TURBIDITY - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
799800.9825Seasonal variation and removal efficiency of antibiotic resistance genes during wastewater treatment of swine farms. The seasonal variation and removal efficiency of antibiotic resistance genes (ARGs), including tetracycline resistance genes (tetG, tetM, and tetX) and macrolide (ermB, ermF, ereA, and mefA), were investigated in two typical swine wastewater treatment systems in both winter and summer. ARGs, class 1 integron gene, and 16S rRNA gene were quantified using real-time polymerase chain reaction assays. There was a 0.31-3.52 log variation in ARGs in raw swine wastewater, and the abundance of ARGs in winter was higher than in summer. tetM, tetX, ermB, ermF, and mefA were highly abundant. The abundance of ARGs was effectively reduced by most individual treatment process and the removal efficiencies of ARGs were higher in winter than in summer. However, when examining relative abundance, the fate of ARGs was quite variable. Anaerobic digestion reduced the relative abundance of tetX, ermB, ermF, and mefA, while lagoon treatment decreased tetM, ermB, ermF, and mefA. Sequencing batch reactor (SBR) decreased tetM, ermB, and ermF, but biofilters and wetlands did not display consistent removal efficiency on ARGs in two sampling seasons. As far as the entire treatment system is concerned, ermB and mefA were effectively reduced in both winter and summer in both total and relative abundance. The relative abundances of tetG and ereA were significantly correlated with intI1 (p < 0.01), and both tetG and ereA increased after wastewater treatment. This may pose a great threat to public health.201726715413
810510.9824Refluxing mature compost to replace bulking agents: A low-cost solution for suppressing antibiotic resistance genes rebound in sewage sludge composting. Antibiotic resistance genes (ARGs) rebounding during composting cooling phase is a critical bottleneck in composting technology that increased ARGs dissemination and application risk of compost products. In this study, mature compost (MR) was used as a substitute for rice husk (RH) to mitigate the rebound of ARGs and mobile genetic elements (MGEs) during the cooling phase of sewage sludge composting, and the relationship among ARGs, MGEs, bacterial community and environmental factors was investigated to explore the key factor influencing ARGs rebound. The results showed that aadD, blaCTX-M02, ermF, ermB, tetX and vanHB significantly increased 4.76-32.41 times, and the MGEs rebounded by 38.60% in the cooling phase of RH composting. Conversely, MR reduced aadD, tetM, ermF and ermB concentrations by 59.49-98.58%, and reduced the total abundance of ARGs in the compost product by 49.32% compared to RH, which significantly restrained ARGs rebound. MR promoted secondary high temperature inactivation of potential host bacteria, including Ornithinibacter, Rhizobiales and Caldicoprobacter, which could harbor aadE, blaCTX-M02, and blaVEB. It also reduced the abundance of lignocellulose degrading bacteria of Firmicutes, which were potential hosts of aadD, tetX, ermF and vanHB. Moreover, MR reduced moisture and increased oxidation reduction potential (ORP) that promoted aadE, tetQ, tetW abatement. Furthermore, MR reduced 97.36% of total MGEs including Tn916/1545, IS613, Tp614 and intI3, which alleviated ARGs horizontal transfer. Overall finding proposed mature compost reflux as bulking agent was a simple method to suppress ARGs rebound and horizontal transfer, improve ARGs removal and reduce composting plant cost.202539798649
799620.9818A sludge bulking wastewater treatment plant with an oxidation ditch-denitrification filter in a cold region: bacterial community composition and antibiotic resistance genes. Bacterial community structure of activated sludge directly affects the stable operation of WWTPS, and these bacterial communities may carry a variety of antibiotic resistance genes (ARGs), which is a threat to the public health. This study employed 16S rRNA gene sequencing and metagenomic sequencing to investigate the bacterial community composition and the ARGs in a sludge bulking oxidation ditch-denitrification filter WWTP in a cold region. The results showed that Trichococcus (20.34%), Blautia (7.72%), and Faecalibacterium (3.64%) were the main bacterial genera in the influent. The relative abundances of norank_f_Saprospiraceae and Candidatus_Microthrix reached 10.24% and 8.40%, respectively, in bulking sludge, and those of norank_f_Saprospiraceae and Candidatus_Microthrix decreased to 6.56 and 7.10% after the anaerobic tank, indicating that the anaerobic tank had an inhibitory effect on filamentous bacteria. After 20 mJ/cm(2) UV disinfection, about 540 bacterial genera, such as Romboutsia (7.99%), Rhodoferax (7.98%), and Thermomonas (4.13%), could still be detected in the effluent. The ARGs were 345.11 ppm in the influent and 11.20 ppm in the effluent; 17 subtypes, such as sul1, msrE, aadA5, ErmF, and tet(A), could be detected throughout the entire process. These ARG subtypes were persistent ARGs with a high health risk. Network analysis indicated that the changes in filamentous bacteria norank_f_Saprospiraceae abundance mainly contributed to the abundance shift of MexB, and Acinetobacter mainly increased the abundance of drfA1. These results above will provide theoretical support for the sludge bulking and ARGs controls of WWTPs in cold regions.202336495431
775730.9818Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Effect of flow configuration and plant species. This study aims to investigate the removal of antibiotics and antibiotic resistance genes (ARGs) in raw domestic wastewater by various mesocosm-scale constructed wetlands (CWs) with different flow configurations or plant species including the constructed wetland with or without plant. Six mesocosm-scale CWs with three flow types (surface flow, horizontal subsurface flow and vertical subsurface flow) and two plant species (Thaliadealbata Fraser and Iris tectorum Maxim) were set up in the outdoor. 8 antibiotics including erythromycin-H2O (ETM-H2O), monensin (MON), clarithromycin (CTM), leucomycin (LCM), sulfamethoxazole (SMX), trimethoprim (TMP), sulfamethazine (SMZ) and sulfapyridine (SPD) and 12 genes including three sulfonamide resistance genes (sul1, sul2 and sul3), four tetracycline resistance genes (tetG, tetM, tetO and tetX), two macrolide resistance genes (ermB and ermC), two chloramphenicol resistance genes (cmlA and floR) and 16S rRNA (bacteria) were determined in different matrices (water, particle, substrate and plant phases) from the mesocosm-scale systems. The aqueous removal efficiencies of total antibiotics ranged from 75.8 to 98.6%, while those of total ARGs varied between 63.9 and 84.0% by the mesocosm-scale CWs. The presence of plants was beneficial to the removal of pollutants, and the subsurface flow CWs had higher pollutant removal than the surface flow CWs, especially for antibiotics. According to the mass balance analysis, the masses of all detected antibiotics during the operation period were 247,000, 4920-10,600, 0.05-0.41 and 3500-60,000μg in influent, substrate, plant and effluent of the mesocosm-scale CWs. In the CWs, biodegradation, substrate adsorption and plant uptake all played certain roles in reducing the loadings of nutrients, antibiotics and ARGs, but biodegradation was the most important process in the removal of these pollutants.201627443461
810940.9817The fate of antibiotic resistance genes and their influential factors in swine manure composting with sepiolite as additive. Manures are storages for antibiotic resistance genes (ARGs) entering the environment. This study investigated the effects of adding sepiolite at 0%, 2.5%, 5%, and 7.5% (CK, T1, T2, and T3, respectively) on the fates of ARGs during composting. The relative abundances (RAs) of the total ARGs in CK and T3 decreased by 0.23 and 0.46 logs, respectively, after composting. The RAs of 10/11 ARGs decreased in CK, whereas they all decreased in T3. The reduction in the RA of the total mobile genetic elements (MGEs) was 1.26 times higher in T3 compared with CK after composting. The bacterial community accounted for 47.93% of the variation in the abundances of ARGs. Network analysis indicated that ARGs and MGEs shared potential host bacteria (PHB), and T3 controlled the transmission of ARGs by reducing the abundances of PHB. Composting with 7.5% sepiolite is an effective strategy for reducing the risk of ARGs proliferating.202235063626
774750.9817Hydrothermal pre-treatment followed by anaerobic digestion for the removal of tylosin and antibiotic resistance agents from poultry litter. Hydrothermal pretreatment (HPT) followed by anaerobic digestion (AD) is an alternative for harvesting energy and removing organic contaminants from sewage sludge and animal manure. This study investigated the use, in an energetically sustainable way, of HPT and AD, alone or combined, to produce methane and remove tylosin and antimicrobial resistance genes (ARG) from poultry litter (PL). The results showed that HPT at 80 °C (HPT80), followed by single-stage AD (AD-1S), led to the production of 517.9 ± 4.7 NL CH(4) kg VS(-1), resulting in 0.11 kWh kg PL(-1) of electrical energy and 0.75 MJ kg PL(-1) of thermal energy, thus supplying 33.6% of the energy spent on burning firewood at a typical farm. In this best-case scenario, the use of HPT alone reduced tylosin concentration from PL by 23.6%, while the process involving HPT followed by AD-1S led to the removal of 91.6% of such antibiotic. The combined process (HPT80 + AD-1S), in addition to contributing to reduce the absolute and relative abundances of ARG ermB (2.13 logs), intI1 (0.39 logs), sul1 (0.63 logs), and tetA (0.74 logs), led to a significant removal in the relative abundance of tylosin-resistant bacteria present in the poultry litter.202336648713
800860.9817Reductions of bacterial antibiotic resistance through five biological treatment processes treated municipal wastewater. Wastewater treatment plants are hot spots for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). However, limited studies have been conducted to compare the reductions of ARB and ARGs by various biological treatment processes. The study explored the reductions of heterotrophic bacteria resistant to six groups of antibiotics (vancomycin, gentamicin, erythromycin, cephalexin, tetracycline, and sulfadiazine) and corresponding resistance genes (vanA, aacC1, ereA, ampC, tetA, and sulI) by five bench-scale biological reactors. Results demonstrated that membrane bioreactor (MBR) and sequencing batch reactor (SBR) significantly reduced ARB abundances in the ranges of 2.80∼3.54 log and 2.70∼3.13 log, respectively, followed by activated sludge (AS). Biological filter (BF) and anaerobic (upflow anaerobic sludge blanket, UASB) techniques led to relatively low reductions. In contrast, ARGs were not equally reduced as ARB. AS and SBR also showed significant potentials on ARGs reduction, whilst MBR and UASB could not reduce ARGs effectively. Redundancy analysis implied that the purification of wastewater quality parameters (COD, NH4 (+)-N, and turbidity) performed a positive correlation to ARB and ARGs reductions.201627384166
721370.9816Distribution characteristics of antibiotic resistant bacteria and genes in fresh and composted manures of livestock farms. Livestock manure is a major reservoir of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). This study investigated the distribution characteristics of ARB, ARGs in fresh and composted manures of traditional breading industry in rural areas in China. Samples collected were naturally piled without professional composting, and will be applied to farmland. The real-time quantitative polymerase chain reaction (qPCR) results showed the presence of ten target ARGs and two mobile genetic elements (MGEs) in the tested manure samples. The relative abundance of tetracycline and sulfonamide resistance genes (TRGs and SRGs) was generally higher than that of macrolide resistance genes (MRGs), followed by quinolone resistance genes (QRGs). There were significant positive correlations between the abundance of sul1, sul2, tetW and MGEs (intl1, intl2). In addition, the distribution of target ARGs was associated with the residual concentrations of doxycycline (DOX), sulfamethazine (SM2), enrofloxacin (ENR) and tylosin (TYL). Overall, a total of 24 bacterial genera were identified. The resistance rates of ARB were 17.79%-83.70% for SM2, followed 0.40%-63.77% for TYL, 0.36%-43.90% for DOX and 0.00%-13.36% for ENR, which showed a significant dose-effect. This study also demonstrated that the abundance of clinically relevant ARB and ARGs in chicken, swine and cow fresh manures significantly greater than that in composted manures, and chicken and swine manures had higher proportion of ARB and higher abundance of ARGs than that in cow manures.201931756854
811380.9815Fate of antibiotic resistance genes in mesophilic and thermophilic anaerobic digestion of chemically enhanced primary treatment (CEPT) sludge. Anaerobic digestion (AD) of chemically enhanced primary treatment (CEPT) sludge and non-CEPT (conventional sedimentation) sludge were comparatively operated under mesophilic and thermophilic conditions. The highest methane yield (692.46±0.46mL CH(4)/g VS(removed) in CEPT sludge) was observed in mesophilic AD of CEPT sludge. Meanwhile, thermophilic conditions were more favorable for the removal of total antibiotic resistance genes (ARGs). In this study, no measurable difference in the fates and removal of ARGs and class 1 integrin-integrase gene (intI1) was observed between treated non-CEPT and CEPT sludge. However, redundancy analysis indicated that shifts in bacterial community were primarily accountable for the variations in ARGs and intI1. Network analysis further revealed potential host bacteria for ARGs and intI1.201728797965
349790.9813Biomarkers of antibiotic resistance genes during seasonal changes in wastewater treatment systems. To evaluate the seasonal distribution of antibiotic resistance genes (ARGs) and explore the reason for their patterns in different seasons and different systems, two wastewater treatment systems were selected and analyzed using high-throughput qPCR. Linear discriminant analysis (LDA) effect size (LEfSe) was used to discover the differential ARGs (biomarkers) and estimate the biomarkers' effect size. We found that the total absolute abundances of ARGs in inflows and excess sludge samples had no obvious seasonal fluctuations, while those in winter outflow samples decreased in comparison with the inflow samples. Eleven differentially abundant ARGs (biomarker genes, BmGs) (aadA5-02, aac-6-II, cmlA1-01, cmlA1-02, blaOXA10-02, aadA-02, tetX, aadA1, ereA, qacEΔ1-01, and blaTEM) in summer samples and 10 BmGs (tet-32, tetA-02, aacC2, vanC-03, aac-6-I1, tetE, ermB, mefA, tnpA - 07, and sul2) in winter samples were validated. According to 16S rRNA gene sequencing, the relative abundance of bacteria at the phylum level exhibited significant seasonal changes in outflow water (OW), and biomarker bacteria (BmB) were discovered at the family (or genus) level. Synechococcus and vadinCA02 are BmB in summer, and Trichococcus, Lactococcus, Pelosinus, Janthinobacterium, Nitrosomonadaceae and Sterolibacterium are BmB in winter. In addition, BmB have good correlations with BmGs in the same season, which indicates that bacterial community changes drive different distributions of ARGs during seasonal changes and that LEfSe is an acute and effective method for finding significantly different ARGs and bacteria between two or more classes. In conclusion, this study demonstrated the seasonal changes of BmGs and BmB at two wastewater treatment systems.201829169020
8054100.9813Effects of nanoscale zero-valent iron on the performance and the fate of antibiotic resistance genes during thermophilic and mesophilic anaerobic digestion of food waste. The effects of nanoscale zero-valent iron (nZVI) on the performance of food waste anaerobic digestion and the fate of antibiotic resistance genes (ARGs) were investigated in thermophilic (TR) and mesophilic (MR) reactors. Results showed that nZVI enhanced biogas production and facilitated ARGs reduction. The maximum CH(4) production was 212.00 ± 4.77 ml/gVS with 5 g/L of nZVI in MR. The highest ARGs removal ratio was 86.64 ± 0.72% obtained in TR at nZVI of 2 g/L. nZVI corrosion products and their contribution on AD performance were analyzed. The abundance of tetracycline genes reduced significantly in nZVI amended digesters. Firmicutes, Chloroflexi, Proteobacteria and Spirochaetes showed significant positive correlations with various ARGs (p < 0.05) in MR and TR. Redundancy analysis indicated that microbial community was the main factor that influenced the fate of ARGs. nZVI changed microbial communities, with decreasing the abundance bacteria belonging to Firmicutes and resulting in the reduction of ARGs.201931505392
8058110.9812Effects of biochars on the fate of antibiotics and their resistance genes during vermicomposting of dewatered sludge. It is currently still difficult to decrease the high contents of antibiotics and their corresponding antibiotic resistance genes (ARGs) in sludge vermicompost. To decrease the environmental risk of vermicompost as a bio-fertilizer, this study investigated the feasibility of biochar addition to decrease the levels of antibiotics and ARGs during vermicomposting of dewatered sludge. To achieve this, 1.25% and 5% of corncob and rice husk biochars, respectively, were added to sludge, which was then vermicomposted by Eisenia fetida for 60 days. The sludge blended with corncob biochar showed increased decomposition and humification of organic matter. Higher biochar concentration promoted both the number and diversity of bacteria, and differed dominant genera. The level of antibiotics significantly decreased as a result of biochar addition (P < 0.05), and tetracycline was completely removed. Relative to the control without addition of biochars, ermF and tetX genes significantly decreased with corncob biochar treatment (P < 0.05). Rice husk biochar (5%) could effectively decrease sul-1 and sul-2 genes in vermicompost (P < 0.05). However, the abundance of the intI-1 gene increased with biochar concentration. This study suggests that biochar addition can lessen the antibiotic and ARG pollution in sludge vermicompost, depending on the type and concentration of biochars.202032388093
7214120.9812Long-term application of fresh and composted manure increase tetracycline resistance in the arable soil of eastern China. The aim of this study was to compare the occurrence, abundance, and diversity of tetracycline resistance genes (tet) in agricultural soils after 6 years' application of fresh or composted swine manure. Soil samples were collected from fresh or composted manure-treated farmland at three depths (0-5 cm, 5-10 cm, and 10-20 cm). Nine classes of tet genes [tetW, tetB(P), tetO, tetS, tetC, tetG, tetZ, tetL, and tetX] were detected; tetG, tetZ, tetL, and tetB(P) were predominant in the manure-treated soil. The abundances of tetB(P), tetW, tetC, and tetO were reduced, while tetG and tetL were increased by fertilizing with composted versus fresh manure; thus, the total abundance of tet genes was not significantly reduced by compost manuring. tetG was the most abundant gene in manure-treated soil; the predominant tetG genotypes shared high homology with pathogenic bacteria. The tetG isolates were more diverse in soils treated with fresh versus composted manure, although the residual tet genes in composted manure remain a pollutant and produce a different influence on the tet gene resistome in field soil.201525460961
7756130.9811Mitigation of antibiotic resistance: the efficiency of a hybrid subsurface flow constructed wetland in the removal of resistant bacteria in wastewater. This research investigates the effectiveness of a lab-scale hybrid subsurface flow constructed wetland (HSSFCW) for removing wastewater contaminants, including antibiotic-resistant bacteria (ARB), genes (ARGs) and antibiotics. The results suggested that HSSFCW demonstrated a high removal efficiency for COD (89%) and BOD (88.9%), while lower efficiencies were observed for salts, TDS, EC, and TKN. Further, various bacteria such as Enterobacter cloacae, Serratia liquefaciens and Serratia odorifera were detected in the plant rhizosphere, while Acinetobacter baumanii and Staphylococcus spp. were identified as biofilm formers on the wetland media. The mean removal efficiency of 70.44, 65.99, 70.66 and 51.49% was observed for total heterotrophic bacteria; Cefixime (Cef)-, Ciprofloxacin (Cip)-, and Linezolid (Lzd)-resistant bacteria. Upon chlorination of effluent samples, Cef-, Cip- and Lzd-resistant bacteria were effectively inactivated at 30, 15 and 7.5 mg Cl(2) min/L, respectively. The wetland achieved a removal efficiency of 83.85% for Cip and 100% for Lzd at week 12 with p = 0.040 and p < 0.001, respectively. Further, a log reduction of 0.66 for 16S, 0.82 for blaTEM, 0.61 for blaCTX, and 0.48 for blaOXA was observed. Thus, HSSFCW was observed to be efficient in removing organic contaminants, ARBs, ARGs and antibiotics from domestic wastewater and can be upgraded under natural environments.202540536145
7746140.9811Phosphate-modified calamus-based biochar filler enhanced constructed wetland mitigating antibiotic resistance risks: insight from metagenomics. In this study, an innovative phosphate-modified calamus-biochar (PBC) filler with high antibiotic adsorption capacity was developed to enhance constructed wetlands (CWs) wastewater treatment. Results showed that the erythromycin (ERY) and sulfamethoxazole (SMX) removal efficiency of PBC-CW was 86.5 % and 84.0 %, which was 2-fold higher than those of the blank group. Metagenomic analysis found that the ERY and SMX would significantly promote the increase in abundance of antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and virulence factor genes (VFGs). Compared to blank group, the abundances of ARGs, MGEs and VFGs were reduced by 67.2 %, 33.3 % and 11.1 % in PBC-CW. Among them, the abundance of sulfonamide and MLS, which were key genes to resistance to SMX and ERY, respectively, were reduced by 71.8 % and 63.1 % in PBC-CW. Moreover, these persistent ARG subtypes, detected simultaneously in all the samples, reduced the total abundance by 44.8 %. In addition, microbial community analysis found that the sum abundance of Arenimonas, Chryseobacterium and Hydrogenophaga, which were suggested as potential antibiotic-resistant bacteria (ARB) via correlation analysis, were significantly decreased from 1.54 % in blank group to 0.23 % in PBC group. Moreover, Chryseobacterium and Hydrogenophaga were positively correlated with VFGs, they could be pathogens with resistance genes. Therefore, PBC-CW could effectively reduce the abundance of ARGs and pathogenic microorganisms, thereby improving water security.202540845656
3481150.9811Antibiotics and Antibiotic Resistance Genes in Sediment of Honghu Lake and East Dongting Lake, China. Sediment is an ideal medium for the aggregation and dissemination of antibiotics and antibiotic resistance genes (ARGs). The levels of antibiotics and ARGs in Honghu Lake and East Dongting Lake of central China were investigated in this study. The concentrations of eight antibiotics (four sulfonamides and four tetracyclines) in Honghu Lake were in the range 90.00-437.43 μg kg(-1) (dry weight (dw)) with mean value of 278.21 μg kg(-1) dw, which was significantly higher than those in East Dongting Lake (60.02-321.04 μg kg(-1) dw, mean value of 195.70 μg kg(-1) dw). Among the tested three sulfonamide resistance genes (sul) and eight tetracycline resistance genes (tet), sul1, sul2, tetA, tetC, and tetM had 100 % detection frequency in sediment samples of East Dongting Lake, while only sul1, sul2, and tetC were observed in all samples of Honghu Lake. The relative abundance of sul2 was higher than that of sul1 at p < 0.05 level in both lakes. The relative abundance of tet genes in East Dongting Lake was in the following order: tetM > tetB > tetC > tetA. The relative abundance of sul1, sul2, and tetC in East Dongting Lake was significantly higher than those in Honghu Lake. The abundance of background bacteria may play an important role in the horizontal spread of sul2 and tetC genes in Honghu Lake and sul1 in East Dongting Lake, respectively. Redundancy analysis indicated that tetracyclines may play a more important role than sulfonamides in the abundance of sul1, sul2, and tetC gens in Honghu Lake and East Dongting Lake.201627418176
7758160.9811Removal efficiency of antibiotic residues, antibiotic resistant bacteria, and genes across parallel secondary settling tank and membrane bioreactor treatment trains in a water reclamation plant. Antimicrobial resistance is recognized as a potent threat to human health. Wastewater treatment facilities are viewed as hotspots for the spread of antimicrobial resistance. This study provides comprehensive data on the occurrences of 3 different antibiotic resistant opportunistic pathogens (with resistance to up to 5 antibiotics), 13 antibiotic resistant genes and intI1, and 22 different antimicrobial residues in a large water reclamation plant (176 million gallons per day) that runs a conventional Modified Ludzack-Ettinger (MLE) reactor followed by a secondary settling tank (SST) and membrane bioreactor (MBR) in parallel. All the antibiotic resistant bacteria and most of the antibiotic resistance genes were present in the raw influent, ranging from 2.5 × 10(2)-3.7 × 10(6) CFU/mL and 1.2× 10(-1)-6.5 × 10(10) GCN/mL, respectively. MBR outperformed the SST system in terms of ARB removal as the ARB targets were largely undetected in MBR effluent, with log removals ranging from 2.7 to 6.8, while SST only had log removals ranging from 0.27 to 4.6. Most of the ARG concentrations were found to have significantly higher in SST effluent than MBR permeate, and MBR had significantly higher removal efficiency for most targets (p < 0.05) except for sul1, sul2, bla(OXA48), intI1 and 16S rRNA genes (p > 0.05). As for the antibiotic residues (AR), there was no significant removal from the start to the end of the treatment process, although MBR had higher removal efficiencies for azithromycin, chloramphenicol, erythromycin, erythromycin-H(2)O, lincomycin, sulfamethoxazole and triclosan, compared to the SST system. In conclusion, MBR outperformed SST in terms of ARB and ARGs removal. However low removal efficiencies of most AR targets were apparent.202438492595
7755170.9811Anthropogenic impacts on sulfonamide residues and sulfonamide resistant bacteria and genes in Larut and Sangga Besar River, Perak. The environmental reservoirs of sulfonamide (SA) resistome are still poorly understood. We investigated the potential sources and reservoir of SA resistance (SR) in Larut River and Sangga Besar River by measuring the SA residues, sulfamethoxazole resistant (SMX(r)) in bacteria and their resistance genes (SRGs). The SA residues measured ranged from lower than quantification limits (LOQ) to 33.13 ng L(-1) with sulfadiazine (SDZ), sulfadimethoxine (SDM) and SMX as most detected. Hospital wastewater effluent was detected with the highest SA residues concentration followed by the slaughterhouse and zoo wastewater effluents. The wastewater effluents also harbored the highest abundance of SMX(r)-bacteria (10(7) CFU mL(-1)) and SRGs (10(-1)/16S copies mL(-1)). Pearson correlation showed only positive correlation between the PO(4) and SMX(r)-bacteria. In conclusion, wastewater effluents from the zoo, hospital and slaughterhouse could serve as important sources of SA residues that could lead to the consequent emergence of SMX(r)-bacteria and SRGs in the river.201931726563
7768180.9811Drinking water biofiltration: Behaviour of antibiotic resistance genes and the association with bacterial community. Antibiotic resistance genes (ARGs) are being detected in drinking water frequently, constituting a major public health issue. As a typical drinking water treatment process, the biofilter may harbour various ARGs due to the filter biofilms established during the filtration process. The objective of this study was to investigate the behaviour of ARGs (bla(CTX-M), bla(OXA-1), bla(TEM), ermB, tetA, tetG, tetQ, tetW, tetX, sul 1, sul 2, dfrA1 and dfrA12) and their possible association with bacteria in a bench-scale biofiltration system. The impact of filter media on horizontal gene transfer (HGT) was also explored using a model conjugative plasmid, RP1. The biofiltration system comprised four types of biofilters, including sand, granular activated carbon (GAC), GAC sandwich, and anthracite-sand biofilters. Results showed that although the absolute abundance of ARGs decreased (0.97-log reduction on average), the ARGs' abundance normalised to bacterial numbers showed an increasing trend in the filtered water. Biofilms collected from the surface layer revealed the lowest relative abundance of ARGs (p < 0.01) compared to the deeper layer biofilms, indicating that the proportion of ARG-carrying bacteria was greater in the lower position. Most chosen ARG numbers correlated to Proteobacteria, Acidobacteria and Nitrospirae phyla, which accounted for 51.9%, 5.2% and 2.0% of the biofilm communities, respectively. GAC media revealed the highest transfer frequency (2.60 × 10(-5)), followed by anthracite (5.31 × 10(-6)) and sand (2.47 × 10(-6)). Backwashing can reduce the transferability of RP1 plasmid significantly in biofilms but introduces more transconjugants into the planktonic phase. Overall, the results of this study could enhance our understanding of the prevalence of ARGs in drinking water biofiltration treatment.202032650149
7997190.9811Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters. Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1-a Pseudomonas sp.) and thermophilic (Iso T10-a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457-0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130-0.486, P = 0.075-0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene transfer between raw sludge bacteria and the digester microbial community.201627014196