# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 530 | 0 | 0.9293 | Location of the genes for anthranilate synthase in Streptomyces venezuelae ISP5230: genetic mapping after integration of the cloned genes. The anthranilate synthase (trpEG) genes in Streptomyces venezuelae ISP5230 were located by allowing a segregationally unstable plasmid carrying cloned S. venezuelae trpEG DNA and a thiostrepton resistance (tsr) marker to integrate into the chromosome. The integrated tsr was mapped by conjugation and transduction to a location close to tyr-2, between arg-6 and trpA13. A genomic DNA fragment containing trpC from S. venezuelae ISP5230 was cloned by complementation of a trpC mutation in Streptomyces lividans. Evidence from restriction enzyme analysis of the cloned DNA fragments, from Southern hybridization using the cloned trp DNA as probes, and from cotransduction frequencies, placed trpEG at a distance of 12-45 kb from the trpCBA cluster. The overall arrangement of tryptophan biosynthesis genes in the S. venezuelae chromosome differs from that in other bacteria examined so far. | 1993 | 8515229 |
| 8115 | 1 | 0.9179 | Effects of reductive soil disinfestation on potential pathogens and antibiotic resistance genes in soil. Reductive soil disinfestation (RSD) is commonly employed for soil remediation in greenhouse cultivation. However, its influence on antibiotic resistance genes (ARGs) in soil remains uncertain. This study investigated the dynamic changes in soil communities, potential bacterial pathogens, and ARG profiles under various organic material treatments during RSD, including distillers' grains, potato peel, peanut vine, and peanut vine combined with charcoal. Results revealed that applying diverse organic materials in RSD significantly altered bacterial community composition and diminished the relative abundance of potential bacterial pathogens (P < 0.05). The relative abundance of high-risk ARGs decreased by 10.7%-30.6% after RSD treatments, the main decreased ARG subtypes were AAC(3)_Via, dfrA1, ErmB, lnuB, aadA. Actinobacteria was the primary host of ARGs and was suppressed by RSD. Soil physicochemical properties, such as total nitrogen, soil pH, total carbon, were crucial factors affecting ARG profiles. Our findings demonstrated that RSD treatment inhibited pathogenic bacteria and could be an option for reducing high-risk ARG proliferation in soil. | 2025 | 39306413 |
| 531 | 2 | 0.9177 | p-Aminobenzoic acid and chloramphenicol biosynthesis in Streptomyces venezuelae: gene sets for a key enzyme, 4-amino-4-deoxychorismate synthase. Amplification of sequences from Streptomyces venezuelae ISP5230 genomic DNA using PCR with primers based on conserved prokaryotic pabB sequences gave two main products. One matched pabAB, a locus previously identified in S. venezuelae. The second closely resembled the conserved pabB sequence consensus and hybridized with a 3.8 kb NcoI fragment of S. venezuelae ISP5230 genomic DNA. Cloning and sequence analysis of the 3.8 kb fragment detected three ORFs, and their deduced amino acid sequences were used in BLAST searches of the GenBank database. The ORF1 product was similar to PabB in other bacteria and to the PabB domain encoded by S. venezuelae pabAB. The ORF2 product resembled PabA of other bacteria. ORF3 was incomplete; its deduced partial amino acid sequence placed it in the MocR group of GntR-type transcriptional regulators. Introducing vectors containing the 3.8 kb NcoI fragment of S. venezuelae DNA into pabA and pabB mutants of Escherichia coli, or into the Streptomyces lividans pab mutant JG10, enhanced sulfanilamide resistance in the host strains. The increased resistance was attributed to expression of the pair of discrete translationally coupled p-aminobenzoic acid biosynthesis genes (designated pabB/pabA) cloned in the 3.8 kb fragment. These represent a second set of genes encoding 4-amino-4-deoxychorismate synthase in S. venezuelae ISP5230. In contrast to the fused pabAB set previously isolated from this species, they do not participate in chloramphenicol biosynthesis, but like pabAB they can be disrupted without affecting growth on minimal medium. The gene disruption results suggest that S. venezuelae may have a third set of genes encoding PABA synthase. | 2001 | 11495989 |
| 7987 | 3 | 0.9171 | Assessing the effect of composted cyclosporin A fermentation residue as organic fertilizer: Focus on soil fertility and antibiotic resistance. Cyclosporin A fermentation residue (CFR) is a type of organic waste generated during the production of cyclosporin A, which are abundant in nutrients including organic matter, phosphorus, nitrogen and potassium. Inappropriate handling of CFR not only waste valuable bioresources, but may also lead to the cyclosporin A and associated resistance genes into the natural environment, posing a significant threat to ecological system and human health. Land application was an effective way to resource recovery of CFR after aerobic composting (CAC). This study investigated the impact of CAC on soil fertility and environmental safety. The results indicated that CAC could improve soil nutrient contents and enhance enzyme activities. CAC altered the diversity and community composition of soil bacteria, resulting in an increase in the abundance of relevant bacteria beneficial for organic matter decomposition and cyclosporin A degradation. The introduced cyclosporin A (71.69 µg/kg) completely degraded within 20 days due to soil biodegradation. The significantly increased abundance of intIl, mdr3, pgp, TSR and pmra in the soil cultivation early stage were restored to the soil background level within 90 days, indicating a reduced risk of antimicrobial resistance. The results demonstrated that reasonable land application of CAC could improve soil fertility without antimicrobial resistance risk, which is helpful for evaluating the resource utilization value and environmental risks of antibiotic fermentation residue after aerobic composting. | 2025 | 40602925 |
| 8117 | 4 | 0.9169 | Composting of oxytetracycline fermentation residue in combination with hydrothermal pretreatment for reducing antibiotic resistance genes enrichment. Hydrothermal pretreatment can efficiently remove the residual antibiotics in oxytetracycline fermentation residue (OFR), but its effect on antibiotic resistance genes (ARGs) during composting remains unclear. This study compared the shifts in bacterial community and evolutions in ARGs and integrons during different composting processes of OFRs with and without hydrothermal pretreatment. The results demonstrated that hydrothermal pretreatment increased the bacterial alpha diversity at the initial phase, and increased the relative abundances of Proteobacteria and Actinobacteria but decreased that of Bacteroidetes at the final phase by inactivating mycelia and removing residual oxytetracycline. Composting process inevitably elevated the abundance and relative abundance of ARGs. However, the increase in ARGs was significantly reduced by hydrothermal pretreatment, because the removal of oxytetracycline decreased their potential host bacteria and inhibited their horizontal gene transfer. The results demonstrated that hydrothermal pretreatment is an efficient strategy to reduce the enrichment of ARGs during the OFR composting. | 2020 | 33099099 |
| 7873 | 5 | 0.9166 | Wheat straw pyrochar more efficiently decreased enantioselective uptake of dinotefuran by lettuce and dissemination of antibiotic resistance genes than hydrochar in an agricultural soil. Remediation of soils pollution caused by dinotefuran, a chiral pesticide, is indispensable for ensuring human food security. In comparison with pyrochar, the effect of hydrochar on enantioselective fate of dinotefuran, and antibiotic resistance genes (ARGs) profiles in the contaminated soils remain poorly understood. Therefore, wheat straw hydrochar (SHC) and pyrochar (SPC) were prepared at 220 and 500 °C, respectively, to investigate their effects and underlying mechanisms on enantioselective fate of dinotefuran enantiomers and metabolites, and soil ARG abundance in soil-plant ecosystems using a 30-day pot experiment planted with lettuce. SPC showed a greater reduction effect on the accumulation of R- and S-dinotefuran and metabolites in lettuce shoots than SHC. This was mainly resulted from the lowered soil bioavailability of R- and S-dinotefuran due to adsorption/immobilization by chars, together with the char-enhanced pesticide-degrading bacteria resulted from increased soil pH and organic matter content. Both SPC and SHC efficiently reduced ARG levels in soils, owing to lowered abundance of ARG-carrying bacteria and declined horizontal gene transfer induced by decreased dinotefuran bioavailability. The above results provide new insights for optimizing char-based sustainable technologies to mitigate pollution of dinotefuran and spread of ARGs in agroecosystems. | 2023 | 36996986 |
| 7887 | 6 | 0.9156 | Double-edged sword effects of sulfate reduction process in sulfur autotrophic denitrification system: Accelerating nitrogen removal and promoting antibiotic resistance genes spread. This study proposed the double-edged sword effects of sulfate reduction process on nitrogen removal and antibiotic resistance genes (ARGs) transmission in sulfur autotrophic denitrification system. Excitation-emission matrix-parallel factor analysis identified the protein-like fraction in soluble microbial products as main endogenous organic matter driving the sulfate reduction process. The resultant sulfide tended to serve as bacterial modulators, augmenting electron transfer processes and mitigating oxidative stress, thereby enhancing sulfur oxidizing bacteria (SOB) activity, rather than extra electron donors. The cooperation between SOB and heterotroph (sulfate reducing bacteria (SRB) and heterotrophic denitrification bacteria (HDB)) were responsible for advanced nitrogen removal, facilitated by multiple metabolic pathways including denitrification, sulfur oxidation, and sulfate reduction. However, SRB and HDB were potential ARGs hosts and assimilatory sulfate reduction pathway positively contributed to ARGs spread. Overall, the sulfate reduction process in sulfur autotrophic denitrification system boosted nitrogen removal process, but also increased the risk of ARGs transmission. | 2024 | 39122125 |
| 7946 | 7 | 0.9154 | New Insights into the Microbial Diversity of Cake Layer in Yttria Composite Ceramic Tubular Membrane in an Anaerobic Membrane Bioreactor (AnMBR). Cake layer formation is an inevitable challenge in membrane bioreactor (MBR) operation. The investigations on the cake layer microbial community are essential to control biofouling. This work studied the bacterial and archaeal communities in the cake layer, the anaerobic sludge, and the membrane cleaning solutions of anaerobic membrane bioreactor (AnMBR) with yttria-based ceramic tubular membrane by polymerase chain reaction (PCR) amplification of 16S rRNA genes. The cake layer resistance was 69% of the total membrane resistance. Proteins and soluble microbial by-products (SMPs) were the dominant foulants in the cake layer. The pioneering archaeal and bacteria in the cake layer were mostly similar to those in the anaerobic bulk sludge. The dominant biofouling bacteria were Proteobacteria, Bacteroidetes, Firmicutes, and Chloroflexi and the dominant archaeal were Methanosaetacea and Methanobacteriacea at family level. This finding may help to develop antifouling membranes for AnMBR treating domestic wastewater. | 2021 | 33546268 |
| 7888 | 8 | 0.9154 | Microecology of aerobic denitrification system construction driven by cyclic stress of sulfamethoxazole. The construction of aerobic denitrification (AD) systems in an antibiotic-stressed environment is a serious challenge. This study investigated strategy of cyclic stress with concentration gradient (5-30 mg/L) of sulfamethoxazole (SMX) in a sequencing batch reactor (SBR), to achieve operation of AD. Total nitrogen removal efficiency of system increased from about 10 % to 95 %. Original response of abundant-rare genera to antibiotics was changed by SMX stress, particularly conditionally rare or abundant taxa (CRAT). AD process depends on synergistic effect of heterotrophic nitrifying aerobic denitrification bacteria (Paracoccus, Thauera, Hypomicrobium, etc). AmoABC, napA, and nirK were functionally co-expressed with multiple antibiotic resistance genes (ARGs) (acrR, ereAB, and mdtO), facilitating AD process. ARGs and TCA cycling synergistically enhance the antioxidant and electron transport capacities of AD process. Antibiotic efflux pump mechanism played an important role in operation of AD. The study provides strong support for regulating activated sludge to achieve in situ AD function. | 2024 | 38710419 |
| 8120 | 9 | 0.9153 | Insight into the fate of antibiotic resistance genes and bacterial community in co-composting green tea residues with swine manure. Green tea residues (GTRs) are byproducts of tea production and processing, and this type of agricultural waste retains nutritious components. This study investigated the co-composting of GTRs with swine manure, as well as the effects of GTRs on antibiotic resistance genes (ARGs) and the bacterial community during co-composting. The temperature and C/N ratio indicate compost was mature after processing. The addition of GTRs effectively promoted the reduction in the abundances of most targeted ARGs (tet and sul genes), mobile genetic element (MGE; intI1), and metal resistance genes (MRGs; pcoA and tcrB). Redundancy analysis (RDA) showed that GTRs can reduce the abundance of MRGs and ARGs by reducing the bioavailability of heavy metals. Network analysis shows that Firmicutes and Actinobacteria were the main hosts of ARGs and ARGs, MGEs, and MRGs shared the same potential host bacteria. Adding GTRs during composting may reduce ARGs transmission through horizontal gene transfer (HGT). GTRs affected the bacterial community, thereby influencing the variations in the ARG profiles and reducing the potential risk associated with the compost product. | 2020 | 32310121 |
| 100 | 10 | 0.9152 | Pto3 and Pto4: novel genes from Lycopersicon hirsutum var. glabratum that confer resistance to Pseudomonas syringae pv tomato. Accessions of wild Lycopersicon germplasm were screened for resistance to Pseudomonas syringae pv tomato (P.s. tomato). Resistance to both race-0 and race-1 strains of P.s. tomato was identified in L. pimpinellifolium, L. peruvianum and L. hirsutum var. glabratum. Resistance to race-0 derived from L. hirsutum var. glabratum (Pto3) appeared to be inherited independently of Pto1 and Pto2. Filial and backcross generations derived from interspecific crosses between L. esculentum and L. hirsutum var. glabratum revealed that Pto3 resistance was inherited in a complex fashion and was incompletely dominant under conditions of high bacteria inocula. Resistance to P.s. tomato race-1 (Pto4) was also identified in L. hirsutum var. glabratum. Pto3 and Pto4 segregated independently of each other. | 1994 | 24178099 |
| 8105 | 11 | 0.9151 | Refluxing mature compost to replace bulking agents: A low-cost solution for suppressing antibiotic resistance genes rebound in sewage sludge composting. Antibiotic resistance genes (ARGs) rebounding during composting cooling phase is a critical bottleneck in composting technology that increased ARGs dissemination and application risk of compost products. In this study, mature compost (MR) was used as a substitute for rice husk (RH) to mitigate the rebound of ARGs and mobile genetic elements (MGEs) during the cooling phase of sewage sludge composting, and the relationship among ARGs, MGEs, bacterial community and environmental factors was investigated to explore the key factor influencing ARGs rebound. The results showed that aadD, blaCTX-M02, ermF, ermB, tetX and vanHB significantly increased 4.76-32.41 times, and the MGEs rebounded by 38.60% in the cooling phase of RH composting. Conversely, MR reduced aadD, tetM, ermF and ermB concentrations by 59.49-98.58%, and reduced the total abundance of ARGs in the compost product by 49.32% compared to RH, which significantly restrained ARGs rebound. MR promoted secondary high temperature inactivation of potential host bacteria, including Ornithinibacter, Rhizobiales and Caldicoprobacter, which could harbor aadE, blaCTX-M02, and blaVEB. It also reduced the abundance of lignocellulose degrading bacteria of Firmicutes, which were potential hosts of aadD, tetX, ermF and vanHB. Moreover, MR reduced moisture and increased oxidation reduction potential (ORP) that promoted aadE, tetQ, tetW abatement. Furthermore, MR reduced 97.36% of total MGEs including Tn916/1545, IS613, Tp614 and intI3, which alleviated ARGs horizontal transfer. Overall finding proposed mature compost reflux as bulking agent was a simple method to suppress ARGs rebound and horizontal transfer, improve ARGs removal and reduce composting plant cost. | 2025 | 39798649 |
| 7535 | 12 | 0.9150 | The effects of pig manure application on the spread of tetracycline resistance in bulk and cucumber rhizosphere soils: a greenhouse experiment. It is important to understand the dynamics of tetracycline-resistant bacteria (TRB) and tetracycline resistance genes (TRGs) in bulk and rhizosphere soils for evaluating the spread of TRGs from pig manure to human. In this work, a greenhouse experiment was conducted to investigate the difference in abundance of TRB, tetracycline-resistant Escherichia coli (TRE), tetracycline-resistant Pseudomonas spp. (TRP), and TRGs between bulk and cucumber rhizosphere soils. The application of pig manure resulted in the long-term persistence of TRB, TRE, TRP, and TRGs in bulk soil and rhizosphere of cucumber for at least 65 days. Pig manure application dose was the major driving force in altering the abundances of TRB and TRE, whereas TRP was disturbed mainly by compartment (bulk soil or rhizosphere). Both TRE and the percentage of TRE in bulk and rhizosphere soils increased linearly with an increase in dose of pig manure. The exponential relationships between pig manure dose and TRP along with TRP percentage were also noted. There were significant differences in the relative abundances of TRGs between bulk and cucumber rhizosphere soils, suggesting the use of pig manure exerted a more lasting impact on the spread of TRGs in the rhizosphere than in the bulk soil. | 2017 | 28222270 |
| 8112 | 13 | 0.9150 | Fate of antibiotic resistance bacteria and genes during enhanced anaerobic digestion of sewage sludge by microwave pretreatment. The fate of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) were investigated during the sludge anaerobic digestion (AD) with microwave-acid (MW-H), microwave (MW) and microwave-H2O2-alkaline (MW-H2O2) pretreatments. Results showed that combined MW pretreatment especially for the MW-H pretreatment could efficiently reduce the ARB concentration, and most ARG concentrations tended to attenuate during the pretreatment. The subsequent AD showed evident removal of the ARB, but most ARGs were enriched after AD. Only the concentration of tetX kept continuous declination during the whole sludge treatment. The total ARGs concentration showed significant correlation with 16S rRNA during the pretreatment and AD. Compared with unpretreated sludge, the AD of MW and MW-H2O2 pretreated sludge presented slightly better ARB and ARGs reduction efficiency. | 2016 | 26970692 |
| 523 | 14 | 0.9146 | Sulfide-carbonate-mineralized functional bacterial consortium for cadmium removal in flue gas. Sulfide-carbonate-mineralized functional bacterial consortium was constructed for flue gas cadmium biomineralization. A membrane biofilm reactor (MBfR) using the bacterial consortium containing sulfate reducing bacteria (SRB) and denitrifying bacteria (DNB) was investigated for flue gas cadmium (Cd) removal. Cadmium removal efficiency achieved 90%. The bacterial consortium containing Citrobacter, Desulfocurvus and Stappia were dominated for cadmium resistance-nitrate-sulfate reduction. Under flue gas cadmium stress, ten cadmium resistance genes (czcA, czcB, czcC, czcD, cadA, cadB, cadC, cueR, copZ, zntA), and seven genes related to sulfate reduction, increased in abundance; whereas others, nine genes related to denitrification, decreased, indicating that cadmium stress was advantageous to sulfate reduction in the competition with denitrification. A bacterial consortium could capable of simultaneously cadmium resistance, sulfate reduction and denitrification. Microbial induced carbonate precipitation (MICP) and biological adsorption process would gradually yield to sulfide-mineralized process. Flue gas cadmium could transform to Cd-EPS, cadmium carbonate (CdCO(3)) and cadmium sulfide (CdS) bioprecipitate. The functional bacterial consortium was an efficient and eco-friendly bifunctional bacterial consortium for sulfide-carbonate-mineralized of cadmium. This provides a green and low-carbon advanced treatment technology using sulfide-carbonate-mineralized functional bacterial consortium for the removal of cadmium or other hazardous heavy metal contaminants in flue gas. | 2024 | 39019186 |
| 7983 | 15 | 0.9144 | Insights into the associations of copper and zinc with nitrogen metabolism during manure composting with shrimp shell powder. The application of shrimp shell powder (SSP) in manure composting can promote the maturation of compost and reduce the associated environmental risk. This study investigated the response of adding SSP at different levels (CK: 0, L: 5%, M: 10%, and H: 15%) on heavy metal resistance genes (MRGs), nitrogen functional genes, enzymes, and microorganisms. SSP inhibited nitrification and denitrification via decreasing the abundances of functional genes and key enzymes related to Cu, Zn, and MRGs. The nitrate reductase and nitrous-oxide reductase in the denitrification pathway were lower under H. Phylogenetic trees indicated that Burkholderiales sp. had strong relationships with OTU396 and OTU333, with important roles in the nitrogen cycle and plant growth. Redundancy analysis and structural equation modeling showed the complex response between heavy metal and nitrogen that bio-Cu and bio-Zn had positive significantly relationships with nirK-type and amoA-type bacteria, and amoA-type bacteria might be hotspot of cueO. | 2022 | 34861387 |
| 8128 | 16 | 0.9144 | Recognize and assessment of key host humic-reducing microorganisms of antibiotic resistance genes in different biowastes composts. Humic-reducing microorganisms (HRMs) can utilize humic substance as terminal electron mediator promoting the bioremediation of contaminate, which is ubiquitous in composts. However, the impacts of HRMs on antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in composts and different HRMs community composition following the types of biowastes effected the spread of ARGs have not been investigated. Herein, the dynamics and mobility of ARGs and HRMs during protein-, lignocellulose- and lignin-rich composting were investigated. Result show that ARGs change significantly at the thermophilic phase, and the relative abundance of most ARGs increase during composting. Seven groups of HRMs communities are classified as primary host HRMs of ARGs, and most host HRMs groups from protein-rich composts. Conclusively, regulating methods for inhibiting ARGs spread for different composts are proposed. HRMs show a higher ARGs dissemination capacity in protein-rich composts than lignocellulose- and lignin-rich composts, but the spread of ARGs can be inhibited by regulate physicochemical parameters in protein-rich composts. In contrary, most HRMs have inhibitory effects on ARGs spread in lignocellulose- and lignin-rich composts, and those HRMs can be used as a new agent that inhibits the spread of ARGs. Our results can help in understanding the potential risk spread of ARGs by inoculating functional bacteria derived from different biowastes composts for environmental remediation, given their expected importance to developing a classification-oriented approach for composting different biowastes. | 2022 | 34600985 |
| 7744 | 17 | 0.9144 | Dynamics and removal mechanisms of antibiotic and antibiotic resistance genes during the fermentation process of spectinomycin mycelial dregs: An integrated meta-omics study. Antibiotic mycelial dregs (AMDs) have been listed as industrial hazardous wastes. With the aim of reducing the environmental risk, the integrated-omics and qPCR approaches were used to reveal the dynamics and removal mechanisms of antibiotic and antibiotic resistance genes (ARGs) during the fermentation of different spectinomycin mycelial dregs (SMDs). The results showed that the removal efficiency of antibiotic in the fermentation of high moisture SMDs reached up to 98%. The high abundance of aadA1 gene encoded by Streptomyces, Lactobacillus, and Pseudomonas was associated with the efficient degradation of spectinomycin, and the inactivating enzymes secreted by degradative bacteria were identified. Furthermore, the dominant microbiota was impacted by moisture content significantly under high temperature environments. In the fermentation of low moisture SMDs, Saccharopolyspora was the dominant microbiota which secreted S8 endopeptidase, M14, M15, S10, S13 carboxypeptidases, M1, M28, S15 aminopeptidases, and antioxidant enzymes, while in the fermentation of high moisture SMDs, Bacillus and Cerasibacillus were dominant genera which mainly secreted S8 endopeptidase and antioxidant enzymes. The abundance of ARGs and mobile genetic elements decreased significantly at thermophilic phase, with maximum drops of 93.7% and 99.9%, respectively. Maintaining moisture content below 30% at the end phase could prevent the transmission of ARGs effectively. | 2022 | 34396972 |
| 8808 | 18 | 0.9143 | Phylogeny of nitrite reductase (nirK) and nitric oxide reductase (norB) genes from Nitrosospira species isolated from soil. Ammonia-oxidizing bacteria are believed to be an important source of the climatically important trace gas nitrous oxide (N(2)O). The genes for nitrite reductase (nirK) and nitric oxide reductase (norB), putatively responsible for nitrous oxide production, have been identified in several ammonia-oxidizing bacteria, but not in Nitrosospira strains that may dominate ammonia-oxidizing communities in soil. In this study, sequences from nirK and norB genes were detected in several cultured Nitrosospira species and the diversity and phylogeny of these genes were compared with those in other ammoniaoxidizing bacteria and in classical denitrifiers. The nirK and norB gene sequences obtained from Nitrosospira spp. were diverse and appeared to be less conserved than 16S rRNA genes and functional ammonia monooxygenase (amoA) genes. The nirK and norB genes from some Nitrosospira spp. were not phylogenetically distinct from those of denitrifiers, and phylogenetic analysis suggests that the nirK and norB genes in ammonia-oxidizing bacteria have been subject to lateral transfer. | 2007 | 17100985 |
| 6921 | 19 | 0.9143 | Impacts of Chemical and Organic Fertilizers on the Bacterial Communities, Sulfonamides and Sulfonamide Resistance Genes in Paddy Soil Under Rice-Wheat Rotation. The responses of sulfonamides, sulfonamide-resistance genes (sul) and soil bacterial communities to different fertilization regimes were investigated by performing a field experiment using paddy soil with no fertilizer applied, chemical fertilizer applied, organic fertilizer applied, and combination of chemical and organic fertilizer applied. Applying organic fertilizer increased the bacterial community diversity and affected the bacterial community composition. Eutrophic bacteria (Bacteroidetes, Gemmatimonadetes, and Proteobacteria) were significantly enriched by applying organic fertilizer. It was also found organic fertilizer application increased sulfamethazine content and the relative abundances of sul1 and sul2 in the soil. In contrast, applying chemical fertilizer significantly increased the abundance of Nitrospirae, Parcubacteria, and Verrucomicrobia and caused no obvious changes on sul. Correlation analysis indicated that sul enrichment was associated with the increases in sulfamethazine content and potential hosts (e.g., Novosphingobium and Rhodoplanes) population. The potential ecological risks of antibiotics in paddy soil with organic fertilizer applied cannot be ignored. | 2022 | 36547725 |