TURNERCYCLAMYCINS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
22600.8524Resistance mechanisms for Gram-negative bacteria-specific lipopeptides, turnercyclamycins, differ from that of colistin. Bacterial resistance to antibiotics is a crisis. Acinetobacter baumannii is among the CDC urgent threat pathogens in part for this reason. Lipopeptides known as turnercyclamycins are produced by symbiotic bacteria that normally live in marine mollusks, where they may be involved in shaping their symbiotic niche. Turnercyclamycins killed Gram-negative pathogens including drug-resistant Acinetobacter, but how do the mechanisms of resistance compare to other lipopeptide drugs? Here, we define resistance from a truncation of MlaA, a protein involved in regulating bacterial membrane phospholipids. Intriguingly, this resistance mechanism only affected one turnercyclamycin variant, which differed only in two atoms in the lipid tail of the compounds. We could not obtain significant resistance to the second turnercyclamycin variant, which was also effective in an infection model. This study reveals an unexpected subtlety in resistance to lipopeptide antibiotics, which may be useful in the design and development of antibiotics to combat drug resistance.202337882570
81410.8495Drown Them in Their Own Garbage: a New Strategy To Reverse Polymyxin Resistance? Purcell and colleagues offer new insights into a major mechanism of polymyxin resistance in Gram-negative bacteria (A. B. Purcell, B. J. Voss, and M. S. Trent, J Bacteriol 204:e00498-21, 2022, https://doi.org/10.1128/JB.00498-21). Inactivating a single lipid recycling enzyme causes accumulation of waste lipid by-products that inhibit a key factor responsible for polymyxin resistance.202234843378
51520.8489The Streptomyces peucetius dpsY and dnrX genes govern early and late steps of daunorubicin and doxorubicin biosynthesis. The Streptomyces peucetius dpsY and dnrX genes govern early and late steps in the biosynthesis of the clinically valuable antitumor drugs daunorubicin (DNR) and doxorubicin (DXR). Although their deduced products resemble those of genes thought to be involved in antibiotic production in several other bacteria, this information could not be used to identify the functions of dpsY and dnrX. Replacement of dpsY with a mutant form disrupted by insertion of the aphII neomycin-kanamycin resistance gene resulted in the accumulation of UWM5, the C-19 ethyl homolog of SEK43, a known shunt product of iterative polyketide synthases involved in the biosynthesis of aromatic polyketides. Hence, DpsY must act along with the other components of the DNR-DXR polyketide synthase to form 12-deoxyaklanonic acid, the earliest known intermediate of the DXR pathway. Mutation of dnrX in the same way resulted in a threefold increase in DXR production and the disappearance of two acid-sensitive, unknown compounds from culture extracts. These results suggest that dnrX, analogous to the role of the S. peucetius dnrH gene (C. Scotti and C. R. Hutchinson, J. Bacteriol. 178:73167321, 1996), may be involved in the metabolism of DNR and/or DXR to acid-sensitive compounds, possibly related to the baumycins found in many DNR-producing bacteria.19989573189
54130.8484A Teleost Bactericidal Permeability-Increasing Protein Kills Gram-Negative Bacteria, Modulates Innate Immune Response, and Enhances Resistance against Bacterial and Viral Infection. Bactericidal/permeability-increasing protein (BPI) is an important factor of innate immunity that in mammals is known to take part in the clearance of invading Gram-negative bacteria. In teleost, the function of BPI is unknown. In the present work, we studied the function of tongue sole (Cynoglossus semilaevis) BPI, CsBPI. We found that CsBPI was produced extracellularly by peripheral blood leukocytes (PBL). Recombinant CsBPI (rCsBPI) was able to bind to a number of Gram-negative bacteria but not Gram-positive bacteria. Binding to bacteria led to bacterial death through membrane permeabilization and structural destruction, and the bound bacteria were more readily taken up by PBL. In vivo, rCsBPI augmented the expression of a wide arrange of genes involved in antibacterial and antiviral immunity. Furthermore, rCsBPI enhanced the resistance of tongue sole against bacterial as well as viral infection. These results indicate for the first time that a teleost BPI possesses immunoregulatory effect and plays a significant role in antibacterial and antiviral defense.201627105425
999040.8466Axe-Txe, a broad-spectrum proteic toxin-antitoxin system specified by a multidrug-resistant, clinical isolate of Enterococcus faecium. Enterococcal species of bacteria are now acknowledged as leading causes of bacteraemia and other serious nosocomial infections. However, surprisingly little is known about the molecular mechanisms that promote the segregational stability of antibiotic resistance and other plasmids in these bacteria. Plasmid pRUM (24 873 bp) is a multidrug resistance plasmid identified in a clinical isolate of Enterococcus faecium. A novel proteic-based toxin-antitoxin cassette identified on pRUM was demonstrated to be a functional segregational stability module in both its native host and evolutionarily diverse bacterial species. Induced expression of the toxin protein (Txe) of this system resulted in growth inhibition in Escherichia coli. The toxic effect of Txe was alleviated by co-expression of the antitoxin protein, Axe. Homologues of the axe and txe genes are present in the genomes of a diversity of Eubacteria. These homologues (yefM-yoeB) present in the E. coli chromosome function as a toxin-antitoxin mechanism, although the Axe and YefM antitoxin components demonstrate specificity for their cognate toxin proteins in vivo. Axe-Txe is one of the first functional proteic toxin-antitoxin systems to be accurately described for Gram-positive bacteria.200312603745
32950.8459Effect of NlpE overproduction on multidrug resistance in Escherichia coli. NlpE, an outer membrane lipoprotein, functions during envelope stress responses in Gram-negative bacteria. In this study, we report that overproduction of NlpE increases multidrug and copper resistance through activation of the genes encoding the AcrD and MdtABC multidrug efflux pumps in Escherichia coli.201020211889
50460.8459Activation of Dithiolopyrrolone Antibiotics by Cellular Reductants. Dithiolopyrrolone (DTP) natural products are broad-spectrum antimicrobial and anticancer prodrugs. The DTP structure contains a unique bicyclic ene-disulfide that once reduced in the cell, chelates metal ions and disrupts metal homeostasis. In this work we investigate the intracellular activation of the DTPs and their resistance mechanisms in bacteria. We show that the prototypical DTP holomycin is reduced by several bacterial reductases and small-molecule thiols in vitro. To understand how bacteria develop resistance to the DTPs, we generate Staphylococcus aureus mutants that exhibit increased resistance to the hybrid DTP antibiotic thiomarinol. From these mutants we identify loss-of-function mutations in redox genes that are involved in DTP activation. This work advances the understanding of how DTPs are activated and informs development of bioreductive disulfide prodrugs.202539665630
882970.8453VtaA8 and VtaA9 from Haemophilus parasuis delay phagocytosis by alveolar macrophages. Haemophilus parasuis, a member of the family Pasteurellaceae, is a common inhabitant of the upper respiratory tract of healthy pigs and the etiological agent of Glässer's disease. As other virulent Pasteurellaceae, H. parasuis can prevent phagocytosis, but the bacterial factors involved in this virulence mechanism are not known. In order to identify genes involved in phagocytosis resistance, we constructed a genomic library of the highly virulent reference strain Nagasaki and clones were selected by increased survival after incubation with porcine alveolar macrophages (PAM). Two clones containing two virulent-associated trimeric autotransporter (VtaA) genes, vtaA8 and vtaA9, respectively, were selected by this method. A reduction in the interaction of the two clones with the macrophages was detected by flow cytometry. Monoclonal antibodies were produced and used to demonstrate the presence of these proteins on the bacterial surface of the corresponding clone, and on the H. parasuis phagocytosis-resistant strain PC4-6P. The effect of VtaA8 and VtaA9 in the trafficking of the bacteria through the endocytic pathway was examined by fluorescence microscopy and a delay was detected in the localization of the vtaA8 and vtaA9 clones in acidic compartments. These results are compatible with a partial inhibition of the routing of the bacteria via the degradative phagosome. Finally, antibodies against a common epitope in VtaA8 and VtaA9 were opsonic and promoted phagocytosis of the phagocytosis-resistant strain PC4-6P by PAM. Taken together, these results indicate that VtaA8 and VtaA9 are surface proteins that play a role in phagocytosis resistance of H. parasuis.201222839779
74680.8449Novel antimicrobial 3-phenyl-4-phenoxypyrazole derivatives target cell wall lipid intermediates with low mammalian cytotoxicity. The growing crisis of antimicrobial resistance (AMR) underscores the critical need for innovative antimicrobial discoveries. Novel antibiotics targeting the bacterial cell wall remain an attractive area of research, due to their conservation and essentiality in bacteria and their absence in eukaryotic cells. Antibiotics targeting lipid II are of special interest due to the reduced potential for target modification of lipid components and their surface accessibility to inhibitors. In this study, we identified 3-phenyl-4-phenoxypyrazole analogues named PYO12 and PYO12a with bactericidal activity against gram-positive bacteria and low cytotoxicity for different types of mammalian cells. Gram-negative bacteria were resistant to PYO12 activity through extrusion of this compound via efflux pumps. Exposure to PYO12 induces expression of genes involved in resistance to antimicrobials targeting the cell wall, suggesting that PYO12 acts via binding to lipid II or other lipid intermediates involved in peptidoglycan or teichoic acid biosynthesis. Antagonism of PYO12 antibacterial activity by undecaprenyl-pyrophosphate supports the idea that PYO12 may bind to the lipid moiety of lipid II blocking the shuttling of peptidoglycan precursors across the cytoplasmic membrane. These findings open opportunities to further develop these compounds as antibiotics targeting bacterial cell wall synthesis.202541083642
80590.8445LexR Positively Regulates the LexABC Efflux Pump Involved in Self-Resistance to the Antimicrobial Di-N-Oxide Phenazine in Lysobacter antibioticus. Myxin, a di-N-oxide phenazine isolated from the soil bacterium Lysobacter antibioticus, exhibits potent activity against various microorganisms and has the potential to be developed as an agrochemical. Antibiotic-producing microorganisms have developed self-resistance mechanisms to protect themselves from autotoxicity. Antibiotic efflux is vital for such protection. Recently, we identified a resistance-nodulation-division (RND) efflux pump, LexABC, involved in self-resistance against myxin in L. antibioticus. Expression of its genes, lexABC, was induced by myxin and was positively regulated by the LysR family transcriptional regulator LexR. The molecular mechanisms, however, have not been clear. Here, LexR was found to bind to the lexABC promoter region to directly regulate expression. Moreover, myxin enhanced this binding. Molecular docking and surface plasmon resonance analysis showed that myxin bound LexR with valine and lysine residues at positions 146 (V146) and 195 (K195), respectively. Furthermore, mutation of K195 in vivo led to downregulation of the gene lexA. These results indicated that LexR sensed and bound with myxin, thereby directly activating the expression of the LexABC efflux pump and increasing L. antibioticus resistance against myxin. IMPORTANCE Antibiotic-producing bacteria exhibit various sophisticated mechanisms for self-protection against their own secondary metabolites. RND efflux pumps that eliminate antibiotics from cells are ubiquitous in Gram-negative bacteria. Myxin is a heterocyclic N-oxide phenazine with potent antimicrobial and antitumor activities produced by the soil bacterium L. antibioticus. The RND pump LexABC contributes to the self-resistance of L. antibioticus against myxin. Herein, we report a mechanism involving the LysR family regulator LexR that binds to myxin and directly activates the LexABC pump. Further study on self-resistance mechanisms could help the investigation of strategies to deal with increasing bacterial antibiotic resistance and enable the discovery of novel natural products with resistance genes as selective markers.202337166326
558100.8441Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. Thiamine metabolism genes are regulated in numerous bacteria by a riboswitch class that binds the coenzyme thiamine pyrophosphate (TPP). We demonstrate that the antimicrobial action of the thiamine analog pyrithiamine (PT) is mediated by interaction with TPP riboswitches in bacteria and fungi. For example, pyrithiamine pyrophosphate (PTPP) binds the TPP riboswitch controlling the tenA operon in Bacillus subtilis. Expression of a TPP riboswitch-regulated reporter gene is reduced in transgenic B. subtilis or Escherichia coli when grown in the presence of thiamine or PT, while mutant riboswitches in these organisms are unresponsive to these ligands. Bacteria selected for PT resistance bear specific mutations that disrupt ligand binding to TPP riboswitches and derepress certain TPP metabolic genes. Our findings demonstrate that riboswitches can serve as antimicrobial drug targets and expand our understanding of thiamine metabolism in bacteria.200516356850
527110.8437Characterization of the bagremycin biosynthetic gene cluster in Streptomyces sp. Tü 4128. Bagremycin A and bagremycin B isolated from Streptomyces sp. Tü 4128 have activities against Gram-positive bacteria, fungi and also have a weak antitumor activity, which make them have great potential for development of novel antibiotics. Here, we report a draft genome 8,424,112 bp in length of S. sp. Tü 4128 by Illumina Hiseq2000, and identify the bagremycins biosynthetic gene cluster (BGC) by bioinformatics analysis. The putative bagremycins BGC includes 16 open reading frames (ORFs) with the functions of biosynthesis, resistance and regulation. Disruptions of relative genes and HPLC analysis of bagremycins production demonstrated that not all the genes within the BGC are responsible for the biosynthesis of bagremycins. In addition, the biosynthetic pathways of bagremycins are proposed for deeper inquiries into their intriguing biosynthetic mechanism.201930526412
9993120.8428Lysozyme Resistance in Clostridioides difficile Is Dependent on Two Peptidoglycan Deacetylases. Clostridioides (Clostridium) difficile is a major cause of hospital-acquired infections leading to antibiotic-associated diarrhea. C. difficile exhibits a very high level of resistance to lysozyme. Bacteria commonly resist lysozyme through modification of the cell wall. In C. difficile, σ(V) is required for lysozyme resistance, and σ(V) is activated in response to lysozyme. Once activated, σ(V), encoded by csfV, directs transcription of genes necessary for lysozyme resistance. Here, we analyze the contribution of individual genes in the σ(V) regulon to lysozyme resistance. Using CRISPR-Cas9-mediated mutagenesis we constructed in-frame deletions of single genes in the csfV operon. We find that pdaV, which encodes a peptidoglycan deacetylase, is partially responsible for lysozyme resistance. We then performed CRISPR inhibition (CRISPRi) to identify a second peptidoglycan deacetylase, encoded by pgdA, that is important for lysozyme resistance. Deletion of either pgdA or pdaV resulted in modest decreases in lysozyme resistance. However, deletion of both pgdA and pdaV resulted in a 1,000-fold decrease in lysozyme resistance. Further, muropeptide analysis revealed that loss of either PgdA or PdaV had modest effects on peptidoglycan deacetylation but that loss of both PgdA and PdaV resulted in almost complete loss of peptidoglycan deacetylation. This suggests that PgdA and PdaV are redundant peptidoglycan deacetylases. We also used CRISPRi to compare other lysozyme resistance mechanisms and conclude that peptidoglycan deacetylation is the major mechanism of lysozyme resistance in C. difficileIMPORTANCEClostridioides difficile is the leading cause of hospital-acquired diarrhea. C. difficile is highly resistant to lysozyme. We previously showed that the csfV operon is required for lysozyme resistance. Here, we used CRISPR-Cas9 mediated mutagenesis and CRISPRi knockdown to show that peptidoglycan deacetylation is necessary for lysozyme resistance and is the major lysozyme resistance mechanism in C. difficile We show that two peptidoglycan deacetylases in C. difficile are partially redundant and are required for lysozyme resistance. PgdA provides an intrinsic level of deacetylation, and PdaV, encoded by a part of the csfV operon, provides lysozyme-induced peptidoglycan deacetylation.202032868404
766130.8425The essential inner membrane protein YejM is a metalloenzyme. Recent recurrent outbreaks of Gram-negative bacteria show the critical need to target essential bacterial mechanisms to fight the increase of antibiotic resistance. Pathogenic Gram-negative bacteria have developed several strategies to protect themselves against the host immune response and antibiotics. One such strategy is to remodel the outer membrane where several genes are involved. yejM was discovered as an essential gene in E. coli and S. typhimurium that plays a critical role in their virulence by changing the outer membrane permeability. How the inner membrane protein YejM with its periplasmic domain changes membrane properties remains unknown. Despite overwhelming structural similarity between the periplasmic domains of two YejM homologues with hydrolases like arylsulfatases, no enzymatic activity has been previously reported for YejM. Our studies reveal an intact active site with bound metal ions in the structure of YejM periplasmic domain. Furthermore, we show that YejM has a phosphatase activity that is dependent on the presence of magnesium ions and is linked to its function of regulating outer membrane properties. Understanding the molecular mechanism by which YejM is involved in outer membrane remodeling will help to identify a new drug target in the fight against the increased antibiotic resistance.202033082366
9782140.8422Homodimeric Tobramycin Adjuvant Repurposes Novobiocin as an Effective Antibacterial Agent against Gram-Negative Bacteria. Low permeability across the outer membrane is a major reason why most antibiotics are ineffective against Gram-negative bacteria. Agents that permeabilize the outer membrane are typically toxic at their effective concentrations. Here, we report the development of a broad-spectrum homodimeric tobramycin adjuvant that is nontoxic and more potent than the gold standard permeabilizing agent, polymyxin B nonapeptide. In pilot studies, the adjuvant confers potent bactericidal activity on novobiocin against Gram-negative bacteria, including carbapenem-resistant and colistin-resistant strains bearing plasmid-borne mcr-1 genes. Resistance development to the combination was significantly reduced, relative to novobiocin alone, and there was no induction of cross-resistance to other antibiotics, including the gyrase-acting fluoroquinolones. Tobramycin homodimer may allow the use of lower doses of novobiocin, overcoming its twin problem of efficacy and toxicity.201931557020
118150.8420Trichlorination of a Teicoplanin-Type Glycopeptide Antibiotic by the Halogenase StaI Evades Resistance. Glycopeptide antibiotics (GPAs) include clinically important drugs used for the treatment of infections caused by Gram-positive pathogens. These antibiotics are specialized metabolites produced by several genera of actinomycete bacteria. While many GPAs are highly chemically modified, A47934 is a relatively unadorned GPA lacking sugar or acyl modifications, common to other members of the class, but which is chlorinated at three distinct sites. The biosynthesis of A47934 is encoded by a 68-kb gene cluster in Streptomyces toyocaensis NRRL 15009. The cluster includes all necessary genes for the synthesis of A47934, including two predicted halogenase genes, staI and staK In this study, we report that only one of the halogenase genes, staI, is necessary and essential for A47934 biosynthesis. Chlorination of the A47934 scaffold is important for antibiotic activity, as assessed by binding affinity for the target N-acyl-d-Ala-d-Ala. Surprisingly, chlorination is also vital to avoid activation of enterococcal and Streptomyces VanB-type GPA resistance through induction of resistance genes. Phenotypic assays showed stronger induction of GPA resistance by the dechlorinated compared to the chlorinated GPA. Correspondingly, the relative expression of the enterococcal vanA resistance gene was shown to be increased by the dechlorinated compared to the chlorinated compound. These results provide insight into the biosynthesis of GPAs and the biological function of GPA chlorination for this medically important class of antibiotic.201830275088
331160.8419MmpS4 promotes glycopeptidolipids biosynthesis and export in Mycobacterium smegmatis. The MmpS family (mycobacterial membrane protein small) includes over 100 small membrane proteins specific to the genus Mycobacterium that have not yet been studied experimentally. The genes encoding MmpS proteins are often associated with mmpL genes, which are homologous to the RND (resistance nodulation cell division) genes of Gram-negative bacteria that encode proteins functioning as multidrug efflux system. We showed by molecular genetics and biochemical analysis that MmpS4 in Mycobacterium smegmatis is required for the production and export of large amounts of cell surface glycolipids, but is dispensable for biosynthesis per se. A new specific and sensitive method utilizing single-chain antibodies against the surface-exposed glycolipids was developed to confirm that MmpS4 was dispensable for transport to the surface. Orthologous complementation demonstrated that the MmpS4 proteins are exchangeable, thus not specific to a defined lipid species. MmpS4 function requires the formation of a protein complex at the pole of the bacillus, which requires the extracytosolic C-terminal domain of MmpS4. We suggest that MmpS proteins facilitate lipid biosynthesis by acting as a scaffold for coupled biosynthesis and transport machinery.201021062372
9025170.8419BING, a novel antimicrobial peptide isolated from Japanese medaka plasma, targets bacterial envelope stress response by suppressing cpxR expression. Antimicrobial peptides (AMPs) have emerged as a promising alternative to small molecule antibiotics. Although AMPs have previously been isolated in many organisms, efforts on the systematic identification of AMPs in fish have been lagging. Here, we collected peptides from the plasma of medaka (Oryzias latipes) fish. By using mass spectrometry, 6399 unique sequences were identified from the isolated peptides, among which 430 peptides were bioinformatically predicted to be potential AMPs. One of them, a thermostable 13-residue peptide named BING, shows a broad-spectrum toxicity against pathogenic bacteria including drug-resistant strains, at concentrations that presented relatively low toxicity to mammalian cell lines and medaka. Proteomic analysis indicated that BING treatment induced a deregulation of periplasmic peptidyl-prolyl isomerases in gram-negative bacteria. We observed that BING reduced the RNA level of cpxR, an upstream regulator of envelope stress responses. cpxR is known to play a crucial role in the development of antimicrobial resistance, including the regulation of genes involved in drug efflux. BING downregulated the expression of efflux pump components mexB, mexY and oprM in P. aeruginosa and significantly synergised the toxicity of antibiotics towards these bacteria. In addition, exposure to sublethal doses of BING delayed the development of antibiotic resistance. To our knowledge, BING is the first AMP shown to suppress cpxR expression in Gram-negative bacteria. This discovery highlights the cpxR pathway as a potential antimicrobial target.202134108601
109180.8419Identification of two putative ATP-cassette genes in Encephalitozoon intestinalis. Currently existing chemotherapeutic compounds are limited and few are effective for treating microsporidiosis. It is possible that resistance of Encephalitozoon to some drugs occurs by efflux mechanisms similar to those previously described for mammalian tumour cells, bacteria or protozoal parasites such as Plasmodium, Leishmania and Entamoeba histolytica. The data in the present study suggest that Encephalitozoon intestinalis contains at least one multidrug resistance gene. We report here two complete sequences EiABC1 and EiABC2, encoding different ATP-binding cassette genes from E. intestinalis, including a P-gp.200111730796
705190.8418First structure of the polymyxin resistance proteins. PmrA/PmrB and PhoP/PhoQ are a pair of two-component systems (TCSs) that allow the Gram-negative bacteria to survive the cationic antimicrobial peptide polymyxin B. The two TCSs are linked by the polymyxin resistance protein, PmrD. The PhoP-activated PmrD protects the phosphorylated response regulator PmrA from dephosphorylation, and promotes the transcription of PmrA-activated genes responsible for polymyxin resistance. PmrD is the first protein identified to mediate the connectivity between two TCSs by protecting the phosphorylated response regulator of the downstream TCS. PmrD shows no homology to proteins with known structures. We present here the solution structure of PmrD from Escherichia coli, the first three-dimensional structure of the PmrD family. Our study provides the structural basis of the novel interacting mechanism of bacterial two-component signal-transduction systems.200717686460