UNCOVERED - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
512600.9926Blanket antimicrobial resistance gene database with structural information, BOARDS, provides insights on historical landscape of resistance prevalence and effects of mutations in enzyme structure. Antimicrobial resistance (AMR) in pathogenic bacteria poses a significant threat to public health, yet there is still a need for development in the tools to deeply understand AMR genes based on genetic or structural information. In this study, we present an interactive web database named Blanket Overarching Antimicrobial-Resistance gene Database with Structural information (BOARDS, sbml.unist.ac.kr), a database that comprehensively includes 3,943 reported AMR gene information for 1,997 extended spectrum beta-lactamase (ESBL) and 1,946 other genes as well as a total of 27,395 predicted protein structures. These structures, which include both wild-type AMR genes and their mutants, were derived from 80,094 publicly available whole-genome sequences. In addition, we developed the rapid analysis and detection tool of antimicrobial-resistance (RADAR), a one-stop analysis pipeline to detect AMR genes across whole-genome sequencing (WGSs). By integrating BOARDS and RADAR, the AMR prevalence landscape for eight multi-drug resistant pathogens was reconstructed, leading to unexpected findings such as the pre-existence of the MCR genes before their official reports. Enzymatic structure prediction-based analysis revealed that the occurrence of mutations found in some ESBL genes was found to be closely related to the binding affinities with their antibiotic substrates. Overall, BOARDS can play a significant role in performing in-depth analysis on AMR.IMPORTANCEWhile the increasing antibiotic resistance (AMR) in pathogen has been a burden on public health, effective tools for deep understanding of AMR based on genetic or structural information remain limited. In this study, a blanket overarching antimicrobial-resistance gene database with structure information (BOARDS)-a web-based database that comprehensively collected AMR gene data with predictive protein structural information was constructed. Additionally, we report the development of a RADAR pipeline that can analyze whole-genome sequences as well. BOARDS, which includes sequence and structural information, has shown the historical landscape and prevalence of the AMR genes and can provide insight into single-nucleotide polymorphism effects on antibiotic degrading enzymes within protein structures.202438085058
435710.9926Comparative genomic analysis of 255 Oenococcus oeni isolates from China: unveiling strain diversity and genotype-phenotype associations of acid resistance. Oenococcus oeni, the only species of lactic acid bacteria capable of fully completing malolactic fermentation under challenging wine conditions, continues to intrigue researchers owing to its remarkable adaptability, particularly in combating acid stress. However, the mechanism underlying its superior adaptation to wine stresses still remains elusive due to the lack of viable genetic manipulation tools for this species. In this study, we conducted genomic sequencing and acid resistance phenotype analysis of 255 O. oeni isolates derived from diverse wine regions across China, aiming to elucidate their strain diversity and genotype-phenotype associations of acid resistance through comparative genomics. A significant correlation between phenotypes and evolutionary relationships was observed. Notably, phylogroup B predominantly consisted of acid-resistant isolates, primarily originating from Shandong and Shaanxi wine regions. Furthermore, we uncovered a noteworthy linkage between prophage genomic islands and acid resistance phenotype. Using genome-wide association studies, we identified key genes correlated with acid resistance, primarily involved in carbohydrates and amino acid metabolism processes. This study offers profound insights into the genetic diversity and genetic basis underlying adaptation mechanisms to acid stress in O. oeni.IMPORTANCEThis study provides valuable insights into the genetic basis of acid resistance in Oenococcus oeni, a key lactic acid bacterium in winemaking. By analyzing 255 isolates from diverse wine regions in China, we identified significant correlations between strain diversity, genomic islands, and acid resistance phenotypes. Our findings reveal that certain prophage-related genomic islands and specific genes are closely linked to acid resistance, offering a deeper understanding of how O. oeni adapts to acidic environments. These discoveries not only advance our knowledge of microbial stress responses but also pave the way for selecting and engineering acid-resistant strains, enhancing malolactic fermentation efficiency and wine quality. This research underscores the importance of genomics in improving winemaking practices and addressing challenges posed by high-acidity wines.202540261018
516320.9925Multi-omics data elucidate parasite-host-microbiota interactions and resistance to Haemonchus contortus in sheep. BACKGROUND: The integration of molecular data from hosts, parasites, and microbiota can enhance our understanding of the complex biological interactions underlying the resistance of hosts to parasites. Haemonchus contortus, the predominant sheep gastrointestinal parasite species in the tropics, causes significant production and economic losses, which are further compounded by the diminishing efficiency of chemical control owing to anthelmintic resistance. Knowledge of how the host responds to infection and how the parasite, in combination with microbiota, modulates host immunity can guide selection decisions to breed animals with improved parasite resistance. This understanding will help refine management practices and advance the development of new therapeutics for long-term helminth control. METHODS: Eggs per gram (EPG) of feces were obtained from Morada Nova sheep subjected to two artificial infections with H. contortus and used as a proxy to select animals with high resistance or susceptibility for transcriptome sequencing (RNA-seq) of the abomasum and 50 K single-nucleotide genotyping. Additionally, RNA-seq data for H. contortus were generated, and amplicon sequence variants (ASV) were obtained using polymerase chain reaction amplification and sequencing of bacterial and archaeal 16S ribosomal RNA genes from sheep feces and rumen content. RESULTS: The heritability estimate for EPG was 0.12. GAST, GNLY, IL13, MGRN1, FGF14, and RORC genes and transcripts were differentially expressed between resistant and susceptible animals. A genome-wide association study identified regions on chromosomes 2 and 11 that harbor candidate genes for resistance, immune response, body weight, and adaptation. Trans-expression quantitative trait loci were found between significant variants and differentially expressed transcripts. Functional co-expression modules based on sheep genes and ASVs correlated with resistance to H. contortus, showing enrichment in pathways of response to bacteria, immune and inflammatory responses, and hub features of the Christensenellaceae, Bacteroides, and Methanobrevibacter genera; Prevotellaceae family; and Verrucomicrobiota phylum. In H. contortus, some mitochondrial, collagen-, and cuticle-related genes were expressed only in parasites isolated from susceptible sheep. CONCLUSIONS: The present study identified chromosome regions, genes, transcripts, and pathways involved in the elaborate interactions between the sheep host, its gastrointestinal microbiota, and the H. contortus parasite. These findings will assist in the development of animal selection strategies for parasite resistance and interdisciplinary approaches to control H. contortus infection in sheep.202438429820
846230.9925Comparative Genomics of Lactiplantibacillus plantarum: Insights Into Probiotic Markers in Strains Isolated From the Human Gastrointestinal Tract and Fermented Foods. Lactiplantibacillus (Lpb.) plantarum is a versatile species commonly found in a wide variety of ecological niches including dairy products and vegetables, while it may also occur as a natural inhabitant of the human gastrointestinal tract. Although Lpb. plantarum strains have been suggested to exert beneficial properties on their host, the precise mechanisms underlying these microbe-host interactions are still obscure. In this context, the genome-scale in silico analysis of putative probiotic bacteria represents a bottom-up approach to identify probiotic biomarkers, predict desirable functional properties, and identify potentially detrimental antibiotic resistance genes. In this study, we characterized the bacterial genomes of three Lpb. plantarum strains isolated from three distinct environments [strain IMC513 (from the human GIT), C904 (from table olives), and LT52 (from raw-milk cheese)]. A whole-genome sequencing was performed combining Illumina short reads with Oxford Nanopore long reads. The phylogenomic analyses suggested the highest relatedness between IMC513 and C904 strains which were both clade 4 strains, with LT52 positioned within clade 5 within the Lpb. plantarum species. The comparative genome analysis performed across several Lpb. plantarum representatives highlighted the genes involved in the key metabolic pathways as well as those encoding potential probiotic features in these new isolates. In particular, our strains varied significantly in genes encoding exopolysaccharide biosynthesis and in contrast to strains IMC513 and C904, the LT52 strain does not encode a Mannose-binding adhesion protein. The LT52 strain is also deficient in genes encoding complete pentose phosphate and the Embden-Meyerhof pathways. Finally, analyses using the CARD and ResFinder databases revealed that none of the strains encode known antibiotic resistance loci. Ultimately, the results provide better insights into the probiotic potential and safety of these three strains and indicate avenues for further mechanistic studies using these isolates.202235663852
514740.9925Multiscale comparative pathogenomic analysis of Vibrio anguillarum linking serotype diversity, genomic plasticity and pathogenicity. Vibrio anguillarum is a major marine fish pathogen causing high mortality and potential zoonotic risks. Understanding its genomic diversity, virulence factors, and antibiotic resistance is crucial for aquaculture disease management. In this study, a comparative pan-genomic analysis of 16 V. anguillarum strains was conducted to examine core and accessory genome diversity, virulence factors, and antibiotic resistance mechanisms. The phylogenetic analysis was conducted using six core genes and SNPs to evaluate evolutionary relationships and pathogenic traits. The core genome contained 2,038 unique ORFs, while the accessory genome had 5,197 cloud genes, confirming an open pangenome. This study identified 118 pathogenic genomic islands, antibiotic resistance genes (tetracycline, quinolone, and carbapenem), and virulence factors, including type VI secretion system (T6SS) components and RTX toxins (hcp-2, vipB/mglB, rtxC). Core genes such as ftsI uncovered substantial evolutionary divergence among species, identifying more than 150 distinct SNPs. Phylogenetic analysis showed serotype-specific clustering, with O1 strains displaying genetic homogeneity, whereas O2 and O3 exhibited divergence, suggesting distinct evolutionary adaptations influencing pathogenicity and ecological interactions. These findings provide primary insights for developing molecular markers and targeted treatments for aquaculture pathogens.202540854641
955650.9924Recent insights into actinobacteria research in antimicrobial resistance: a review. Antimicrobial resistance (AMR) has emerged as a global health crisis, taking 4.71 million lives in the year 2021 and posing significant challenges to healthcare systems. Actinobacteria, particularly Streptomyces sp., are a well-established source of bioactive secondary metabolites, including antibiotics such as polyketides, aminoglycosides, and macrolides with activity against multidrug-resistant (MDR) bacteria. However, only 10% of the antibiotic genes are expressed, and others are silent in cryptic biosynthetic gene clusters (BGCs) that remain inactive under standard laboratory conditions. Advances in genome mining, bioinformatics tools like antiSMASH, and molecular techniques such as CRISPR-Cas have facilitated the identification of these clusters. Furthermore, innovative strategies such as co-culturing and HDAC inhibitors have shown promise in activating cryptic biosynthetic pathways to combat emerging antimicrobial resistance. Despite these advancements, the rapid evolution of resistance requires continuous research and global collaboration to ensure a sustainable pipeline of effective antibiotics. This review provides insight into actinobacteria-derived antibiotics, resistance mechanisms, and emerging biotechnological interventions to address the AMR crisis, underscoring the urgent need for multidisciplinary antibiotic discovery and stewardship efforts.202540627029
650760.9924What Are the Drivers Triggering Antimicrobial Resistance Emergence and Spread? Outlook from a One Health Perspective. Antimicrobial resistance (AMR) has emerged as a critical global public health threat, exacerbating healthcare burdens and imposing substantial economic costs. Currently, AMR contributes to nearly five million deaths annually worldwide, surpassing mortality rates of any single infectious disease. The economic burden associated with AMR-related disease management is estimated at approximately $730 billion per year. This review synthesizes current research on the mechanisms and multifaceted drivers of AMR development and dissemination through the lens of the One Health framework, which integrates human, animal, and environmental health perspectives. Intrinsic factors, including antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs), enable bacteria to evolve adaptive resistance mechanisms such as enzymatic inactivation, efflux pumps, and biofilm formation. Extrinsic drivers span environmental stressors (e.g., antimicrobials, heavy metals, disinfectants), socioeconomic practices, healthcare policies, and climate change, collectively accelerating AMR proliferation. Horizontal gene transfer and ecological pressures further facilitate the spread of antimicrobial-resistant bacteria across ecosystems. The cascading impacts of AMR threaten human health and agricultural productivity, elevate foodborne infection risks, and impose substantial economic burdens, particularly in low- and middle-income countries. To address this complex issue, the review advocates for interdisciplinary collaboration, robust policy implementation (e.g., antimicrobial stewardship), and innovative technologies (e.g., genomic surveillance, predictive modeling) under the One Health paradigm. Such integrated strategies are essential to mitigate AMR transmission, safeguard global health, and ensure sustainable development.202540558133
377770.9924A Bioinformatic Analysis of Integrative Mobile Genetic Elements Highlights Their Role in Bacterial Adaptation. Mobile genetic elements (MGEs) contribute to bacterial adaptation and evolution; however, high-throughput, unbiased MGE detection remains challenging. We describe MGEfinder, a bioinformatic toolbox that identifies integrative MGEs and their insertion sites by using short-read sequencing data. MGEfinder identifies the genomic site of each MGE insertion and infers the identity of the inserted sequence. We apply MGEfinder to 12,374 sequenced isolates of 9 prevalent bacterial pathogens, including Mycobacterium tuberculosis, Staphylococcus aureus, and Escherichia coli, and identify thousands of MGEs, including candidate insertion sequences, conjugative transposons, and prophage elements. The MGE repertoire and insertion rates vary across species, and integration sites often cluster near genes related to antibiotic resistance, virulence, and pathogenicity. MGE insertions likely contribute to antibiotic resistance in laboratory experiments and clinical isolates. Additionally, we identified thousands of mobility genes, a subset of which have unknown function opening avenues for exploration. Future application of MGEfinder to commensal bacteria will further illuminate bacterial adaptation and evolution.202031862382
771180.9923Beyond the desert sands: decoding the relationship between camels, gut microbiota, and antibiotic resistance through metagenomics. BACKGROUND: Camels, known as the enduring "ships of the desert," host a complex gut microbiota that plays a crucial role in their survival in extreme environments. However, amidst the fascinating discoveries about the camel gut microbiota, concerns about antibiotic resistance have emerged as a significant global challenge affecting both human and animal populations. Indeed, the continued use of antibiotics in veterinary medicine has led to the widespread emergence of antibiotic-resistant bacteria, which has worsened through gene transfer. METHODS: This study offers a deeper examination of this pressing issue by harnessing the potent tools of metagenomics to explore the intricate interplay between the camel (Camelus ferus) gut microbiota and antibiotic resistance. RESULTS: Samples from wild camels yielded varying amounts of raw and clean data, generating scaftigs and open reading frames. The camel fecal microbiome was dominated by bacteria (mainly Bacillota and Bacteriodota), followed by viruses, archaea, and eukaryota. The most abundant genera were the Bacteroides, Ruminococcus, and Clostridium. Functional annotation revealed enriched pathways in metabolism, genetic information processing, and cellular processes, with key pathways involving carbohydrate transport and metabolism, replication, and amino acid transport. CAZy database analysis showed high abundances of glycoside hydrolases and glycosyl transferases. Antibiotic resistance gene (ARG) analysis identified Bacillota and Bacteroidota as the main reservoirs, with vancomycin resistance genes being the most prevalent. This study identified three major resistance mechanisms: antibiotic target alteration, antibiotic target protection, and antibiotic efflux. CONCLUSION: These findings contribute to a broader understanding of antibiotic resistance within animal microbiomes and provide a foundation for further investigations of strategies to manage and mitigate antibiotic resistance.202439763640
840990.9922Comparative genomics reveals key adaptive mechanisms in pathogen host-niche specialization. INTRODUCTION: Understanding the key factors that enable bacterial pathogens to adapt to new hosts is crucial, as host-microbe interactions not only influence host health but also drive bacterial genome diversification, thereby enhancing pathogen survival in various ecological niches. METHODS: We conducted a comparative genomic analysis of 4,366 high-quality bacterial genomes isolated from various hosts and environments. Bioinformatics databases and machine learning approaches were used to identify genomic differences in functional categories, virulence factors, and antibiotic resistance genes across different ecological niches. RESULTS: Significant variability in bacterial adaptive strategies was observed. Human-associated bacteria, particularly from the phylum Pseudomonadota, exhibited higher detection rates of carbohydrate-active enzyme genes and virulence factors related to immune modulation and adhesion, indicating co-evolution with the human host. In contrast, bacteria from environmental sources, particularly those from the phyla Bacillota and Actinomycetota, showed greater enrichment in genes related to metabolism and transcriptional regulation, highlighting their high adaptability to diverse environments. Bacteria from clinical settings had higher detection rates of antibiotic resistance genes, particularly those related to fluoroquinolone resistance. Animal hosts were identified as important reservoirs of resistance genes. Key host-specific bacterial genes, such as hypB, were found to potentially play crucial roles in regulating metabolism and immune adaptation in human-associated bacteria. DISCUSSION: These findings highlight niche-specific genomic features and adaptive mechanisms of bacterial pathogens. This study provides valuable insights into the genetic basis of host-pathogen interactions and offers evidence to inform pathogen transmission control, infection management, and antibiotic stewardship.202540547794
8403100.9922Uncovering virulence factors in Cronobacter sakazakii: insights from genetic screening and proteomic profiling. The increasing problem of antibiotic resistance has driven the search for virulence factors in pathogenic bacteria, which can serve as targets for the development of new antibiotics. Although whole-genome Tn5 transposon mutagenesis combined with phenotypic assays has been a widely used approach, its efficiency remains low due to labor-intensive processes. In this study, we aimed to identify specific genes and proteins associated with the virulence of Cronobacter sakazakii, a pathogenic bacterium known for causing severe infections, particularly in infants and immunocompromised individuals. By employing a combination of genetic screening, comparative proteomics, and in vivo validation using zebrafish and rat models, we rapidly screened highly virulent strains and identified two genes, rcsA and treR, as potential regulators of C. sakazakii toxicity toward zebrafish and rats. Proteomic profiling revealed upregulated proteins upon knockout of rcsA and treR, including FabH, GshA, GppA, GcvH, IhfB, RfaC, MsyB, and three unknown proteins. Knockout of their genes significantly weakened bacterial virulence, confirming their role as potential virulence factors. Our findings contribute to understanding the pathogenicity of C. sakazakii and provide insights into the development of targeted interventions and therapies against this bacterium.IMPORTANCEThe emergence of antibiotic resistance in pathogenic bacteria has become a critical global health concern, necessitating the identification of virulence factors as potential targets for the development of new antibiotics. This study addresses the limitations of conventional approaches by employing a combination of genetic screening, comparative proteomics, and in vivo validation to rapidly identify specific genes and proteins associated with the virulence of Cronobacter sakazakii, a highly pathogenic bacterium responsible for severe infections in vulnerable populations. The identification of two genes, rcsA and treR, as potential regulators of C. sakazakii toxicity toward zebrafish and rats and the proteomic profiling upon knockout of rcsA and treR provides novel insights into the mechanisms underlying bacterial virulence. The findings contribute to our understanding of C. sakazakii's pathogenicity, shed light on the regulatory pathways involved in bacterial virulence, and offer potential targets for the development of novel interventions against this highly virulent bacterium.202337750707
6692110.9922An omics-based framework for investigating the emerging antibiotic resistance gene: The case of estT. The escalating prevalence of antimicrobial resistance (AMR) constitutes a global public health crisis. This is exacerbated by the continuous emergence of new variants and the discovery of previously unrecognized antibiotic resistance genes (ARGs). While advanced AMR surveillance efforts include time-consuming epidemiological investigations and retrospective analyses, critical gaps often remain towards our understanding of the sources of newly identified ARGs. Here, we established a framework integrating omics-based epidemiological investigations, genomic feature analysis of ARGs-carrying bacteria and evolution analysis of novel ARGs. We took the novel resistance gene estT as an example and analyzed it following this framework. Our study revealed that the estT gene was widely prevalent, capable of cross-phyla transmission, and predominantly present in human- and animal-derived bacteria. We explored the genomic characteristics of estT-positive Escherichia coli, Bacillus spp., Mannheimia haemolytica, and Riemerella anatipestifer, uncovering their public health risks. Evolution analysis of estT homologs found historical connections between estTs and tet(X)s. This study provides a systematic strategy for the proactive surveillance of emerging ARGs, enabling omics-data-driven monitoring of ARG evolution and dissemination to mitigate the escalating crisis of AMR.202541160932
3260120.9922Profiles of phage in global hospital wastewater: Association with microbial hosts, antibiotic resistance genes, metal resistance genes, and mobile genetic elements. Hospital wastewater (HWW) is known to host taxonomically diverse microbial communities, yet limited information is available on the phages infecting these microorganisms. To fill this knowledge gap, we conducted an in-depth analysis using 377 publicly available HWW metagenomic datasets from 16 countries across 4 continents in the NCBI SRA database to elucidate phage-host dynamics and phage contributions to resistance gene transmission. We first assembled a metagenomic HWW phage catalog comprising 13,812 phage operational taxonomic units (pOTUs). The majority of these pOTUs belonged to the Caudoviricetes order, representing 75.29 % of this catalog. Based on the lifestyle of phages, we found that potentially virulent phages predominated in HWW. Specifically, 583 pOTUs have been predicted to have the capability to lyse 81 potentially pathogenic bacteria, suggesting the promising role of HWW phages as a viable alternative to antibiotics. Among all pOTUs, 1.56 % of pOTUs carry 108 subtypes of antibiotic resistance genes (ARGs), 0.96 % of pOTUs carry 76 subtypes of metal resistance genes (MRGs), and 0.96 % of pOTUs carry 22 subtypes of non-phage mobile genetic elements (MGEs). Predictions indicate that certain phages carrying ARGs, MRGs, and non-phage MGEs could infect bacteria hosts, even potential pathogens. This suggests that phages in HWW may contribute to the dissemination of resistance-associated genes in the environment. This meta-analysis provides the first global catalog of HWW phages, revealing their correlations with microbial hosts and pahge-associated ARGs, MRG, and non-phage MGEs. The insights gained from this research hold promise for advancing the applications of phages in medical and industrial contexts.202438513871
9068130.9922TnCentral: a Prokaryotic Transposable Element Database and Web Portal for Transposon Analysis. We describe here the structure and organization of TnCentral (https://tncentral.proteininformationresource.org/ [or the mirror link at https://tncentral.ncc.unesp.br/]), a web resource for prokaryotic transposable elements (TE). TnCentral currently contains ∼400 carefully annotated TE, including transposons from the Tn3, Tn7, Tn402, and Tn554 families; compound transposons; integrons; and associated insertion sequences (IS). These TE carry passenger genes, including genes conferring resistance to over 25 classes of antibiotics and nine types of heavy metal, as well as genes responsible for pathogenesis in plants, toxin/antitoxin gene pairs, transcription factors, and genes involved in metabolism. Each TE has its own entry page, providing details about its transposition genes, passenger genes, and other sequence features required for transposition, as well as a graphical map of all features. TnCentral content can be browsed and queried through text- and sequence-based searches with a graphic output. We describe three use cases, which illustrate how the search interface, results tables, and entry pages can be used to explore and compare TE. TnCentral also includes downloadable software to facilitate user-driven identification, with manual annotation, of certain types of TE in genomic sequences. Through the TnCentral homepage, users can also access TnPedia, which provides comprehensive reviews of the major TE families, including an extensive general section and specialized sections with descriptions of insertion sequence and transposon families. TnCentral and TnPedia are intuitive resources that can be used by clinicians and scientists to assess TE diversity in clinical, veterinary, and environmental samples. IMPORTANCE The ability of bacteria to undergo rapid evolution and adapt to changing environmental circumstances drives the public health crisis of multiple antibiotic resistance, as well as outbreaks of disease in economically important agricultural crops and animal husbandry. Prokaryotic transposable elements (TE) play a critical role in this. Many carry "passenger genes" (not required for the transposition process) conferring resistance to antibiotics or heavy metals or causing disease in plants and animals. Passenger genes are spread by normal TE transposition activities and by insertion into plasmids, which then spread via conjugation within and across bacterial populations. Thus, an understanding of TE composition and transposition mechanisms is key to developing strategies to combat bacterial pathogenesis. Toward this end, we have developed TnCentral, a bioinformatics resource dedicated to describing and exploring the structural and functional features of prokaryotic TE whose use is intuitive and accessible to users with or without bioinformatics expertise.202134517763
9555140.9921Bacteria.guru: Comparative Transcriptomics and Co-Expression Database for Bacterial Pathogens. While bacteria can be beneficial to our health, their deadly pathogenic potential has been an ever-present concern exacerbated by the emergence of drug-resistant strains. As such, there is a pressing urgency for an enhanced understanding of their gene function and regulation, which could mediate the development of novel antimicrobials. Transcriptomic analyses have been established as insightful and indispensable to the functional characterization of genes and identification of new biological pathways, but in the context of bacterial studies, they remain limited to species-specific datasets. To address this, we integrated the genomic and transcriptomic data of the 17 most notorious and researched bacterial pathogens, creating bacteria.guru, an interactive database that can identify, visualize, and compare gene expression profiles, coexpression networks, functionally enriched clusters, and gene families across species. Through illustrating antibiotic resistance mechanisms in P. aeruginosa, we demonstrate that bacteria.guru could potentially aid in discovering multi-faceted antibiotic targets and, overall, facilitate future bacterial research. AVAILABILITY: The database and coexpression networks are freely available from https://bacteria.guru/. Sample annotations can be found in the supplemental data.202234838806
7698150.9921Detecting horizontal gene transfer with metagenomics co-barcoding sequencing. Horizontal gene transfer (HGT) is the process through which genetic information is transferred between different genomes and that played a crucial role in bacterial evolution. HGT can enable bacteria to rapidly acquire antibiotic resistance and bacteria that have acquired resistance is spreading within the microbiome. Conventional methods of characterizing HGT patterns include short-read metagenomic sequencing (short-reads mNGS), long-read sequencing, and single-cell sequencing. These approaches present several limitations, such as short-read fragments, high amounts of input DNA, and sequencing costs, respectively. Here, we attempt to circumvent present limitations to detect HGT by developing a metagenomics co-barcode sequencing workflow (MECOS) and applying it to the human and mouse gut microbiomes. In addition to that, we have over 10-fold increased contig length compared to short-reads mNGS; we also obtained exceeding 30 million paired reads with co-barcode information. Applying the novel bioinformatic pipeline, we integrated this co-barcoding information and the context information from long reads, and observed over 50-fold HGT events after we corrected the potential wrong HGT events. Specifically, we detected approximately 3,000 HGT blocks in individual samples, encompassing ~6,000 genes and ~100 taxonomic groups, including loci conferring tetracycline resistance through ribosomal protection. MECOS provides a valuable tool for investigating HGT and advance our understanding on the evolution of natural microbial communities within hosts.IMPORTANCEIn this study, to better identify horizontal gene transfer (HGT) in individual samples, we introduce a new co-barcoding sequencing system called metagenomics co-barcoding sequencing (MECOS), which has three significant improvements: (i) long DNA fragment extraction, (ii) a special transposome insertion, (iii) hybridization of DNA to barcode beads, and (4) an integrated bioinformatic pipeline. Using our approach, we have over 10-fold increased contig length compared to short-reads mNGS, and observed over 50-fold HGT events after we corrected the potential wrong HGT events. Our results indicate the presence of approximately 3,000 HGT blocks, involving roughly 6,000 genes and 100 taxonomic groups in individual samples. Notably, these HGT events are predominantly enriched in genes that confer tetracycline resistance via ribosomal protection. MECOS is a useful tool for investigating HGT and the evolution of natural microbial communities within hosts, thereby advancing our understanding of microbial ecology and evolution.202438315121
9067160.9921PIPdb: a comprehensive plasmid sequence resource for tracking the horizontal transfer of pathogenic factors and antimicrobial resistance genes. Plasmids, as independent genetic elements, carrying resistance or virulence genes and transfer them among different pathogens, posing a significant threat to human health. Under the 'One Health' approach, it is crucial to control the spread of plasmids carrying such genes. To achieve this, a comprehensive characterization of plasmids in pathogens is essential. Here we present the Plasmids in Pathogens Database (PIPdb), a pioneering resource that includes 792 964 plasmid segment clusters (PSCs) derived from 1 009 571 assembled genomes across 450 pathogenic species from 110 genera. To our knowledge, PIPdb is the first database specifically dedicated to plasmids in pathogenic bacteria, offering detailed multi-dimensional metadata such as collection date, geographical origin, ecosystem, host taxonomy, and habitat. PIPdb also provides extensive functional annotations, including plasmid type, insertion sequences, integron, oriT, relaxase, T4CP, virulence factors genes, heavy metal resistance genes and antibiotic resistance genes. The database features a user-friendly interface that facilitates studies on plasmids across diverse host taxa, habitats, and ecosystems, with a focus on those carrying antimicrobial resistance genes (ARGs). We have integrated online tools for plasmid identification and annotation from assembled genomes. Additionally, PIPdb includes a risk-scoring system for identifying potentially high-risk plasmids. The PIPdb web interface is accessible at https://nmdc.cn/pipdb.202539460620
4564170.9921Genomic diversity, antibiotic resistance, and virulence in South African Enterococcus faecalis and Enterococcus lactis isolates. This study presents the empirical findings of an in-depth genomic analysis of Enterococcus faecalis and Enterococcus lactis isolates from South Africa. It offers valuable insights into their genetic characteristics and their significant implications for public health. The study uncovers nuanced variations in the gene content of these isolates, despite their similar GC contents, providing a comprehensive view of the evolutionary diversity within the species. Genomic islands are identified, particularly in E. faecalis, emphasizing its propensity for horizontal gene transfer and genetic diversity, especially in terms of antibiotic resistance genes. Pangenome analysis reveals the existence of a core genome, accounting for a modest proportion of the total genes, with 2157 core genes, 1164 shell genes, and 4638 cloud genes out of 7959 genes in 52 South African E. faecalis genomes (2 from this study, 49 south Africa genomes downloaded from NCBI, and E. faecalis reference genome). Detecting large-scale genomic rearrangements, including chromosomal inversions, underscores the dynamic nature of bacterial genomes and their role in generating genetic diversity. The study uncovers an array of antibiotic resistance genes, with trimethoprim, tetracycline, glycopeptide, and multidrug resistance genes prevalent, raising concerns about the effectiveness of antibiotic treatment. Virulence gene profiling unveils a diverse repertoire of factors contributing to pathogenicity, encompassing adhesion, biofilm formation, stress resistance, and tissue damage. These empirical findings provide indispensable insights into these bacteria's genomic dynamics, antibiotic resistance mechanisms, and virulence potential, underlining the pressing need to address antibiotic resistance and implement robust control measures.202439102038
4353180.9921Bioinformatics-driven discovery of skin microbiota bacteriocins as potential antibiotics and probiotics. The human skin microbiota, comprising a diverse range of microorganisms, including bacteria, viruses, and fungi, plays an important role in maintaining skin health and protecting against pathogenic invasions. Among these microorganisms, certain bacteria produce bacteriocins, which are ribosomal peptides with potent antimicrobial properties. This study presents a novel computational approach to identify and predict bacteriocins from microbial genomes comprising sebaceous region of the skin, aiming to explore their therapeutic potential. Through genome analysis using advanced bioinformatics tools, we identified potential genes, operons, open reading frames (ORFs), and promoter regions linked to bacteriocin production. The BAGEL4 platform was employed to detect structural bacteriocin genes, while modelling bacterial growth and bacteriocin expression under various environmental conditions was conducted using MATLAB's SimBiology application. The results revealed the optimal conditions for bacteriocin production and highlighted promising candidates for further experimental validation. These findings underscore the significance of skin microbiota as a source of novel bacteriocins, offering potential alternatives to traditional antibiotics amidst rising antimicrobial resistance.202540702306
3272190.9921Metagenome-Assembled Genomes of Pig Fecal Samples in Nine European Countries: Insights into Antibiotic Resistance Genes and Viruses. Gut microbiota plays a crucial role in the health and productivity of pigs. However, the spread of antibiotic resistance genes (ARGs) and viruses within the pig intestinal microbiota poses significant threats to animal and public health. This study utilized 181 pig samples from nine European countries and employed metagenomic assembly methods to investigate the dynamics and distribution of ARGs and viruses within the pig intestinal microbiota, aiming to observing their associations with potential bacterial hosts. We identified 4605 metagenome-assembled genomes (MAGs), corresponding to 19 bacterial phyla, 97 families, 309 genera, and a total of 449 species. Additionally, 44 MAGs were classified as archaea. Analysis of ARGs revealed 276 ARG types across 21 ARG classes, with Glycopeptide being the most abundant ARG class, followed by the class of Multidrug. Treponema D sp016293915 was identified as a primary potential bacterial host for Glycopeptide. Aligning nucleotide sequences with a viral database, we identified 1044 viruses. Among the viral genome families, Peduoviridae and Intestiviridae were the most prevalent, with CAG-914 sp000437895 being the most common potential host species for both. These findings highlight the importance of MAGs in enhancing our understanding of the gut microbiome, revealing microbial diversity, antibiotic resistance, and virus-bacteria interactions. The data analysis for the article was based on the public dataset PRJEB22062 in the European Nucleotide Archive.202439770612