacteria, focusing specifically on their interference with the bacteria's extracellular polymers (EPS) - crucial components that maintain the structural integrity and functionality of the cells. Additionally, it explores how anammox bacteria utilize quorum sensing (QS) mechanisms to regulate their community structure and respond to antibiotic stress. Moreover, the paper summarizes effective removal methods for these antibiotics from wastewater systems, which is crucial for mitigating their inhibitory effects on anammox bacteria. Finally, the paper offers valuable insights into how anammox communities can recuperate from multi-antibiotic stress. This includes strategies for reintroducing healthy bacteria, optimizing operational conditions, and using bioaugmentation techniques to enhance the resilience of anammox communities. In summary, this paper not only enriches our understanding of the complex interactions between antibiotics and anammox bacteria but also provides theoretical and practical guidance for the treatment of antibiotic pollution in sewage, ensuring the sustainability and effectiveness of wastewater treatment processes. | 2024 | 39366232 |
| 6435 | 8 | 0.9952 | Protistan predation selects for antibiotic resistance in soil bacterial communities. Understanding how antibiotic resistance emerges and evolves in natural habitats is critical for predicting and mitigating antibiotic resistance in the context of global change. Bacteria have evolved antibiotic production as a strategy to fight competitors, predators and other stressors, but how predation pressure of their most important consumers (i.e., protists) affects soil antibiotic resistance genes (ARGs) profiles is still poorly understood. To address this gap, we investigated responses of soil resistome to varying levels of protistan predation by inoculating low, medium and high concentrations of indigenous soil protist suspensions in soil microcosms. We found that an increase in protistan predation pressure was strongly associated with higher abundance and diversity of soil ARGs. High protist concentrations significantly enhanced the abundances of ARGs encoding multidrug (oprJ and ttgB genes) and tetracycline (tetV) efflux pump by 608%, 724% and 3052%, respectively. Additionally, we observed an increase in the abundance of numerous bacterial genera under high protistan pressure. Our findings provide empirical evidence that protistan predation significantly promotes antibiotic resistance in soil bacterial communities and advances our understanding of the biological driving forces behind the evolution and development of environmental antibiotic resistance. | 2023 | 37794244 |
| 8127 | 9 | 0.9952 | Microbial Multitrophic Communities Drive the Variation of Antibiotic Resistome in the Gut of Soil Woodlice (Crustacea: Isopoda). Multitrophic communities inhabit in soil faunal gut, including bacteria, fungi, and protists, which have been considered a hidden reservoir for antibiotic resistance genes (ARGs). However, there is a dearth of research focusing on the relationships between ARGs and multitrophic communities in the gut of soil faunas. Here, we studied the contribution of multitrophic communities to variations of ARGs in the soil woodlouse gut. The results revealed diverse and abundant ARGs in the woodlouse gut. Network analysis further exhibited strong connections between key ecological module members and ARGs, suggesting that multitrophic communities in the keystone ecological cluster may play a pivotal role in the variation of ARGs in the woodlouse gut. Moreover, long-term application of sewage sludge significantly altered the woodlice gut resistome and interkingdom communities. The variation portioning analysis indicated that the fungal community has a greater contribution to variations of ARGs than bacterial and protistan communities in the woodlice gut after long-term application of sewage sludge. Together, our results showed that changes in gut microbiota associated with agricultural practices (e.g., sewage sludge application) can largely alter the gut interkingdom network in ecologically relevant soil animals, with implications for antibiotic resistance, which advances our understanding of the microecological drivers of ARGs in terrestrial ecosystem. | 2022 | 35876241 |
| 8361 | 10 | 0.9952 | Functional potential and evolutionary response to long-term heat selection of bacterial associates of coral photosymbionts. Symbiotic microorganisms are crucial for the survival of corals and their resistance to coral bleaching in the face of climate change. However, the impact of microbe-microbe interactions on coral functioning is mostly unknown but could be essential factors for coral adaption to future climates. Here, we investigated interactions between cultured dinoflagellates of the Symbiodiniaceae family, essential photosymbionts of corals, and associated bacteria. By assessing the genomic potential of 49 bacteria, we found that they are likely beneficial for Symbiodiniaceae, through the production of B vitamins and antioxidants. Additionally, bacterial genes involved in host-symbiont interactions, such as secretion systems, accumulated mutations following long-term exposure to heat, suggesting symbiotic interactions may change under climate change. This highlights the importance of microbe-microbe interactions in coral functioning. | 2023 | 37909753 |
| 6396 | 11 | 0.9952 | Interaction between microplastic biofilm formation and antibiotics: Effect of microplastic biofilm and its driving mechanisms on antibiotic resistance gene. As two pollutants with similar transport pathways, microplastics (MPs) and antibiotics (ATs) inevitably co-exist in water environments, and their interaction has become a topic of intense research interest for scholars over the past few years. This paper comprehensively and systematically reviews the current interaction between MPs and ATs, in particular, the role played by biofilm developed MPs (microplastic biofilm). A summary of the formation process of microplastic biofilm and its unique microbial community structure is presented in the paper. The formation of microplastic biofilm can enhance the adsorption mechanisms of ATs on primary MPs. Moreover, microplastic biofilm system is a diverse and vast reservoir of genetic material, and this paper reviews the mechanisms by which microplastics with biofilm drive the production of antibiotic resistance genes (ARGs) and the processes that selectively enrich for more ARGs. Meanwhile, the enrichment of ARGs may lead to the development of microbial resistance and the gradual loss of the antimicrobial effect of ATs. The transfer pathways of ARGs affected by microplastic biofilm are outlined, and ARGs dependent transfer of antibiotic resistance bacteria (ARB) is mainly through horizontal gene transfer (HGT). Furthermore, the ecological implications of the interaction between microplastic biofilm and ATs and perspectives for future research are reviewed. This review contributes to a new insight into the aquatic ecological environmental risks and the fate of contaminants (MPs, ATs), and is of great significance for controlling the combined pollution of these two pollutants. | 2023 | 37517232 |
| 8644 | 12 | 0.9951 | Biotic and abiotic drivers of soil carbon, nitrogen and phosphorus and metal dynamic changes during spontaneous restoration of Pb-Zn mining wastelands. The biotic and abiotic mechanisms that drive important biogeochemical processes (carbon, nitrogen, phosphorus and metals dynamics) in metal mine revegetation remains elusive. Metagenomic sequencing was used to explored vegetation, soil properties, microbial communities, functional genes and their impacts on soil processes during vegetation restoration in a typical Pb-Zn mine. The results showed a clear niche differentiation between bacteria, fungi and archaea. Compared to bacteria and fungi, the archaea richness were more tightly coupled with natural restoration changes. The relative abundances of CAZyme-related, denitrification-related and metal resistance genes reduced, while nitrification, urease, inorganic phosphorus solubilisation, phosphorus transport, and phosphorus regulation -related genes increased. Redundancy analysis, hierarchical partitioning analysis, relative-importance analysis and partial least squares path modelling, indicated that archaea diversity, primarily influenced by available lead, directly impacts carbon dynamics. Functional genes, significantly affected by available cadmium, directly alter nitrogen dynamics. Additionally, pH affects phosphorus dynamics through changes in bacterial diversity, while metal dynamics are directly influenced by vegetation. These insights elucidate natural restoration mechanisms in mine and highlight the importance of archaea in soil processes. | 2025 | 40054196 |
| 8648 | 13 | 0.9951 | Host-specific assembly of phycosphere microbiome and enrichment of the associated antibiotic resistance genes: Integrating species of microalgae hosts, developmental stages and water contamination. Phytoplankton-bacteria interactions profoundly impact ecosystem function and biogeochemical cycling, while their substantial potential to carry and disseminate antibiotic resistance genes (ARGs) poses a significant threat to global One Health. However, the ecological paradigm behind the phycosphere assembly of microbiomes and the carrying antibiotic resistomes remains unclear. Our field investigation across various freshwater ecosystems revealed a substantial enrichment of bacteria and ARGs within microalgal niches. Taking account of the influence for species of microalgae hosts, their developmental stages and the stress of water pollution, we characterized the ecological processes governing phycosphere assembly of bacterial consortia and enrichment of the associated ARGs. By inoculating 6 axenic algal hosts with two distinct bacterial consortia from a natural river and the phycosphere of Scenedesmus acuminatus, we observed distinct phycosphere bacteria recruitment among different algal species, yet consistency within the same species. Notably, a convergent bacterial composition was established for the same algae species for two independent inoculations, demonstrating host specificity in phycosphere microbiome assembly. Host-specific signature was discernible as early as the algal lag phase and more pronounced as the algae developed, indicating species types of algae determined mutualism between the bacterial taxa and hosts. The bacteria community dominated the shaping of ARG profiles within the phycosphere and the host-specific phycosphere ARG enrichment was intensified with the algae development. The polluted water significantly stimulated host's directional selection on phycosphere bacterial consortia and increased the proliferation antibiotic resistome. These consortia manifested heightened beneficial functionality, enhancing microalgal adaptability to contamination stress. | 2025 | 40349825 |
| 6449 | 14 | 0.9950 | Microbial regulation of natural antibiotic resistance: Understanding the protist-bacteria interactions for evolution of soil resistome. The emergence, evolution and spread of antibiotic resistance genes (ARGs) in the environment represent a global threat to human health. Our knowledge of antibiotic resistance in human-impacted ecosystems is rapidly growing with antibiotic use, organic fertilization and wastewater irrigation identified as key selection pressures. However, the importance of biological interactions, especially predation and competition, as a potential driver of antibiotic resistance in the natural environment with limited anthropogenic disturbance remains largely overlooked. Stress-affected bacteria develop resistance to maximize competition and survival, and similarly bacteria may develop resistance to fight stress under the predation pressure of protists, an essential component of the soil microbiome. In this article, we summarized the major findings for the prevalence of natural ARGs on our planet and discussed the potential selection pressures driving the evolution and development of antibiotic resistance in natural settings. This is the first article that reviewed the potential links between protists and the antibiotic resistance of bacteria, and highlighted the importance of predation by protists as a crucial selection pressure of antibiotic resistance in the absence of anthropogenic disturbance. We conclude that an improved ecological understanding of the protists-bacteria interactions and other biological relationships would greatly expand our ability to predict and mitigate the environmental antibiotic resistance under the context of global change. | 2020 | 31818598 |
| 8331 | 15 | 0.9950 | An activator regulates the DNA damage response and anti-phage defense networks in Moraxellaceae. DNA-damage chemicals, including many antibiotics, often induce prophage induction and phage outbreaks within microbial communities, posing a significant threat to bacterial survival. Moraxellaceae strains are clinically relevant due to their remarkable resistance to antibiotics and radiation. However, the cellular-level regulation mechanisms that underlie their DNA damage response and anti-phage defense remain extensively unexplored. Here, we report a WYL family protein, DdaA, that has replaced the ubiquitous SOS system during the evolution of Moraxellaceae. DdaA functions as an activator and directly regulates the transcriptional networks of both DNA damage response and anti-phage defense genes under conditions of DNA damage stress. Our findings elucidate a pathway that shows how these bacteria enhance their immunity under DNA damage and shed light on controlling the resistance of Moraxellaceae strains in clinical practice. | 2025 | 40874593 |
| 6936 | 16 | 0.9950 | Pivotal role of earthworm gut protists in mediating antibiotic resistance genes under microplastic and sulfamethoxazole stress in soil-earthworm systems. Microplastics (MPs) are currently receiving widespread attention worldwide, and their co-occurrence with antibiotics is unavoidable. However, our understanding of how protists respond to co-pollution and mediate antibiotic resistance genes (ARGs) profiles remains exceedingly limited, particularly within non-target animals' guts. To bridge these gaps, we investigated the individual and combined effects of polyethylene and sulfamethoxazole (SMZ) on microbial communities and ARGs in soil and earthworm guts. We found that the MP-SMZ combination significantly elevated the abundance and richness of ARGs in the soil and earthworm. Protistan compositions (particularly consumers) responded more strongly to pollutants than did bacterial and fungal communities, especially under combined pollution. Interkingdom cooccurrence network analysis revealed that protists had stronger and more effective interactions with the resistome in the earthworm guts, suggesting that the impact of these protists on ARGs compositional changes was potentially modulated through the "top-down" regulation of bacteria and fungi. Meta-cooccurrence networks further confirmed that protist-related networks had more keystone pollution-sensitive ASVs (psASVs) and these psASVs were mostly associated with protistan consumers. Our study highlights protists as promising agents for regulating and monitoring microbial functions, as well as the ecological risks of the antibiotic resistome associated with MPs and SMZ pollution in agricultural ecosystems. | 2025 | 40412325 |
| 6938 | 17 | 0.9949 | Assessment of the Effects of Biodegradable and Nonbiodegradable Microplastics Combined with Pesticides on the Soil Microbiota. Microplastics (MPs) and pesticides pose significant threats to the health of soil ecosystems. This study investigated the individual and combined effects of biodegradable polylactic acid (PLA) and nonbiodegradable polyethylene terephthalate (PET) microplastics alongside glyphosate and imidacloprid pesticides on soil microbial communities and antibiotic resistance genes (ARGs) via microcosm experiments. Compared with the control, PLA significantly increased microbial alpha diversity and enhanced microbial functions related to environmental information processing and metabolism. However, PLA also selectively enriched populations of beneficial and potentially pathogenic bacteria, whereas PET had comparatively weaker effects. Crucially, PLA exposure resulted in substantially higher total abundance and ecological risk levels of soil ARGs than did PET. Coexposure with pesticides further amplified these effects, with PLA demonstrating notable synergistic interactions with both glyphosate and imidacloprid. These findings challenge the conventional assumption that biodegradable MPs such as PLA are environmentally safer than nonbiodegradable MPs, thus highlighting their potential to induce more complex and potentially severe ecological risks under co-contamination scenarios with pesticides. | 2025 | 41175058 |
| 8635 | 18 | 0.9949 | Techniques for enhancing the tolerance of industrial microbes to abiotic stresses: A review. The diversity of stress responses and survival strategies evolved by microorganism enables them to survive and reproduce in a multitude of harsh environments, whereas the discovery of the underlying resistance genes or mechanisms laid the foundation for the directional enhancement of microbial tolerance to abiotic stresses encountered in industrial applications. Many biological techniques have been developed for improving the stress resistance of industrial microorganisms, which greatly benefited the bacteria on which industrial production is based. This review introduces the main techniques for enhancing the resistance of microorganisms to abiotic stresses, including evolutionary engineering, metabolic engineering, and process engineering, developed in recent years. In addition, we also discuss problems that are still present in this area and offer directions for future research. | 2020 | 31206805 |
| 8611 | 19 | 0.9949 | Silver nanoparticles facilitate phage-borne resistance gene transfer in planktonic and microplastic-attached bacteria. The spread of bacteriophage-borne antibiotic resistance genes (ARGs) poses a realistic threat to human health. Nanomaterials, as important emerging pollutants, have potential impacts on ARGs dissemination in aquatic environments. However, little is known about its role in transductive transfer of ARGs mediated by bacteriophage in the presence of microplastics. Therefore, this study comprehensively investigated the influence of silver nanoparticles (AgNPs) on the transfer of bacteriophage-encoded ARGs in planktonic Escherichia coli and microplastic-attached biofilm. AgNPs exposure facilitated the phage transduction in planktonic and microplastic-attached bacteria at ambient concentration of 0.1 mg/L. Biological binding mediated by phage-specific recognition, rather than physical aggregation conducted by hydrophilicity and ζ-potential, dominated the bacterial adhesion of AgNPs. The aggregated AgNPs in turn resulted in elevated oxidative stress and membrane destabilization, which promoted the bacteriophage infection to planktonic bacteria. AgNPs exposure could disrupt colanic acid biosynthesis and then reduce the thickness of biofilm on microplastics, contributing to the transfer of phage-encoded ARGs. Moreover, the roughness of microplastics also affected the performance of AgNPs on the transductive transfer of ARGs in biofilms. This study reveals the compound risks of nanomaterials and microplastics in phage-borne ARGs dissemination and highlights the complexity in various environmental scenarios. | 2024 | 38452675 |