TWICE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
678800.9906Release and Constancy of an Antibiotic Resistance Gene in Seawater under Grazing Stress by Ciliates and Heterotrophic Nanoflagellates. Extracellular DNA (exDNA) is released from bacterial cells through various processes. The antibiotic resistance genes (ARGs) coded on exDNA may be horizontally transferred among bacterial communities by natural transformation. We quantitated the released/leaked tetracycline resistance gene, tet(M) over time under grazing stress by ciliates and heterotrophic nanoflagellates (HNFs), and found that extracellular tet(M) (ex-tetM) increased with bacterial grazing. Separate microcosms containing tet(M)-possessing bacteria with ciliates or HNFs were prepared. The copy number of ex-tetM in seawater in the ciliate microcosm rapidly increased until 3 d after the incubation, whereas that in the HNF microcosm showed a slower increase until 20 d. The copy number of ex-tetM was stable in both cases throughout the incubation period, suggesting that extracellular ARGs are preserved in the environment, even in the presence of grazers. Additionally, ARGs in bacterial cells were constant in the presence of grazers. These results suggest that ARGs are not rapidly extinguished in a marine environment under grazing stress.201728592722
636110.9899Vaginal Bacteria in Mares and the Occurrence of Antimicrobial Resistance. Antibiotics are added to semen extenders in insemination doses but their effect on the vaginal microbiota of the inseminated female is unknown. The objectives of this study were to define the equine vaginal microbiota and its antimicrobial resistance, and to determine whether it changes after exposure to antibiotics in semen extenders. Vaginal swabs were taken prior to sham-insemination (day 0), and again on days 3, 7, and 14 after insemination. Isolated bacteria were identified by MALDI-TOF and tested for antimicrobial susceptibility by microdilution. The bacteria isolated from the vagina differed according to reproductive status (brood mare or maiden mare), location (north or middle of Sweden), and the stage of the estrous cycle. Five bacterial species were frequently isolated from mares in both locations: Escherichia coli, Staphylococcus capitis, Streptococcus equisimilis, Streptococcus thoraltensis, and Streptococcus zooepidemicus. Overall, vaginal bacteria isolated from inseminated mares showed higher antibiotic resistance than from non-inseminated mares, suggesting a possible link between exposure to antibiotics in the semen extender and the appearance of antimicrobial resistance. The whole-genome sequencing of E. coli isolates from inseminated mares revealed some genes which are known to confer antimicrobial resistance; however, some instances of resistance in these isolates were not characteristic of induced AMR.202236363796
29820.9896Molecular analysis of antibiotic tolerance in pneumococci. Widespread pneumococcal resistance and the emergence of tolerance underscores the need to develop new antimicrobials. Uncovering the mechanisms of autolysin activation could yield not only new antibacterial targets but also ways to eradicate a pool of bacteria facilitating the spread of resistance. Although several genes contributing to antibiotic tolerance among pneumococci have been identified, those important in the clinical arena thus far are in a single gene cluster, vex/pep27/vncS/vncR. Mutations within this signal transduction system represent at least one mechanism, which explains tolerance to both penicillin and vancomycin. Since mutations in this locus do not result in tolerance to penicillin alone, there must be other, yet unknown, mutations which account for tolerance to a single antibiotic. In the case of pneumococci, there exist two more autolysins other than LytA suggesting our understanding of how bacteria die is currently only at the beginning.200212195738
624330.9894Evolution of antibiotic cross-resistance and collateral sensitivity in Staphylococcus epidermidis using the mutant prevention concentration and the mutant selection window. In bacteria, evolution of resistance to one antibiotic is frequently associated with increased resistance (cross-resistance) or increased susceptibility (collateral sensitivity) to other antibiotics. Cross-resistance and collateral sensitivity are typically evaluated at the minimum inhibitory concentration (MIC). However, these susceptibility changes are not well characterized with respect to the mutant prevention concentration (MPC), the antibiotic concentration that prevents a single-step mutation from occurring. We measured the MIC and the MPC for Staphylococcus epidermidis and 14 single-drug resistant strains against seven antibiotics. We found that the MIC and the MPC were positively correlated but that this correlation weakened if cross-resistance did not evolve. If any type of resistance did evolve, the range of concentrations between the MIC and the MPC tended to shift right and widen. Similar patterns of cross-resistance and collateral sensitivity were observed at the MIC and MPC levels, though more symmetry was observed at the MIC level. Whole-genome sequencing revealed mutations in both known-target and nontarget genes. Moving forward, examining both the MIC and the MPC may lead to better predictions of evolutionary trajectories in antibiotic-resistant bacteria.202032211069
371540.9894Deposition of resistant bacteria and resistome through FMT in germ-free piglets. Faecal microbiota transplantation (FMT) has received considerable attention in recent years due to its remarkable efficacy in restoring a normal gut microbiome. Here, we established the groups of post-FMT recipient piglets using germ-free piglets during early life to characterize the colonization of gut microbiota composition and the enrichment of resistance gene acquisition. By metagenomic analysis, we identified 115 bacterial phyla and 2111 bacterial genera that were acquired by the FMT recipients. We found that early-life microbial colonization and the spread of resistomes in recipient piglets were age dependent. A total of 425, 425 and 358 AR genes primarily belonging to 114, 114 and 102 different types were detected in the donors, post-FMT recipients in the FMT-3D group and post-FMT recipients in the FMT-15D group respectively. Genes that encoded tetracycline, macrolide and chloramphenicol resistance proteins were the most dominant AR genes, and the results corresponded with the exposure of antibiotic consumption at farm. Bacteroides, Escherichia, Clostridium, Parabacteroides, Treponema, Lactobacillus and Enterococcus were significantly correlated with the distribution of AR genes. More importantly, the relative abundance of AR genes was positively correlated with the levels of mobile genetic elements. Our results indicate that early-life microbial colonization can persistently shape the gut microbiota and antibiotic resistome.202133894059
931650.9894Molecular basis of metronidazole resistance in pathogenic bacteria and protozoa. The molecular basis of metronidazole resistance has been examined in anaerobic bacteria, such as Bacteroides, Clostridium, and Helicobacter, and anaerobic parasitic protists such as Giardia, Entamoeba, and trichomonads. A variety of enzymatic and cellular alterations have been shown to correlate with metronidazole susceptibility in these pathogens; however, a common theme has been revealed. Resistant cells are typically deficient in drug activation. The frequent correlation between metronidazole resistance and ineffective drug activation suggests that drug resistance is the result of modification of proteins involved in drug activation. Copyright 1999 Harcourt Publishers Ltd.199911504503
834960.9894Bdelloid rotifers deploy horizontally acquired biosynthetic genes against a fungal pathogen. Coevolutionary antagonism generates relentless selection that can favour genetic exchange, including transfer of antibiotic synthesis and resistance genes among bacteria, and sexual recombination of disease resistance alleles in eukaryotes. We report an unusual link between biological conflict and DNA transfer in bdelloid rotifers, microscopic animals whose genomes show elevated levels of horizontal gene transfer from non-metazoan taxa. When rotifers were challenged with a fungal pathogen, horizontally acquired genes were over twice as likely to be upregulated as other genes - a stronger enrichment than observed for abiotic stressors. Among hundreds of upregulated genes, the most markedly overrepresented were clusters resembling bacterial polyketide and nonribosomal peptide synthetases that produce antibiotics. Upregulation of these clusters in a pathogen-resistant rotifer species was nearly ten times stronger than in a susceptible species. By acquiring, domesticating, and expressing non-metazoan biosynthetic pathways, bdelloids may have evolved to resist natural enemies using antimicrobial mechanisms absent from other animals.202439025839
417370.9893Evidence for natural horizontal transfer of tetQ between bacteria that normally colonize humans and bacteria that normally colonize livestock. Though numerous studies have shown that gene transfer occurs between distantly related bacterial genera under laboratory conditions, the frequency and breadth of horizontal transfer events in nature remain unknown. Previous evidence for natural intergeneric transfers came from studies of genes in human pathogens, bacteria that colonize the same host. We present evidence that natural transfer of a tetracycline resistance gene, tetQ, has occurred between bacterial genera that normally colonize different hosts. A DNA sequence comparative approach was taken to examine the extent of horizontal tetQ dissemination between species of Bacteroides, the predominant genus of the human colonic microflora, and between species of Bacteroides and of the distantly related genus Prevotella, a predominant genus of the microflora of the rumens and intestinal tracts of farm animals. Virtually identical tetQ sequences were found in a number of isolate pairs differing in taxonomy and geographic origin, indicating that extensive natural gene transmission has occurred. Among the exchange events indicated by the evidence was the very recent transfer of an allele of tetQ usually found in Prevotella spp. to a Bacteroides fragilis strain.19947944364
434680.9893Hyper-recombination, diversity, and antibiotic resistance in pneumococcus. Streptococcus pneumoniae is a pathogen of global importance that frequently transfers genetic material between strains and on occasion across species boundaries. In an analysis of 1930 pneumococcal genotypes from six housekeeping genes and 94 genotypes from related species, we identified mosaic genotypes representing admixture between populations and found that these were significantly associated with resistance to several classes of antibiotics. We hypothesize that these observations result from a history of hyper-recombination, which means that these strains are more likely to acquire both divergent genetic material and resistance determinants. This could have consequences for the reemergence of drug resistance after pneumococcal vaccination and also for our understanding of diversification and speciation in recombinogenic bacteria.200919520963
357190.9893Evidence for recent intergeneric transfer of a new tetracycline resistance gene, tet(W), isolated from Butyrivibrio fibrisolvens, and the occurrence of tet(O) in ruminal bacteria. We have previously reported high-frequency transfer of tetracycline resistance between strains of the rumen anaerobic bacterium Butyrivibrio fibrisolvens. Donor strains were postulated to carry two TcR genes, one of which is transferred on a novel chromosomal element. It is shown here that coding sequences within the non-transmissible gene in B. fibrisolvens 1.230 are identical to those of the Streptococcus pneumoniae tet(O) gene. This provides the first evidence for genetic exchange between facultatively anaerobic bacteria and rumen obligate anaerobes. In contrast, the product of the transmissible TcR gene shares only 68% amino acid sequence identity with the TetO and TetM proteins and represents a new class of ribosome protection tetracycline resistance determinant, designated Tet W. The tet(W) coding region shows a higher DNA G + C content (53%) than other B. fibrisolvens genes or other ribosome protection-type tet genes, suggesting recent acquisition from a high G + C content genome. Tet(W) genes with almost identical sequences are also shown to be present in TcR strains of B. fibrisolvens from Australian sheep and in TcR strains of two other genera of rumen obligate anaerobes, Selenomonas ruminantium and Mitsuokella multiacidus. This provides compelling evidence for recent intergeneric transfer of resistance genes between ruminal bacteria. Tet(W) is not restricted to ruminal bacteria, as it was also present in a porcine strain of M. multiacidus.199911207718
6203100.9893Effect of induction of SOS response on expression of pBR322 genes and on plasmid copy number. Several lines of evidence are presented that indicate that the level of tetracycline resistance of Esherichia coli strains harboring plasmid pBR322 varies according to whether the SOS system of the host bacteria has been induced. These include use of strains in which the SOS system is expressed constitutively (lexA def.), is thermoinducible (recA441) or noninducible (lexA ind-), or is highly repressed (multiple copies of lexA+). Similar induction was observed with the product of another plasmid gene, beta-lactamase. The amounts of extractable plasmid DNA were also increased by SOS induction, and we propose that the SOS-induced increases in levels of tetracycline resistance and beta-lactamase activity are due to an increased plasmid copy number.19892695953
9330110.9892Pneumococcal Extracellular Vesicles Mediate Horizontal Gene Transfer via the Transformation Machinery. Bacterial cells secrete extracellular vesicles (EVs), the function of which is a matter of intense investigation. Here, we show that the EVs secreted by the human pathogen Streptococcus pneumoniae (pneumococcus) are associated with bacterial DNA on their surface and can deliver this DNA to the transformation machinery of competent cells. These findings suggest that EVs contribute to gene transfer in Gram-positive bacteria, and in doing so, may promote the spread of drug resistance genes in the population.202338168155
4111120.9892Antibiotic resistance in oral commensal streptococci from healthy Mexicans and Cubans: resistance prevalence does not mirror antibiotic usage. Antibiotic resistance genes might be maintained by selection pressures different from those which are responsible for initially selecting resistant bacteria. This possibility was suggested from a comparison of oral commensal streptococci isolated from healthy people not taking antibiotics. Resistance frequencies were similar for organisms from Mexico and Cuba despite significant differences in antibiotic usage in these two countries. Resistance to > or = 4 drugs was far more common in Mexico, the only detectable trend that can be related to the higher use of antibiotics in Mexico. If resistance is not uniquely maintained by antibiotics, then other environmental factors must also be at work. These need to be identified if a strategy to control antibiotic resistance is to be successful.200212480100
3810130.9892The Effect of the Presence and Absence of DNA Repair Genes on the Rate and Pattern of Mutation in Bacteria. Bacteria lose and gain repair genes as they evolve. Here, we investigate the consequences of gain and loss of 11 DNA repair genes across a broad range of bacteria. Using synonymous polymorphisms from bacteria and a set of 50 phylogenetically independent contrasts, we find no evidence that the presence or absence of these 11 genes affects either the overall level of diversity or the pattern of mutation. Using phylogenetic generalized linear squares yields a similar conclusion. It seems likely that the lack of an effect is due to variation in the genetic background and the environment which obscures any effects that the presence or absence of individual genes might have.202439376054
4917140.9892Rapid Changes in Nasopharyngeal Antibiotic Resistance Gene Profiles After Short Courses of Antibiotics in a Pilot Study of Ambulatory Young Children. We quantified antibiotic resistance genes before and after short antibiotic courses in nasopharyngeal specimens from ambulatory children. Carriage of certain bacteria and resistance genes was common before antibiotics. After antibiotics, we observed substantial reductions in pneumococcal and Staphylococcus aureus carriage and rapid expansion in the abundance of certain resistance genes.202135350815
9365150.9892Hypermutability and compensatory adaptation in antibiotic-resistant bacteria. Hypermutable (mutator) bacteria have been associated with the emergence of antibiotic resistance. A simple yet untested prediction is that mutator bacteria are able to compensate more quickly for pleiotropic fitness costs often associated with resistance, resulting in the maintenance of resistance in the absence of antibiotic selection. By using experimental populations of a wild-type and a mutator genotype of the pathogenic bacterium Pseudomonas aeruginosa, we show that mutator bacteria can evolve resistance to antibiotics more rapidly than wild-type bacteria and, crucially, that mutators are better able to compensate for the fitness cost of resistance, to the extent that all costs of resistance were entirely compensated for in mutators. When competed against immigrant antibiotic-susceptible bacteria in the absence of antibiotics, antibiotic resistance remained at a high level in mutator populations but disappeared in wild-type populations. These results suggest that selection for mutations that offset the fitness cost associated with antibiotic resistance may help to explain the high frequency of mutator bacteria and antibiotic resistance observed in chronic infections.201020624092
8355160.9891Ecology-relevant bacteria drive the evolution of host antimicrobial peptides in Drosophila. Antimicrobial peptides are host-encoded immune effectors that combat pathogens and shape the microbiome in plants and animals. However, little is known about how the host antimicrobial peptide repertoire is adapted to its microbiome. Here, we characterized the function and evolution of the Diptericin antimicrobial peptide family of Diptera. Using mutations affecting the two Diptericins (Dpt) of Drosophila melanogaster, we reveal the specific role of DptA for the pathogen Providencia rettgeri and DptB for the gut mutualist Acetobacter. The presence of DptA- or DptB-like genes across Diptera correlates with the presence of Providencia and Acetobacter in their environment. Moreover, DptA- and DptB-like sequences predict host resistance against infection by these bacteria across the genus Drosophila. Our study explains the evolutionary logic behind the bursts of rapid evolution of an antimicrobial peptide family and reveals how the host immune repertoire adapts to changing microbial environments.202337471548
4104170.9891Human intestinal bacteria as reservoirs for antibiotic resistance genes. Human intestinal bacteria have many roles in human health, most of which are beneficial or neutral for the host. In this review, we explore a more sinister side of intestinal bacteria; their role as traffickers in antibiotic resistance genes. Evidence is accumulating to support the hypothesis that intestinal bacteria not only exchange resistance genes among themselves but might also interact with bacteria that are passing through the colon, causing these bacteria to acquire and transmit antibiotic resistance genes.200415337162
6242180.9891Biological cost in Mycobacterium tuberculosis with mutations in the rpsL, rrs, rpoB, and katG genes. When bacteria develop drug-resistant mutations, there is often an associated biological cost; however, some strains can exhibit low- or no-cost mutations. In the present study, a quantitative resazurin reduction assay was used to measure the biological cost of Mycobacterium tuberculosis isolates that contained different mutations in the rpsL, rrs, rpoB, and katG genes, and showed different resistance profiles. Biological costs were determined by comparing the growth curves of drug-resistant isolates with drug-susceptible strains. Some strains, such as those with rpoB mutations other than S531L and strains with mutations in all of the studied genes, grew more slowly than did drug-susceptible strains. However, some strains grew more quickly than drug-susceptible strains, such as those that had only the rpsL K43R mutation. Strains with the mutation katG S315T presented heterogeneous biological costs. When analyzed individually, strains with the mutations rpsL43/katG315, rpoB531, and rpoB531/katG315 grew faster than drug-susceptible strains. The results suggest that some strains with the most common mutations correlated to a high resistance toward streptomycin, isoniazid and rifampicin can grow as well as or better than susceptible strains.201323276692
3523190.9891Tetracycline Resistance Gene Profiles in Red Seabream (Pagrus major) Intestine and Rearing Water After Oxytetracycline Administration. Marine aquaculture fish and the environment are possible hot spots for the maintenance and spread of antibiotic resistance genes (ARGs). We here show the time courses of changes of six tetracycline resistance genes (tet) in fish rearing seawater and fish intestine in tank experiments. Experimental tanks were prepared as oxytetracycline (OTC) administration tanks and those without OTC. It was found that tet(B), tet(M), and tet(W) were dominant in seawater among the six tet genes. tet(B) and tet(M) abundances increased immediately after OTC administration, indicating that OTC served as a selective pressure to increase the proportion of tet-possessing bacteria. In contrast, the abundance of tet genes in the fish intestine did not differ between the with- and without-OTC administration groups, and clearly was not altered by OTC administration. Profile changing of tet in seawater and fish intestine did not synchronize. These observations suggested that the dynamics of intestinal tet-possessing bacteria do not directly reflect the environment, but reflect selection within the intestine.202032849389