UNCONTROLLED - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
816100.9904Integrative strategies against multidrug-resistant bacteria: Synthesizing novel antimicrobial frontiers for global health. Concerningly, multidrug-resistant bacteria have emerged as a prime worldwide trouble, obstructing the treatment of infectious diseases and causing doubts about the therapeutic accidentalness of presently existing drugs. Novel antimicrobial interventions deserve development as conventional antibiotics are incapable of keeping pace with bacteria evolution. Various promising approaches to combat MDR infections are discussed in this review. Antimicrobial peptides are examined for their broad-spectrum efficacy and reduced ability to develop resistance, while phage therapy may be used under extreme situations when antibiotics fail. In addition, the possibility of CRISPR-Cas systems for specifically targeting and eradicating resistance genes from bacterial populations will be explored. Nanotechnology has opened up the route to improve the delivery system of the drug itself, increasing the efficacy and specificity of antimicrobial action while protecting its host. Discovering potential antimicrobial agents is an exciting prospect through developments in synthetic biology and the rediscovery of natural product-based medicines. Moreover, host-directed therapies are now becoming popular as an adjunct to the main strategies of therapeutics without specifically targeting pathogens. Although these developments appear impressive, questions about production scaling, regulatory approvals, safety, and efficacy for clinical employment still loom large. Thus, tackling the MDR burden requires a multi-pronged plan, integrating newer treatment modalities with existing antibiotic regimens, enforcing robust stewardship initiatives, and effecting policy changes at the global level. The international health community can gird itself against the growing menace of antibiotic resistance if collaboration between interdisciplinary bodies and sustained research endeavours is encouraged. In this study, we evaluate the synergistic potential of combining various medicines in addition to summarizing recent advancements. To rethink antimicrobial stewardship in the future, we provide a multi-tiered paradigm that combines pathogen-focused and host-directed strategies.202540914328
817610.9900Overcoming Multidrug Resistance in Bacteria Through Antibiotics Delivery in Surface-Engineered Nano-Cargos: Recent Developments for Future Nano-Antibiotics. In the recent few decades, the increase in multidrug-resistant (MDR) bacteria has reached an alarming rate and caused serious health problems. The incidence of infections due to MDR bacteria has been accompanied by morbidity and mortality; therefore, tackling bacterial resistance has become an urgent and unmet challenge to be properly addressed. The field of nanomedicine has the potential to design and develop efficient antimicrobials for MDR bacteria using its innovative and alternative approaches. The uniquely constructed nano-sized antimicrobials have a predominance over traditional antibiotics because their small size helps them in better interaction with bacterial cells. Moreover, surface engineering of nanocarriers offers significant advantages of targeting and modulating various resistance mechanisms, thus owe superior qualities for overcoming bacterial resistance. This review covers different mechanisms of antibiotic resistance, application of nanocarrier systems in drug delivery, functionalization of nanocarriers, application of functionalized nanocarriers for overcoming bacterial resistance, possible limitations of nanocarrier-based approach for antibacterial delivery, and future of surface-functionalized antimicrobial delivery systems.202134307323
666020.9898Antimicrobial Resistance and Its Drivers-A Review. Antimicrobial resistance (AMR) is a critical issue in health care in terms of mortality, quality of services, and financial damage. In the battle against AMR, it is crucial to recognize the impacts of all four domains, namely, mankind, livestock, agriculture, and the ecosystem. Many sociocultural and financial practices that are widespread in the world have made resistance management extremely complicated. Several pathways, including hospital effluent, agricultural waste, and wastewater treatment facilities, have been identified as potential routes for the spread of resistant bacteria and their resistance genes in soil and surrounding ecosystems. The overuse of uncontrolled antibiotics and improper treatment and recycled wastewater are among the contributors to AMR. Health-care organizations have begun to address AMR, although they are currently in the early stages. In this review, we provide a brief overview of AMR development processes, the worldwide burden and drivers of AMR, current knowledge gaps, monitoring methodologies, and global mitigation measures in the development and spread of AMR in the environment.202236290020
818230.9897Antibiotics in Food Chain: The Consequences for Antibiotic Resistance. Antibiotics have been used as essential therapeutics for nearly 100 years and, increasingly, as a preventive agent in the agricultural and animal industry. Continuous use and misuse of antibiotics have provoked the development of antibiotic resistant bacteria that progressively increased mortality from multidrug-resistant bacterial infections, thereby posing a tremendous threat to public health. The goal of our review is to advance the understanding of mechanisms of dissemination and the development of antibiotic resistance genes in the context of nutrition and related clinical, agricultural, veterinary, and environmental settings. We conclude with an overview of alternative strategies, including probiotics, essential oils, vaccines, and antibodies, as primary or adjunct preventive antimicrobial measures or therapies against multidrug-resistant bacterial infections. The solution for antibiotic resistance will require comprehensive and incessant efforts of policymakers in agriculture along with the development of alternative therapeutics by experts in diverse fields of microbiology, biochemistry, clinical research, genetic, and computational engineering.202033066005
664940.9895 The development of antibiotics has provided much success against infectious diseases in animals and humans. But the intensive and extensive use of antibiotics over the years has resulted in the emergence of drug-resistant bacterial pathogens. The existence of a reservoir(s) of antibiotic resistant bacteria and antibiotic resistance genes in an interactive environment of animals, plants, and humans provides the opportunity for further transfer and dissemination of antibiotic resistance. The emergence of antibiotic resistant bacteria has created growing concern about its impact on animal and human health. To specifically address the impact of antibiotic resistance resulting from the use of antibiotics in agriculture, the American Academy of Microbiology convened a colloquium, “Antibiotic Resistance and the Role of Antimicrobials in Agriculture: A Critical Scientific Assessment,” in Santa Fe, New Mexico, November 2–4, 2001. Colloquium participants included academic, industrial, and government researchers with a wide range of expertise, including veterinary medicine, microbiology, food science, pharmacology, and ecology. These scientists were asked to provide their expert opinions on the current status of antibiotic usage and antibiotic resistance, current research information, and provide recommendations for future research needs. The research areas to be addressed were roughly categorized under the following areas: ▪ Origins and reservoirs of resistance; ▪ Transfer of resistance; ▪ Overcoming/modulating resistance by altering usage; and ▪ Interrupting transfer of resistance. The consensus of colloquium participants was that the evaluation of antibiotic usage and its impact were complex and subject to much speculation and polarization. Part of the complexity stems from the diverse array of animals and production practices for food animal production. The overwhelming consensus was that any use of antibiotics creates the possibility for the development of antibiotic resistance, and that there already exist pools of antibiotic resistance genes and antibiotic resistant bacteria. Much discussion revolved around the measurement of antibiotic usage, the measurement of antibiotic resistance, and the ability to evaluate the impact of various types of usage (animal, human) on overall antibiotic resistance. Additionally, many participants identified commensal bacteria as having a possible role in the continuance of antibiotic resistance as reservoirs. Participants agreed that many of the research questions could not be answered completely because of their complexity and the need for better technologies. The concept of the “smoking gun” to indicate that a specific animal source was important in the emergence of certain antibiotic resistant pathogens was discussed, and it was agreed that ascribing ultimate responsibility is likely to be impossible. There was agreement that expanded and more improved surveillance would add to current knowledge. Science-based risk assessments would provide better direction in the future. As far as preventive or intervention activities, colloquium participants reiterated the need for judicious/prudent use guidelines. Yet they also emphasized the need for better dissemination and incorporation by end-users. It is essential that there are studies to measure the impact of educational efforts on antibiotic usage. Other recommendations included alternatives to antibiotics, such as commonly mentioned vaccines and probiotics. There also was an emphasis on management or production practices that might decrease the need for antibiotics. Participants also stressed the need to train new researchers and to interest students in postdoctoral work, through training grants, periodic workshops, and comprehensive conferences. This would provide the expertise needed to address these difficult issues in the future. Finally, the participants noted that scientific societies and professional organizations should play a pivotal role in providing technical advice, distilling and disseminating information to scientists, media, and consumers, and in increasing the visibility and funding for these important issues. The overall conclusion is that antibiotic resistance remains a complex issue with no simple answers. This reinforces the messages from other meetings. The recommendations from this colloquium provide some insightful directions for future research and action.200232687288
944750.9895Modern vaccine development via reverse vaccinology to combat antimicrobial resistance. With the continuous evolution of bacteria, the global antimicrobial resistance health threat is causing millions of deaths yearly. While depending on antibiotics as a primary treatment has its merits, there are no effective alternatives thus far in the pharmaceutical market against some drug-resistant bacteria. In recent years, vaccinology has become a key topic in scientific research. Combining with the growth of technology, vaccine research is seeing a new light where the process is made faster and more efficient. Although less discussed, bacterial vaccine is a feasible strategy to combat antimicrobial resistance. Some vaccines have shown promising results with good efficacy against numerous multidrug-resistant strains of bacteria. In this review, we aim to discuss the findings from studies utilizing reverse vaccinology for vaccine development against some multidrug-resistant bacteria, as well as provide a summary of multi-year bacterial vaccine studies in clinical trials. The advantages of reverse vaccinology in the generation of new bacterial vaccines are also highlighted. Meanwhile, the limitations and future prospects of bacterial vaccine concludes this review.202235642852
816360.9895Green materials science and engineering reduces biofouling: approaches for medical and membrane-based technologies. Numerous engineered and natural environments suffer deleterious effects from biofouling and/or biofilm formation. For instance, bacterial contamination on biomedical devices pose serious health concerns. In membrane-based technologies, such as desalination and wastewater reuse, biofouling decreases membrane lifetime, and increases the energy required to produce clean water. Traditionally, approaches have combatted bacteria using bactericidal agents. However, due to globalization, a decline in antibiotic discovery, and the widespread resistance of microbes to many commercial antibiotics and metallic nanoparticles, new materials, and approaches to reduce biofilm formation are needed. In this mini-review, we cover the recent strategies that have been explored to combat microbial contamination without exerting evolutionary pressure on microorganisms. Renewable feedstocks, relying on structure-property relationships, bioinspired/nature-derived compounds, and green processing methods are discussed. Greener strategies that mitigate biofouling hold great potential to positively impact human health and safety.201525852659
944670.9895Newer antibiotics for the treatment of respiratory tract infections. PURPOSE OF REVIEW: In this review, we highlight some of the developments achieved over the past 2 years in the field of novel antimicrobial compounds. RECENT FINDINGS: Modification of existing compound classes to create more powerful compounds capable of overcoming pathogen resistance and the introduction of completely new classes of antibiotics and inhibitors of new bacterial targets or inhibitors of genes relating to virulence or pathogenesis are the strategies more commonly employed in pharmacologic research. Ketolides, oxazolidinones, streptogramins, glycylcyclines, and peptide deformylase inhibitors are among the most promising classes of antibiotics. Recently, several lines of research have documented that it is effective to target the infection process rather than killing bacteria. This is important because it is likely that such a therapeutic strategy could ablate infection without inducing resistance. SUMMARY: Emergence of resistance to the antibiotics currently employed in clinical practice is a continual stimulus for further research aimed at identifying novel antimicrobial compounds. These drugs will perhaps effectively fight against bacteria that now are scarcely controlled by the traditional antimicrobial agents. Health care personnel must appreciate that only judicious use of antimicrobial drugs will prevent the further uncontrolled spread of bacterial resistance. Implementation of reference guidelines would probably be an effective way to limit antibiotic misuse.200415071370
666580.9895A One-Health Perspective of Antimicrobial Resistance (AMR): Human, Animals and Environmental Health. Antibiotics are essential for treating bacterial and fungal infections in plants, animals, and humans. Their widespread use in agriculture and the food industry has significantly enhanced animal health and productivity. However, extensive and often inappropriate antibiotic use has driven the emergence and spread of antimicrobial resistance (AMR), a global health crisis marked by the reduced efficacy of antimicrobial treatments. Recognized by the World Health Organization (WHO) as one of the top ten global public health threats, AMR arises when certain bacteria harbor antimicrobial resistance genes (ARGs) that confer resistance that can be horizontally transferred to other bacteria, accelerating resistance spread in the environment. AMR poses a significant global health challenge, affecting humans, animals, and the environment alike. A One-Health perspective highlights the interconnected nature of these domains, emphasizing that resistant microorganisms spread across healthcare, agriculture, and the environment. Recent scientific advances such as metagenomic sequencing for resistance surveillance, innovative wastewater treatment technologies (e.g., ozonation, UV, membrane filtration), and the development of vaccines and probiotics as alternatives to antibiotics in livestock are helping to mitigate resistance. At the policy level, global initiatives including the WHO Global Action Plan on AMR, coordinated efforts by (Food and Agriculture Organization) FAO and World Organisation for Animal Health (WOAH), and recommendations from the O'Neill Report underscore the urgent need for international collaboration and sustainable interventions. By integrating these scientific and policy responses within the One-Health framework, stakeholders can improve antibiotic stewardship, reduce environmental contamination, and safeguard effective treatments for the future.202541157271
919090.9895Phage-based biocontrol strategies and their application in agriculture and aquaculture. Meeting global food demands for a growing human population with finite natural resources is a major challenge. Aquaculture and agriculture are critical to satisfy food requirements, yet suffer significant losses from bacterial diseases. Therefore, there is an urgent need to develop novel antimicrobial strategies, which is heightened by increasing antibiotic resistance. Bacteriophages (phages) are viruses that specifically infect bacteria, and phage-derived therapies are promising treatments in the fight against bacterial diseases. Here, we describe multiple ways that phages and phage-based technologies can be used as antimicrobials. Antimicrobial activity can be achieved through lysis of targeted bacteria by virulent phages or lytic enzymes. Alternatively, phages can be engineered for the delivery of lethal genes and other cargoes to kill bacteria and to manipulate the bacterial response to conventional antibiotics. We also briefly highlight research exploring phages as potential biocontrol agents with examples from agriculture and aquaculture.201830514766
8175100.9894Role of Nanocarrier Systems in Drug Delivery for Overcoming Multi-Drug Resistance in Bacteria. Multidrug-resistant (MDR) bacteria have risen alarmingly in the last few decades, posing a serious threat to human health. The need for effective bacterial resistance treatment is urgent and unmet due to the rise in morbidity and mortality that has coincided with the prevalence of infections caused by MDR bacteria. Using its creative and unconventional methods, effective antibiotics for MDR bacteria could be developed using nanomedicine techniques. To combat microbial resistance, a number of strategies have been developed, including the use of natural bactericides, the introduction of fresh antibiotics, the application of combination therapy and the creation of NP-based antibiotic nanocarriers. The absence of novel antibacterial agents has worsened the situation for MDR bacteria. Ineffective antibiotics used to treat MDR bacteria also contribute to the bacteria's tolerance growing. Nanoparticles (NPs) are the most efficient method for eliminating MDR bacteria because they serve as both carriers of natural antibiotics and antimicrobials and active agents against bacteria. Additionally, surface engineering of nanocarriers has important benefits for focusing on and modifying a variety of resistance mechanisms. The use of nanocarrier systems in drug delivery for overcoming bacterial resistance is covered in this review along with various mechanisms of antibiotic resistance.202337480270
6664110.9894Addressing the global challenge of bacterial drug resistance: insights, strategies, and future directions. The COVID-19 pandemic underscored bacterial resistance as a critical global health issue, exacerbated by the increased use of antibiotics during the crisis. Notwithstanding the pandemic's prevalence, initiatives to address bacterial medication resistance have been inadequate. Although an overall drop in worldwide antibiotic consumption, total usage remains substantial, requiring rigorous regulatory measures and preventive activities to mitigate the emergence of resistance. Although National Action Plans (NAPs) have been implemented worldwide, significant disparities persist, particularly in low- and middle-income countries (LMICs). Settings such as farms, hospitals, wastewater treatment facilities, and agricultural environments include a significant presence of Antibiotic Resistant Bacteria (ARB) and antibiotic-resistance genes (ARG), promoting the propagation of resistance. Dietary modifications and probiotic supplementation have shown potential in reshaping gut microbiota and reducing antibiotic resistance gene prevalence. Combining antibiotics with adjuvants or bacteriophages may enhance treatment efficacy and mitigate resistance development. Novel therapeutic approaches, such as tailored antibiotics, monoclonal antibodies, vaccines, and nanoparticles, offer alternate ways of addressing resistance. In spite of advancements in next-generation sequencing and analytics, gaps persist in comprehending the role of gut microbiota in regulating antibiotic resistance. Effectively tackling antibiotic resistance requires robust policy interventions and regulatory measures targeting root causes while minimizing public health risks. This review provides information for developing strategies and protocols to prevent bacterial colonization, enhance gut microbiome resilience, and mitigate the spread of antibiotic resistance.202540066274
6672120.9894Antibiotic resistance in bacteria - an emerging public health problem. The discovery and eventual introduction of anti-microbial agents to clinical medicine was one of the greatest medical triumphs of the twentieth century that revolutionized the treatment of bacterial diseases. However, the gradual emergence of populations of antibiotic-resistant bacteria resulting from use, misuse and outright abuse of antibiotics has today become a major public health problem of global proportions. This review paper examines the origins and molecular epidemiology of resistance genes, global picture of antibacterial resistance, factors that favour its spread, strategies for its control, problems of control and the consequences of failure to contain antibiotic resistance in bacteria.200327528961
8180130.9894Harnessing Nanoparticles to Overcome Antimicrobial Resistance: Promises and Challenges. The rise of antimicrobial resistance (AMR) has become a serious global health issue that kills millions of people each year globally. AMR developed in bacteria is difficult to treat and poses a challenge to clinicians. Bacteria develop resistance through a variety of processes, including biofilm growth, targeted area alterations, and therapeutic drug alteration, prolonging the period they remain within cells, where antibiotics are useless at therapeutic levels. This rise in resistance is linked to increased illness and death, highlighting the urgent need for effective solutions to combat this growing challenge. Nanoparticles (NPs) offer unique solutions for fighting AMR bacteria. Being smaller in size with a high surface area, enhancing interaction with bacteria makes the NPs strong antibacterial agents against various infections. In this review, we have discussed the epidemiology and mechanism of AMR development. Furthermore, the role of nanoparticles as antibacterial agents, and their role in drug delivery has been addressed. Additionally, the potential, challenges, toxicity, and future prospects of nanoparticles as antibacterial agents against AMR pathogens have been discussed. The research work discussed in this review links with Sustainable Development Goal 3 (SDG-3), which aims to ensure disease-free lives and promote well-being for all ages.202539219123
6673140.9894A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. The discovery and introduction of antimicrobial agents to clinical medicine was one of the greatest medical triumphs of the 20th century that revolutionized the treatment of bacterial infections. However, the gradual emergence of populations of antimicrobial-resistant pathogenic bacteria resulting from use, misuse, and abuse of antimicrobials has today become a major global health concern. Antimicrobial resistance (AMR) genes have been suggested to originate from environmental bacteria, as clinically relevant resistance genes have been detected on the chromosome of environmental bacteria. As only a few new antimicrobials have been developed in the last decade, the further evolution of resistance poses a serious threat to public health. Urgent measures are required not only to minimize the use of antimicrobials for prophylactic and therapeutic purposes but also to look for alternative strategies for the control of bacterial infections. This review examines the global picture of antimicrobial resistance, factors that favor its spread, strategies, and limitations for its control and the need for continuous training of all stake-holders i.e., medical, veterinary, public health, and other relevant professionals as well as human consumers, in the appropriate use of antimicrobial drugs.201323675371
9448150.9894Fresh Ideas Bloom in Gut Healthcare to Cross-Fertilize Lake Management. Harmful bacteria may be the most significant threat to human gut and lake ecosystem health, and they are often managed using similar tools, like poisoning with antibiotics or algicides. Out-of-the-box thinking in human microbiome engineering is leading to novel methods, like engineering bacteria to kill pathogens, "persuade" them not to produce toxins, or "mop up" their toxins. The bacterial agent can be given a competitive edge via an exclusive nutrient, and they can be engineered to commit suicide once their work is done. Viruses can kill pathogens with specific DNA sequences or knock out their antibiotic resistance genes using CRISPR technology. Some of these ideas may work for lakes. We critically review novel methods for managing harmful bacteria in the gut from the perspective of managing toxic cyanobacteria in lakes, and discuss practical aspects such as modifying bacteria using genetic engineering or directed evolution, mass culturing and controlling the agents. A key knowledge gap is in the ecology of strains, like toxigenic vs nontoxigenic Microcystis, including allelopathic and Black Queen interactions. Some of the "gut methods" may have future potential for lakes, but there presently is no substitute for established management approaches, including reducing N and P nutrient inputs, and mitigating climate change.201931647664
6679160.9894Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. Aquaculture uses hundreds of tonnes of antimicrobials annually to prevent and treat bacterial infection. The passage of these antimicrobials into the aquatic environment selects for resistant bacteria and resistance genes and stimulates bacterial mutation, recombination, and horizontal gene transfer. The potential bridging of aquatic and human pathogen resistomes leads to emergence of new antimicrobial-resistant bacteria and global dissemination of them and their antimicrobial resistance genes into animal and human populations. Efforts to prevent antimicrobial overuse in aquaculture must include education of all stakeholders about its detrimental effects on the health of fish, human beings, and the aquatic ecosystem (the notion of One Health), and encouragement of environmentally friendly measures of disease prevention, including vaccines, probiotics, and bacteriophages. Adoption of these measures is a crucial supplement to efforts dealing with antimicrobial resistance by developing new therapeutic agents, if headway is to be made against the increasing problem of antimicrobial resistance in human and veterinary medicine.201627083976
9442170.9894Antibiotic resistance. Antibiotic resistance poses serious challenges to health and national security, and policy changes will be required to mitigate the consequences of antibiotic resistance. Resistance can arise in disease-causing bacteria naturally, or it can be deliberately introduced to a biological weapon. In either case, life-saving drugs are rendered ineffective. Resistant bacterial infections are difficult to treat, and there are few new antibiotics in the drug development pipeline. This article describes how antibiotic resistance affects health and national security, how bacteria become antibiotic resistant, and what should be done now so antibiotics will be available to save lives in the future.200920028245
9449180.9893Conclusions and activities of previous expert groups: the Scientific Steering Committee of the EU. In 1998, the EU Commission consulted its Scientific Steering Committee (SSC) to give advice on actions against anti-microbial resistance based on scientific evidence. The SSC set up a working group and adopted in 1999 an Opinion on Antimicrobial Resistance. Statements given in the well-structured document are clear, and precise recommendations were proposed. Summarizing, the Committee stated: There is evidence to suppose a continuous flow of resistance genes between pathogenic and commensal bacteria and of transfer of these bacteria between different compartments of the biosphere, thus changing the genetic resources continuously. There exist numerous factors which influence the emergence and spread of anti-bacterial resistance. However, it is likely that restriction in the use of anti-microbials will lead to a containment or a reduction of the drug resistance problem. Actions should be taken promptly to reduce the overall use of anti-microbials in a balanced way in all areas: human medicine, veterinary medicine, animal production and plant protection.200415525374
8158190.9893Nanobioconjugates: Weapons against Antibacterial Resistance. The increase in drug resistance in pathogenic bacteria is emerging as a global threat as we swiftly edge toward the postantibiotic era. Nanobioconjugates have gained tremendous attention to treat multidrug-resistant (MDR) bacteria and biofilms due to their tunable physicochemical properties, drug targeting ability, enhanced uptake, and alternate mechanisms of drug action. In this review, we highlight the recent advances made in the use of nanobioconjugates to combat antibacterial resistance and provide crucial insights for designing nanomaterials that can serve as antibacterial agents for nanotherapeutics, nanocargos for targeted antibiotic delivery, or both. Also discussed are different strategies for treating robust biofilms formed by bacteria.202035019602