# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 455 | 0 | 0.9988 | An inducible tellurite-resistance operon in Proteus mirabilis. Tellurite resistance (Te(r)) is widespread in nature and it is shown here that the natural resistance of Proteus mirabilis to tellurite is due to a chromosomally located orthologue of plasmid-borne ter genes found in enteric bacteria. The P. mirabilis ter locus (terZABCDE) was identified in a screen of Tn5lacZ-generated mutants of which one contained an insertion in terC. The P. mirabilis terC mutant displayed increased susceptibility to tellurite (Te(s)) and complementation with terC carried on a multicopy plasmid restored high-level Te(r). Primer extension analysis revealed a single transcriptional start site upstream of terZ, but only with RNA harvested from bacteria grown in the presence of tellurite. Northern blotting and reverse transcriptase-PCR (RT-PCR) analyses confirmed that the ter operon was inducible by tellurite and to a lesser extent by oxidative stress inducers such as hydrogen peroxide and methyl viologen (paraquat). Direct and inverted repeat sequences were identified in the ter promoter region as well as motifs upstream of the -35 hexamer that resembled OxyR-binding sequences. Finally, the 390 bp intergenic promoter region located between orf3 and terZ showed no DNA sequence identity with any other published ter sequences, whereas terZABCDE genes exhibited 73-85 % DNA sequence identity. The ter operon was present in all clinical isolates of P. mirabilis and Proteus vulgaris tested and is inferred for Morganella and Providencia spp. based on screening for high level Te(r) and preliminary PCR analysis. Thus, a chromosomally located inducible tellurite resistance operon appears to be a common feature of the genus Proteus. | 2003 | 12724390 |
| 5862 | 1 | 0.9988 | Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms. Twenty-five distinct tetracycline-resistant gram-negative bacteria recovered from four Chilean fish farms with no history of recent antibiotic use were examined for the presence of tetracycline resistance (tet) genes. Sixty percent of the isolates carried 1 of the 22 known tet genes examined. The distribution was as follows. The tet(A) gene was found in six isolates. The tet(B) gene was found in two isolates, including the first description in the genus Brevundimonas: Two isolates carried the tet(34) and tet(B) genes, including the first description of the tet(34) gene in Pseudomonas and Serratia and the first description of the tet(B) gene in Pseudomonas: The tet(H) gene was found in two isolates, which includes the first description in the genera Moraxella and Acinetobacter: One isolate carried tet(E), and one isolate carried tet(35), the first description of the gene in the genus Stenotrophomonas: Finally, one isolate carried tet(L), found for the first time in the genus Morganella: By DNA sequence analysis, the two tet(H) genes were indistinguishable from the previously sequenced tet(H) gene from Tn5706 found in Pasteurella multocida. The Acinetobacter radioresistens isolate also harbored the Tn5706-associated 1,063-bp IS element IS1597, while the Moraxella isolate carried a 1,026-bp IS-like element whose 293-amino-acid transposase protein exhibited 69% identity and 84% similarity to the transposase protein of IS1597, suggesting the presence of a novel IS element. The distribution of tet genes from the Chilean freshwater ponds was different than those that have previously been described from other geographical locations, with 40% of the isolates carrying unidentified tetracycline resistance genes. | 2003 | 12604516 |
| 5849 | 2 | 0.9987 | Characterisation and molecular cloning of the novel macrolide-streptogramin B resistance determinant from Staphylococcus epidermidis. A total of 110 staphylococcal isolates from human skin were found to express a novel type of erythromycin resistance. The bacteria were resistant to 14-membered ring macrolides (MIC 32-128 mg/l) but were sensitive to 16-membered ring macrolides and lincosamides. Resistance to type B streptogramins was inducible by erythromycin. A similar phenotype, designated MS resistance, was previously described in clinical isolates of coagulase-negative staphylococci from the USA. In the UK, MS resistance is widely distributed in coagulase-negative staphylococci but was not detected in 100 erythromycin resistant clinical isolates of Staphylococcus aureus. Tests for susceptibility to a further 16 antibiotics failed to reveal any other selectable marker associated with the MS phenotype. Plasmid pattern analysis of 48 MS isolates showed considerable variability between strains and no common locus for the resistance determinant. In one strain of S. epidermidis co-resistance to tetracycline, penicillin and erythromycin (MS) was associated with a 31.5 kb plasmid, pUL5050 which replicated and expressed all three resistances when transformed into S. aureus RN4220. The MS resistance determinant was localised to a 1.9 kb fragment which was cloned on to the high-copy-number vector, pSK265. A constitutive mutant of S. aureus RN4220 containing the 1.9 kb fragment remained sensitive to clindamycin. This observation, together with the concentration-dependent induction (optimum 5 mg/l of erythromycin) of virginiamycin S resistance suggests that the MS phenotype is not due to altered expression of MLS resistance determinants (erm genes) but probably occurs via a different mechanism. | 1989 | 2559912 |
| 1759 | 3 | 0.9987 | Macrolides mediate transcriptional activation of the msr(E)-mph(E) operon through histone-like nucleoid-structuring protein (HNS) and cAMP receptor protein (CRP). OBJECTIVES: The msr(E)-mph(E) operon exists widely in diverse species of bacteria and msr(E) and mph(E) genes confer high resistance to macrolides. We aimed to explore whether macrolides regulate the transcription of the operon. METHODS: Antibiotic resistance genes in clinical isolates of Klebsiella pneumoniae were analysed by WGS. The transcription of the msr(E)-mph(E) operon was investigated by quantitative PCR. Construction of enhanced green fluorescent protein (eGFP) reporter plasmids, gene knockout and complementation experiments were used to further explore the induction mechanism of macrolides for the operon. Sequence analysis was finally used to investigate whether the operon exists widely in diverse species of bacteria. RESULTS: We originally found that the treatment of a pandrug-resistant isolate of K. pneumoniae (KP1517) with macrolides obviously up-regulated the msr(E)-mph(E) operon, which was further confirmed in another nine clinical isolates of K. pneumoniae. The induction mechanism of macrolides for the operon was partly elucidated. Macrolides could activate the operon promoter, and the J10/J35 regions (J10: 5'-AGTTATCAT-3'; J35: 5'-TTGTCT-3') of the promoter were determined. Histone-like nucleoid-structuring protein (HNS) and cAMP receptor protein (CRP) were involved in the erythromycin-mediated activation of the operon promoter. The 476 strains of bacteria carrying the msr(E)-mph(E) operon currently in the NCBI database are mainly Acinetobacter baumannii (158; 33%), K. pneumoniae (95; 20%), Escherichia coli (26; 5%) and Proteus mirabilis (25; 5%). They were mainly isolated from human clinical samples (287; 60%) and had a wide geographical distribution. CONCLUSIONS: Macrolides could activate transcription of the msr(E)-mph(E) operon through HNS and CRP in K. pneumoniae and E. coli, and this might occur in diverse species of bacteria. | 2022 | 34747464 |
| 5850 | 4 | 0.9987 | Gram-positive merA gene in gram-negative oral and urine bacteria. Clinical mercury resistant (Hg(r)) Gram-negative bacteria carrying Gram-positive mercury reductase (merA)-like genes were characterized using DNA-DNA hybridization, PCR and sequencing. A PCR assay was developed which discriminated between the merA genes related to Staphylococcus and those related to the Bacillus/Streptococcus merA genes by the difference in size of the PCR product. DNA sequence analysis correlated with the PCR assay. The merA genes from Acinetobacter junii, Enterobacter cloacae and Escherichia coli were sequenced and shared 98-99% identical nucleotide (nt) and 99.6-100% amino acid identity with the Staphylococcus aureus MerA protein. A fourth merA gene, from Pantoeae agglomerans, was partially sequenced (60%) and had 99% identical nt and 100% amino acid identity with the Streptococcus oralis MerA protein. All the Hg(r) Gram-negative bacteria transferred their Gram-positive merA genes to a Gram-positive Enterococcus faecalis recipient with the resulting transconjugants expressing mercury resistance. These Gram-positive merA genes join Gram-positive tetracycline resistance and Gram-positive macrolide resistance genes in their association with mobile elements which are able to transfer and express in Gram-negative bacteria. | 2004 | 15358427 |
| 5855 | 5 | 0.9987 | Plasmid-encoded resistance to arsenic compounds in Gram-negative bacteria isolated from a hospital environment in Venezuela. Resistance to arsenic compounds was examined among amikacin resistant Gram-negative bacteria isolate from a hospital environment. Arsenite resistance (Ars(r)) was found in a high proportion of isolates ( >60%) being frequently associated with resistance to tellurite (40%), and to other antimicrobial agents. Ars determinants (27%) were found to be transferable to E. coli K12 strains from which large plasmid DNA molecules were isolated and characterized by agarose gel electrophoresis. Plasmids were identified by both classical incompatibility tests, and by replicon typing using DNA specific probes. Most of the amikacin-arsenite (Ak-Ars) conjugative plasmids belong to the H incompatibility group. These results suggest that Ak-Ars resistance linked to IncH plasmids is wide spread in Gram-negative bacteria. | 1997 | 18611788 |
| 5225 | 6 | 0.9987 | Two genes involved in clindamycin resistance of Bacillus licheniformis and Bacillus paralicheniformis identified by comparative genomic analysis. We evaluated the minimum inhibitory concentrations of clindamycin and erythromycin toward 98 Bacillus licheniformis strains isolated from several types of fermented soybean foods manufactured in several districts of Korea. First, based on recent taxonomic standards for bacteria, the 98 strains were separated into 74 B. licheniformis strains and 24 B. paralicheniformis strains. Both species exhibited profiles of erythromycin resistance as an acquired characteristic. B. licheniformis strains exhibited acquired clindamycin resistance, while B. paralicheniformis strains showed unimodal clindamycin resistance, indicating an intrinsic characteristic. Comparative genomic analysis of five strains showing three different patterns of clindamycin and erythromycin resistance identified 23S rRNA (adenine 2058-N6)-dimethyltransferase gene ermC and spermidine acetyltransferase gene speG as candidates potentially involved in clindamycin resistance. Functional analysis of these genes using B. subtilis as a host showed that ermC contributes to cross-resistance to clindamycin and erythromycin, and speG confers resistance to clindamycin. ermC is located in the chromosomes of strains showing clindamycin and erythromycin resistance and no transposable element was identified in its flanking regions. The acquisition of ermC might be attributable to a homologous recombination. speG was identified in not only the five genome-analyzed strains but also eight strains randomly selected from the 98 test strains, and deletions in the structural gene or putative promoter region caused clindamycin sensitivity, which supports the finding that the clindamycin resistance of Bacillus species is an intrinsic property. | 2020 | 32271828 |
| 5852 | 7 | 0.9987 | A novel transposon, Tn6009, composed of a Tn916 element linked with a Staphylococcus aureus mer operon. OBJECTIVES: The aim of this study was to characterize a novel conjugative transposon Tn6009 composed of a Tn916 linked to a Staphylococcus aureus mer operon in representative Gram-positive and Gram-negative bacteria isolated in Nigeria and Portugal. METHODS: Eighty-three Gram-positive and 34 Gram-negative bacteria were screened for the presence of the Tn6009 using DNA-DNA hybridization, PCR, hybridization of PCR products, sequencing and mating experiments by established procedures. RESULTS: Forty-three oral and 23 urine Gram-negative and Gram-positive isolates carried the Tn6009. Sequencing was performed to verify the direct linkage between the mer resistance genes and the tet(M) gene. A Nigerian Klebsiella pneumoniae, isolated from a urinary tract infection patient, and one commensal isolate from each of the other Tn6009-positive genera, Serratia liquefaciens, Pseudomonas sp., Enterococcus sp. and Streptococcus sp. isolated from the oral and urine samples of healthy Portuguese children, were able to act as donors and conjugally transfer the Tn6009 to the Enterococcus faecalis JH2-2 recipient, resulting in tetracycline- and mercury-resistant E. faecalis transconjugants. CONCLUSIONS: This study reports a novel non-composite conjugative transposon Tn6009 containing a Tn916 element linked to an S. aureus mer operon carrying genes coding for inorganic mercury resistance (merA), an organic mercury resistance (merB), a regulatory protein (merR) and a mercury transporter (merT). This transposon was identified in 66 isolates from two Gram-positive and three Gram-negative genera and is the first transposon in the Tn916 family to carry the Gram-positive mer genes directly linked to the tet(M) gene. | 2008 | 18583328 |
| 3044 | 8 | 0.9987 | RSF1010 and a conjugative plasmid contain sulII, one of two known genes for plasmid-borne sulfonamide resistance dihydropteroate synthase. The nucleotide sequence of the type II sulfonamide resistance dihydropteroate synthase (sulII) gene was determined. The molecular weight determined by maxicells was 30,000, and the predicted molecular weight for the polypeptide was 28,469. Comparison with the sulI gene encoded by Tn21 showed 57% DNA similarity. The sulII-encoded polypeptide has 138 of 271 amino acids in common with the polypeptide encoded by sulI. The sulII gene is located on various IncQ (broad-host-range) plasmids and other small nonconjugative resistance plasmids. Detailed restriction maps were constructed to compare the different plasmids in which sulII is found. The large conjugative plasmid pGS05 and the IncQ plasmid RSF1010 contained identical nucleotide sequences for the sulII gene. This type of sulfonamide resistance is very frequently found among gram-negative bacteria because of its efficient spread to various plasmids. | 1988 | 3075438 |
| 1777 | 9 | 0.9987 | Inter-phylum circulation of a beta-lactamase-encoding gene: a rare but observable event. Beta-lactamase-mediated degradation of beta-lactams is the most common mechanism of beta-lactam resistance in Gram-negative bacteria. Beta-lactamase-encoding genes can be transferred between closely related bacteria, but spontaneous inter-phylum transfers (between distantly related bacteria) have never been reported. Here, we describe an extended-spectrum beta-lactamase (ESBL)-encoding gene (bla(MUN-1)) shared between the Pseudomonadota and Bacteroidota phyla. An Escherichia coli strain was isolated from a patient in Münster (Germany). Its genome was sequenced. The ESBL-encoding gene (named bla(MUN-1)) was cloned, and the corresponding enzyme was characterized. The distribution of the gene among bacteria was investigated using the RefSeq Genomes database. The frequency and relative abundance of its closest homolog in the global microbial gene catalog (GMGC) were analyzed. The E. coli strain exhibited two distinct morphotypes. Each morphotype possessed two chromosomal copies of the bla(MUN-1) gene, with one morphotype having two additional copies located on a phage-plasmid p0111. Each copy was located within a 7.6-kb genomic island associated with mobility. bla(MUN-1) encoded for an extended-spectrum Ambler subclass A2 beta-lactamase with 43.0% amino acid identity to TLA-1. bla(MUN-1) was found in species among the Bacteroidales order and in Sutterella wadsworthensis (Pseudomonadota). Its closest homolog in GMGC was detected frequently in human fecal samples. This is, to our knowledge, the first reported instance of inter-phylum transfer of an ESBL-encoding gene, between the Bacteroidota and Pseudomonadota phyla. Although the gene was frequently detected in the human gut, inter-phylum transfer was rare, indicating that inter-phylum barriers are effective in impeding the spread of ESBL-encoding genes, but not entirely impenetrable. | 2024 | 38441061 |
| 5851 | 10 | 0.9987 | Arsenic resistance determinants from environmental bacteria. Arsenic resistance determinants from 42 environmental bacterial isolates (32 Gram negative) were analyzed by DNA: DNA hybridization using probes derived from Escherichia coli and Staphylococcus plasmid or chromosomal arsenic resistance (ars) genes. In colony hybridization assays, 11 and 1 Gram negative strains hybridized with the E. coli chromosome and plasmid probes, respectively. No hybridization was detected using a probe containing only the arsA (ATPase) gene from E. coli plasmid or with a Staphylococcus plasmid ars probe. From Southern hybridization tests of some of the positive strains it was concluded that homology to ars chromosomal genes occurred within chromosome regions, except in an E. coli isolate where hybridization occurred in both the chromosome and a 130-kb plasmid. Our results show that DNA sequences homologous to E. coli ars chromosomal genes are commonly present in the chromosomes of environmental arsenic-resistant Gram negative isolates. | 1998 | 10932734 |
| 2009 | 11 | 0.9987 | Aminoglycoside resistance genes aph(2")-Ib and aac(6')-Im detected together in strains of both Escherichia coli and Enterococcus faecium. Escherichia coli SCH92111602 expresses an aminoglycoside resistance profile similar to that conferred by the aac(6')-Ie-aph(2")-Ia gene found in gram-positive cocci and was found to contain the aminoglycoside resistance genes aph(2")-Ib and aac(6')-Im (only 44 nucleotides apart). aph(2")-Ib had been reported previously in Enterococcus faecium SF11770. aac(6')-Im had not been detected previously in enterococci and was found to be present also 44 nucleotides downstream from aph(2")-Ib in E. faecium SF11770. aph(2")-Ib and aac(6')-Im are separate open reading frames, each with its own putative ribosome binding site, whereas aac(6')-Ie-aph(2")-Ia appears to be a fusion of two genes with just one start and one stop codon. The deduced AAC(6')-Im protein exhibits 56% identity and 80% similarity to the AAC(6')-Ie domain of the bifunctional enzyme AAC(6')-APH(2"). Our results document the existence of a member of the aph(2") family of genes in gram-negative bacteria and provide evidence suggesting the horizontal transfer of aph(2")-Ib and aac(6')-Im as a unit between gram-positive and gram-negative bacteria. | 2001 | 11557456 |
| 3572 | 12 | 0.9987 | Comparative analysis of sequences flanking tet(W) resistance genes in multiple species of gut bacteria. tet(W) is one of the most abundant tetracycline resistance genes found in bacteria from the mammalian gut and was first identified in the rumen anaerobe Butyrivibrio fibrisolvens 1.230, where it is highly mobile and its transfer is associated with the transposable chromosomal element TnB1230. In order to compare the genetic basis for tet(W) carriage in different bacteria, we studied sequences flanking tet(W) in representatives of seven bacterial genera originating in diverse gut environments. The sequences 657 bp upstream and 43 bp downstream of tet(W) were 96 to 100% similar in all strains examined. A common open reading frame (ORF) was identified downstream of tet(W) in five different bacteria, while another conserved ORF that flanked tet(W) in B. fibrisolvens 1.230 was also present upstream of tet(W) in a human colonic Roseburia isolate and in another rumen B. fibrisolvens isolate. In one species, Bifidobacterium longum (strain F8), a novel transposase was located within the conserved 657-bp region upstream of tet(W) and was flanked by imperfect direct repeats. Additional direct repeats 6 bp long were identified on each end of a chromosomal ORF interrupted by the insertion of the putative transposase and the tet(W) gene. This tet(W) gene was transferable at low frequencies between Bifidobacterium strains. A putative minielement carrying a copy of tet(W) was identified in B. fibrisolvens transconjugants that had acquired the tet(W) gene on TnB1230. Several different mechanisms, including mechanisms involving plasmids and conjugative transposons, appear to be involved in the horizontal transfer of tet(W) genes, but small core regions that may function as minielements are conserved. | 2006 | 16870752 |
| 5982 | 13 | 0.9987 | Genetic diversity of penicillin-binding protein 2B and 2X genes from Streptococcus pneumoniae in South Africa. Streptococcus pneumoniae (the pneumococcus) is believed to have developed resistance to penicillin by the production of altered forms of penicillin-binding proteins (PBPs) that have decreased affinity for penicillin. Sixty-eight clinical isolates of serogroup 6 and 19 pneumococci (MICs, < 0.015 to 8 micrograms/ml) were randomly selected from hospitals across South Africa which are at substantial geographic distance from each other. The polymerase chain reaction was used to isolate the penicillin-binding domain of PBPs 2B and 2X from the chromosomal DNAs of the bacteria; the purified PBP DNA was digested with restriction enzymes, the fragments were end-labelled and separated on polyacrylamide gels, and the DNA fingerprints were visualized following autoradiography. Fingerprint analysis revealed that at least 19 PBP 2B gene variants occur in the serogroup 6 and 19 pneumococci. The PBP 2B gene revealed a uniform profile among penicillin-susceptible isolates, with variation from this profile occurring only in isolates for which MICs were > or = 0.06 micrograms/ml. Analysis of the PBP 2X gene revealed a greater diversity in the population with 26 variant genes, including some diversity among susceptible isolates. Discrete profiles of both genes were found only within narrow bands of the penicillin MIC, so that the gene pattern predicted the MIC. PBP 2X gene variation and the lack of variability among PBP 2B genes in pneumococci inhibited at low MICs confirm that PBP 2X alteration may be responsible for low-level penicillin resistance, while alterations in both PBP 2B and PBP 2X are required for high-level resistance. The extensive diversity of PBP genes in South African serogroup 6 and 19 strains suggests that altered PBP genes have arisen frequently in this population. | 1993 | 8239609 |
| 1771 | 14 | 0.9986 | Occurrence of integron-associated resistance gene cassettes located on antibiotic resistance plasmids isolated from a wastewater treatment plant. The role of a municipal wastewater treatment plant as a reservoir for bacteria carrying antibiotic resistance plasmids was analysed. Altogether, ninety-seven different multiresistance plasmids were isolated and screened by PCR for the presence of class 1 integron-specific sequences. Twelve of these plasmids were identified to carry integrons. In addition, integron-specific sequences were found on plasmid-DNA preparations from bacteria residing in activated sludge and in the final effluents of the wastewater treatment plant. Sequencing and annotation of the integrons identified nineteen different gene cassette arrays, containing twenty-one different resistance gene cassettes. These cassettes carry genes encoding eight different aminoglycoside-modifying enzymes, seven dihydrofolate reductases, three beta-lactamases, two chloramphenicol resistance proteins and two small exporter proteins. Moreover, new gene cassettes and cassettes with unknown function were identified. Eleven gene cassette combinations are described for the first time. Six integron-associated gene cassette arrays are located on self-transmissible, putative broad-host-range plasmids belonging to the IncP group. Hybridisation analyses, using the integron-specific gene cassette arrays as templates and labelled plasmid-DNA preparations from bacteria of the final effluents as hybridisation probes, revealed that bacteria containing integron-specific sequences on plasmids are released into the environment. | 2003 | 19719593 |
| 3010 | 15 | 0.9986 | Identification of mcr-1 and a novel chloramphenicol resistance gene catT on an integrative and conjugative element in an Actinobacillus strain of swine origin. The aim of this study was to characterize a mcr-1-carrying integrative and conjugative element (ICE) in a novel Pasteurellaceae-like bacteria of swine origin. The mcr-1-positive GY-402 strain, recovered from a pig fecal sample, was subjected to whole genome sequencing with the combination of Illumina Hiseq and MinION platforms. Genome-based taxonomy revealed that strain GY-402 exhibited highest ANI value (84.89 %) to Actinobacillus succinogenes, which suggested that it represented a novel Actinobacillus species. Sequence analysis revealed that mcr-1 was clustered with eight other resistance genes in the MDR region of a novel ICE element, named ICEAsp1. Inverse PCR and mating assays showed that ICEAsp1 is active and transferrable. In addition, six circular forms mediated by four ISApl1 elements were detected with different inverse PCR sets, indicating that flexible composite transposons could be formed by pairwise combinations of multiple IS copies. Cloning experiment and phylogenetic analysis revealed that the novel Cat protein, designated CatT, belongs to type-A family and confers resistance to chloramphenicol. In conclusion, this is, to the best of our knowledge, the first report of mcr-1 gene on ICE structure and also in Pasteurellaceae bacteria. The diverse composite transposons mediated by multicopy IS elements may facilitate the dissemination of different resistance genes. | 2021 | 33486327 |
| 1792 | 16 | 0.9986 | Integrative and Conjugative Elements and Prophage DNA as Carriers of Resistance Genes in Erysipelothrix rhusiopathiae Strains from Domestic Geese in Poland. Goose erysipelas is a serious problem in waterfowl breeding in Poland. However, knowledge of the characteristics of Erysipelothrix rhusiopathiae strains causing this disease is limited. In this study, the antimicrobial susceptibility and serotypes of four E. rhusiopathiae strains from domestic geese were determined, and their whole-genome sequences (WGSs) were analyzed to detect resistance genes, integrative and conjugative elements (ICEs), and prophage DNA. Sequence type and the presence of resistance genes and transposons were compared with 363 publicly available E. rhusiopathiae strains, as well as 13 strains of other Erysipelothrix species. Four strains tested represented serotypes 2 and 5 and the MLST groups ST 4, 32, 242, and 243. Their assembled circular genomes ranged from 1.8 to 1.9 kb with a GC content of 36-37%; a small plasmid was detected in strain 1023. Strains 1023 and 267 were multidrug-resistant. The resistance genes detected in the genome of strain 1023 were erm47, tetM, and lsaE-lnuB-ant(6)-Ia-spw cluster, while strain 267 contained the tetM and ermB genes. Mutations in the gyrA gene were detected in both strains. The tetM gene was embedded in a Tn916-like transposon, which in strain 1023, together with the other resistance genes, was located on a large integrative and conjugative-like element of 130 kb designated as ICEEr1023. A minor integrative element of 74 kb was identified in strain 1012 (ICEEr1012). This work contributes to knowledge about the characteristics of E. rhusiopathiae bacteria and, for the first time, reveals the occurrence of erm47 and ermB resistance genes in strains of this species. Phage infection appears to be responsible for the introduction of the ermB gene into the genome of strain 267, while ICEs most likely play a key role in the spread of the other resistance genes identified in E. rhusiopathiae. | 2024 | 38731857 |
| 5859 | 17 | 0.9986 | Isolation of tetracycline-resistant Megasphaera elsdenii strains with novel mosaic gene combinations of tet(O) and tet(W) from swine. Anaerobic bacteria insensitive to chlortetracycline (64 to 256 microg/ml) were isolated from cecal contents and cecal tissues of swine fed or not fed chlortetracycline. A nutritionally complex, rumen fluid-based medium was used for culturing the bacteria. Eight of 84 isolates from seven different animals were identified as Megasphaera elsdenii strains based on their large-coccus morphology, rapid growth on lactate, and 16S ribosomal DNA sequence similarities with M. elsdenii LC-1(T). All eight strains had tetracycline MICs of between 128 and 256 microg/ml. Based on PCR assays differentiating 14 tet classes, the strains gave a positive reaction for the tet(O) gene. By contrast, three ruminant M. elsdenii strains recovered from 30-year-old culture stocks had tetracycline MICs of 4 microg/ml and did not contain tet genes. The tet genes of two tetracycline-resistant M. elsdenii strains were amplified and cloned. Both genes bestowed tetracycline resistance (MIC = 32 to 64 microg/ml) on recombinant Escherichia coli strains. Sequence analysis revealed that the M. elsdenii genes represent two different mosaic genes formed by interclass (double-crossover) recombination events involving tet(O) and tet(W). One or the other genotype was present in each of the eight tetracycline-resistant M. elsdenii strains isolated in these studies. These findings suggest a role for commensal bacteria not only in the preservation and dissemination of antibiotic resistance in the intestinal tract but also in the evolution of resistance. | 2003 | 12839756 |
| 1567 | 18 | 0.9986 | Chromosomal Amplification of the blaOXA-58 Carbapenemase Gene in a Proteus mirabilis Clinical Isolate. Horizontal gene transfer may occur between distantly related bacteria, thus leading to genetic plasticity and in some cases to acquisition of novel resistance traits. Proteus mirabilis is an enterobacterial species responsible for human infections that may express various acquired β-lactam resistance genes, including different classes of carbapenemase genes. Here we report a Proteus mirabilis clinical isolate (strain 1091) displaying resistance to penicillin, including temocillin, together with reduced susceptibility to carbapenems and susceptibility to expanded-spectrum cephalosporins. Using biochemical tests, significant carbapenem hydrolysis was detected in P. mirabilis 1091. Since PCR failed to detect acquired carbapenemase genes commonly found in Enterobacteriaceae, we used a whole-genome sequencing approach that revealed the presence of bla(OXA-58) class D carbapenemase gene, so far identified only in Acinetobacter species. This gene was located on a 3.1-kb element coharboring a bla(AmpC)-like gene. Remarkably, these two genes were bracketed by putative XerC-XerD binding sites and inserted at a XerC-XerD site located between the terminase-like small- and large-subunit genes of a bacteriophage. Increased expression of the two bla genes resulted from a 6-time tandem amplification of the element as revealed by Southern blotting. This is the first isolation of a clinical P. mirabilis strain producing OXA-58, a class D carbapenemase, and the first description of a XerC-XerD-dependent insertion of antibiotic resistance genes within a bacteriophage. This study revealed a new role for the XerC-XerD recombinase in bacteriophage biology. | 2017 | 27855079 |
| 4529 | 19 | 0.9986 | Evolution of gentamicin and arsenite resistance acquisition in Ralstonia pickettii water isolates. Ralstonia pickettii are ubiquitous in water environments. Members of this species are frequently, but not always, resistant to both gentamicin and arsenite. Gentamicin and arsenite co-resistance and the putative molecular mechanisms were investigated. A group of 37 R. pickettii strains isolated from drinking water and hospital wastewater were characterized for gentamicin and arsenite resistance phenotypes, the number and size of plasmids, and screened for genetic elements associated with arsenite tolerance, Integrative and Conjugative Elements (ICEs), among other. The genomes of three representative strains were compared. Most gentamicin resistant (GR) isolates (32/33) were resistant to arsenite, and harbored ICE- and ars operon-related genes. These genetic elements were not detected in any of the five arsenite susceptible strains, regardless of the GR (n = 1) or gentamicin susceptibility (GS) (n = 4) phenotype. The comparison of the genomes of two GR (one resistant and one susceptible to arsenite) and one GS strains suggested that these phenotypes correspond to three phylogroups, distinguished by presence of some genes only in GR isolates, in addition to point mutations in functional genes. The presence of ICEs and ars operon-related genes suggest that arsenite resistance might have been acquired by GR lineages. | 2021 | 33197514 |