# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7621 | 0 | 0.9979 | Pre-chlorination in source water endows ARB with resistance to chlorine disinfection in drinking water treatment. Chlorine disinfection is widely used to ensure biosafety of drinking water. However, antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) are often detected in treated drinking water. The impact of chlorine disinfection on the abundance of ARGs in drinking water is currently contradictory. Some studies suggested that chlorine disinfection could reduce the abundance of ARGs, while others had found that chlorine disinfection increased the abundance of ARGs. Pre-chlorination is widely applied in raw water to kill the algae cells in source water Pump Station. Different distances between the source water Pump Station and the drinking water treatment plants (DWTPs) resulted in different degrees of residual chlorine decay in the incoming raw water. This study found that the abundance of ARGs in drinking water would be increased during chlorine disinfection when the chlorine concentration in raw water was higher (> 0.2 mg/L). On the contrary, chlorine disinfection would decrease the abundance of ARGs in drinking water when the chlorine concentration in raw water was lower (< 0.09 mg/L). Pre-chlorination in source water with sub-lethal concentration could allow ARB to adapt to the chlorine environment in advance, endowing ARB with chlorine resistance, which resulted in ineffective removal of ARB and increased ARGs abundance during subsequent chlorine disinfection. High abundance of chlorine and antibiotics co-resistance bacteria in raw water was the main reason for the increase in ARGs abundance in chlorine treated drinking water. It should be noticed that, pre-chlorination treatment in source water would increase the difficulty of removing ARGs in subsequent chlorine disinfection process. | 2025 | 40398032 |
| 7934 | 1 | 0.9978 | Mitigated membrane fouling and enhanced removal of extracellular antibiotic resistance genes from wastewater effluent via an integrated pre-coagulation and microfiltration process. Antibiotic resistance genes (ARGs) have been regarded as an emerging pollutant in municipal wastewater treatment plant (WWTP) effluents due to their potential risk to human health and ecological safety when reused for landscape and irrigation. Conventional wastewater treatment processes generally fail to effectively reduce ARGs, especially extracellular ARGs (eARGs), which are persistent in the environment and play an important role in horizontal gene transfer via transformation. Herein, an integrated process of pre-coagulation and microfiltration was developed for removal of ARGs, especially eARGs, from wastewater effluent. Results show that the integrated process could effectively reduce the absolute abundances of total ARGs (tARGs) (>2.9 logs) and eARGs (>5.2 logs) from the effluent. The excellent performance could be mainly attributed to the capture of antibiotic resistant bacteria (ARB) and eARGs by pre-coagulation and co-rejection during subsequent microfiltration. Moreover, the integrated process exhibited a good performance on removing common pollutants (e.g., dissolved organic carbon and phosphate) from the effluent to improve water quality. Besides, the integrated process also greatly reduced membrane fouling compared with microfiltration. These findings suggest that the integrated process of pre-coagulation and microfiltration is a promising advanced wastewater treatment technology for ARGs (especially eARGs) removal from WWTP effluents to ensure water reuse security. | 2019 | 31085389 |
| 7605 | 2 | 0.9978 | Inactivation of antibiotic resistant bacteria and their resistance genes in sewage by applying pulsed electric fields. We evaluated the suitability of pulsed electric field (PEF) technology as a new disinfection option in the sewage treatment plants (STPs) that can inactivate antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). It was shown that PEF applied disinfection could inactivate not only vancomycin-resistant enterococci (VRE), but also vanA resistance gene. Cultivable VRE could be effectively inactivated by PEF applied disinfection, and were reduced to below the detection limit (log reduction value of VRE > 5 log). Although the vanA also showed a reduction of more than 4 log, it remained in the order of 10(5) copies/mL, suggesting that ARGs are more difficult to be inactivated than ARB in PEF applied disinfection. Among parameters in each applying condition verified in this study, the initial voltage was found to be the most important for inactivation of ARB and ARGs. Furthermore, frequency was a parameter that affects the increase or decrease of the duration time, and it was suggested that the treatment time could be shortened by increasing the frequency. Our results strongly suggested that PEF applied disinfection may be a new disinfection technology option for STPs that contributes to the control of ARB and ARGs contamination in the aquatic environments. | 2022 | 34879573 |
| 7606 | 3 | 0.9978 | Dissemination prevention of antibiotic resistant and facultative pathogenic bacteria by ultrafiltration and ozone treatment at an urban wastewater treatment plant. Conventional wastewater treatment is not sufficient for the removal of hygienically relevant bacteria and achieves only limited reductions. This study focuses on the reduction efficiencies of two semi-industrial ultrafiltration units operating at a large scale municipal wastewater treatment plant. In total, 7 clinically relevant antibiotic resistance genes, together with 3 taxonomic gene markers targeting specific facultative pathogenic bacteria were analysed via qPCR analyses before and after advanced treatment. In parallel with membrane technologies, an ozone treatment (1 g ozone/g DOC) was performed for comparison of the different reduction efficiencies. Both ultrafiltration units showed increased reduction efficiencies for facultative pathogenic bacteria and antibiotic resistance genes of up to 6 log units, resulting mostly in a strong reduction of the bacterial targets. In comparison, the ozone treatment showed some reduction efficiency, but was less effective compared with ultrafiltration due to low ozone dosages frequently used for micro-pollutant removal at municipal wastewater treatment plants. Additionally, metagenome analyses demonstrated the accumulation of facultative pathogenic bacteria, antibiotic resistance genes, virulence factor genes, and metabolic gene targets in the back flush retentate of the membranes, which opens further questions about retentate fluid material handling at urban wastewater treatment plants. | 2019 | 31492933 |
| 7610 | 4 | 0.9978 | Coagulation promotes the spread of antibiotic resistance genes in secondary effluents. Wastewater treatment plants (WWTPs) are biological hotspots receiving the residual antibiotics and antibiotic resistant bacteria/genes (ARB/ARGs) that greatly influence the spread of antibiotic resistance in the environment. A common method used in WWTPs for the purification of secondary effluent is coagulation. Notwithstanding the increasing health concern of antibiotic resistance in WWTPs, the impact of coagulation on the emergence and spread of antibiotic resistance remains unclear. To shed light on this, our study investigated the behavior of four representative ARB types (tetracycline, sulfamethoxazole, clindamycin, and ciprofloxacin resistance) during the coagulation process in a model wastewater treatment plant. Our search showed a significant reduction in the presence of ARBs after either PAC or FeCl(3) coagulation, with removal efficiencies of 95% and 90%, respectively. However, after 4 days of storage, ARB levels in the coagulated effluent increased by 6-138 times higher than the original secondary effluent. It suggests a potential resurgence and spread of antibiotic resistance after coagulation. Detailed studies suggest that coagulants, particularly PAC, may facilitate the transfer of ARGs among different bacterial species by the enhanced cell-cell contact during coagulation-induced bacterial aggregation. This transfer is further enhanced by the factors such as auxiliary mixing, longer incubation time and ideal operating temperatures. In addition, both PAC and FeCl(3) affected gene expression associated with bacterial conjugation, leading to an increase in conjugation efficiency. In conclusion, while coagulation serves as a purification method, it might inadvertently boost the spread of ARGs during tertiary wastewater treatment. This underscores the importance of implementing subsequent measures to mitigate this effect. Our findings provide a deeper understanding of the challenges posed by bacterial antibiotic resistance in wastewater and pave the way for devising more effective ARB and ARG management strategies. | 2024 | 38810683 |
| 8551 | 5 | 0.9977 | Promising bioprocesses for the efficient removal of antibiotics and antibiotic-resistance genes from urban and hospital wastewaters: Potentialities of aerobic granular systems. The use, overuse, and improper use of antibiotics have resulted in higher levels of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs), which have profoundly disturbed the equilibrium of the environment. Furthermore, once antibiotic agents are excreted in urine and feces, these substances often can reach wastewater treatment plants (WWTPs), in which improper treatments have been highlighted as the main reason for stronger dissemination of antibiotics, ARB, and ARGs to the receiving bodies. Hence, achieving better antibiotic removal capacities in WWTPs is proposed as an adequate approach to limit the spread of antibiotics, ARB, and ARGs into the environment. In this review, we highlight hospital wastewater (WW) as a critical hotspot for the dissemination of antibiotic resistance due to its high level of antibiotics and pathogens. Hence, monitoring the composition and structure of the bacterial communities related to hospital WW is a key factor in controlling the spread of ARGs. In addition, we discuss the advantages and drawbacks of the current biological WW treatments regarding the antibiotic-resistance phenomenon. Widely used conventional activated sludge technology has proved to be ineffective in mitigating the dissemination of ARB and ARGs to the environment. However, aerobic granular sludge (AGS) technology is a promising technology-with broad adaptability and excellent performance-that could successfully reduce antibiotics, ARB, and ARGs in the generated effluents. We also outline the main operational parameters involved in mitigating antibiotics, ARB, and ARGs in WWTPs. In this regard, WW operation under long hydraulic and solid retention times allows better removal of antibiotics, ARB, and ARGs independently of the WW technology employed. Finally, we address the current knowledge of the adsorption and degradation of antibiotics and their importance in removing ARB and ARGs. Notably, AGS can enhance the removal of antibiotics, ARB, and ARGs due to the complex microbial metabolism within the granular biomass. | 2024 | 38086508 |
| 7573 | 6 | 0.9977 | Chlorine and UV combination sequence: Effects on antibiotic resistance control and health risks of ARGs. The effective control of antibiotic resistance in aquatic environments is urgent. The combined chlorine and UV processes (Cl(2)-UV, UV/Cl(2), and UV-Cl(2)) are considered potential control processes for controlling antibiotic resistance. This study compared the effectiveness of these three processes in real water bodies and the potential health risks associated with antibiotic resistance genes (ARGs) after treatments. The removal of various antibiotic-resistant bacteria (ARB) and ARGs by the combined processes was analysed. The UV/Cl(2) process was less effective than the others in inactivating β-lactam-resistant bacteria (BRB) and sulfamethoxazole-resistant bacteria (SRB), which are more challenging to remove, though its performance might improve with increased UV fluence. Nevertheless, the UV/Cl(2) process showed an advantage in removing ARGs. The absolute abundance of aminoglycoside resistance genes (AmRGs), sulfonamide resistance genes (SRGs), macrolide resistance genes (MRGs), and multidrug efflux-associated ARGs detected after the UV/Cl(2) process was relatively low, and this process outperformed the others in removing a greater number of ARGs. Additionally, certain ARGs and bacterial genera were found to be enriched after the combined processes, with lower and more similar abundance levels of ARGs and genera observed after UV/Cl(2) and UV-Cl(2) processes compared to the Cl(2)-UV process. Health risk assessments indicated that the Cl(2)-UV process posed the highest risk, followed by UV/Cl(2) and UV-Cl(2) processes. Overall, the UV/Cl(2) process may offer the most practical advantages for controlling antibiotic resistance. | 2025 | 39708685 |
| 7822 | 7 | 0.9977 | Solar photo-Fenton disinfection of 11 antibiotic-resistant bacteria (ARB) and elimination of representative AR genes. Evidence that antibiotic resistance does not imply resistance to oxidative treatment. The emergence of antibiotic resistance represents a major threat to human health. In this work we investigated the elimination of antibiotic resistant bacteria (ARB) by solar light and solar photo-Fenton processes. As such, we have designed an experimental plan in which several bacterial strains (Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae) possessing different drug-susceptible and -resistant patterns and structures (Gram-positive and Gram-negative) were subjected to solar light and the photo-Fenton oxidative treatment in water. We showed that both solar light and solar photo-Fenton processes were effective in the elimination of ARB in water and that the time necessary for solar light disinfection and solar photo-Fenton disinfection were similar for antibiotic-susceptible and antibiotic-resistant strains (mostly 180-240 and 90-120 min, respectively). Moreover, the bacterial structure did not significantly affect the effectiveness of the treatment. Similar regrowth pattern was observed (compared to the susceptible strain) and no development of bacteria with higher drug-resistance values was found in waters after any treatment. Finally, both processes were effective to reduce AR genes (ARGs), although solar photo-Fenton was more rapid than solar light. In conclusion, the solar photo-Fenton process ensured effective disinfection of ARB and elimination of ARGs in water (or wastewater) and is a potential mean to ensure limitation of ARB and ARG spread in nature. | 2018 | 29986243 |
| 8546 | 8 | 0.9977 | A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: Increasing removal with wetlands and reducing environmental impacts. Emerging organic contaminants (EOCs) include a diverse group of chemical compounds, such as pharmaceuticals and personal care products (PPCPs), pesticides, hormones, surfactants, flame retardants and plasticizers. Many of these compounds are not significantly removed in conventional wastewater treatment plants and are discharged to the environment, presenting an increasing threat to both humans and natural ecosystems. Recently, antibiotics have received considerable attention due to growing microbial antibiotic-resistance in the environment. Constructed wetlands (CWs) have proven effective in removing many EOCs, including different antibiotics, before discharge of treated wastewater into the environment. Wastewater treatment systems that couple conventional treatment plants with constructed and natural wetlands offer a strategy to remove EOCs and reduce antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) far more efficiently than conventional treatment alone. This review presents as overview of the current knowledge on the efficiency of different wetland systems in reducing EOCs and antibiotic resistance. | 2020 | 32247686 |
| 7842 | 9 | 0.9977 | Removal of Antibiotic Resistant Bacteria and Genes by UV-Assisted Electrochemical Oxidation on Degenerative TiO(2) Nanotube Arrays. Antibiotic resistance has become a global crisis in recent years, while wastewater treatment plants (WWTPs) have been identified as a significant source of both antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). However, commonly used disinfectants have been shown to be ineffective for the elimination of ARGs. With the goal of upgrading the conventional UV disinfection unit with stronger capability to combat ARB and ARGs, we developed a UV-assisted electrochemical oxidation (UV-EO) process that employs blue TiO(2) nanotube arrays (BNTAs) as photoanodes. Inactivation of tetracycline- and sulfamethoxazole-resistant E. coli along with degradation of the corresponding plasmid coded genes (tetA and sul1) is measured by plate counting on selective agar and qPCR, respectively. In comparison with UV(254) irradiation alone, enhanced ARB inactivation and ARG degradation is achieved by UV-EO. Chloride significantly promotes the inactivation efficiency due to the electrochemical production of free chlorine and the subsequent UV/chlorine photoreactions. The fluence-based first-order kinetic rate coefficients of UV-EO in Cl(-) are larger than those of UV(254) irradiation alone by a factor of 2.1-2.3 and 1.3-1.8 for the long and short target genes, respectively. The mechanism of plasmid DNA damage by different radical species is further explored using gel electrophoresis and computational kinetic modeling. The process can effectively eliminate ARB and ARGs in latrine wastewater, though the kinetics were retarded. | 2021 | 39605952 |
| 7268 | 10 | 0.9977 | Deciphering Multidrug-Resistant Plasmids in Disinfection Residual Bacteria from a Wastewater Treatment Plant. Current disinfection processes pose an emerging environmental risk due to the ineffective removal of antibiotic-resistant bacteria, especially disinfection residual bacteria (DRB) carrying multidrug-resistant plasmids (MRPs). However, the characteristics of DRB-carried MRPs are poorly understood. In this study, qPCR analysis reveals that the total absolute abundance of four plasmids in postdisinfection effluent decreases by 1.15 log units, while their relative abundance increases by 0.11 copies/cell compared to investigated wastewater treatment plant (WWTP) influent. We obtain three distinctive DRB-carried MRPs (pWWTP-01-03) from postdisinfection effluent, each carrying 9-11 antibiotic-resistant genes (ARGs). pWWTP-01 contains all 11 ARGs within an ∼25 Kbp chimeric genomic island showing strong patterns of recombination with MRPs from foodborne outbreaks and hospitals. Antibiotic-, disinfectant-, and heavy-metal-resistant genes on the same plasmid underscore the potential roles of disinfectants and heavy metals in the coselection of ARGs. Additionally, pWWTP-02 harbors an adhesin-type virulence operon, implying risks of both antibiotic resistance and pathogenicity upon entering environments. Furthermore, some MRPs from DRB are capable of transferring and could confer selective advantages to recipients under environmentally relevant antibiotic pressure. Overall, this study advances our understanding of DRB-carried MRPs and highlights the imminent need to monitor and control wastewater MRPs for environmental security. | 2024 | 38574343 |
| 6500 | 11 | 0.9977 | Effect of ozonation-based disinfection methods on the removal of antibiotic resistant bacteria and resistance genes (ARB/ARGs) in water and wastewater treatment: a systematic review. Antibiotic resistance is considered a universal health threat of the 21st century which its distribution and even development are mainly mediated by water-based media. Disinfection processes with the conventional methods are still the most promising options to combat such crises in aqueous matrices especially wastewater. Knowing that the extent of effectiveness and quality of disinfection is of great importance, this paper aimed to systematically review and discuss ozonation (as one of the main disinfectants with large scale application) effect on removing antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) from aqueous solutions, for which no study has been reported. For this, a comprehensive literature survey was performed within the international databases using appropriate keywords which yielded several studies involving different aspects and the effectiveness extent of ozonation on ARB & ARGs. The results showed that no definite conclusion could be drawn about the superiority of ozone alone or in a hybrid form. Mechanism of action was carefully evaluated and discussed although it is still poorly understood. Evaluation of the studies from denaturation and repairment perspectives showed that regrowth cannot be avoided after ozonation, especially for some ARB & ARGs variants. In addition, the comparison of the effectiveness on ARB & ARGs showed that ozonation is more effective for resistant bacteria than their respective genes. The degradation efficiency was found to be mainly influenced by operational parameters of CT (i.e. ozone dose & contact time), solids, alkalinity, pH, and type of pathogens and genes. Moreover, the correlation between ARB & ARGs removal and stressors (such as antibiotic residuals, heavy metals, aromatic matters, microcystins, opportunistic pathogens, etc.) has been reviewed to give the optimal references for further in-depth studies. The future perspectives have also been reported. | 2022 | 34767893 |
| 7607 | 12 | 0.9977 | Inactivation of Antibiotic Resistant Bacteria and Resistance Genes by Ozone: From Laboratory Experiments to Full-Scale Wastewater Treatment. Ozone, a strong oxidant and disinfectant, seems ideal to cope with future challenges of water treatment, such as micropollutants, multiresistant bacteria (MRB) and even intracellular antibiotic resistance genes (ARG), but information on the latter is scarce. In ozonation experiments we simultaneously determined kinetics and dose-dependent inactivation of Escherichia coli and its plasmid-encoded sulfonamide resistance gene sul1 in different water matrixes. Effects in E. coli were compared to an autochthonous wastewater community. Furthermore, resistance elimination by ozonation and post-treatment were studied in full-scale at a wastewater treatment plant (WWTP). Bacterial inactivation (cultivability, membrane damage) and degradation of sul1 were investigated using plate counts, flow cytometry and quantitative real-time PCR. In experiments with E. coli and the more ozone tolerant wastewater community disruption of intracellular genes was observed at specific ozone doses feasible for full-scale application, but flocs seemed to interfere with this effect. At the WWTP, regrowth during postozonation treatment partly compensated inactivation of MRB, and intracellular sul1 seemed unaffected by ozonation. Our findings indicate that ozone doses relevant for micropollutant abatement from wastewater do not eliminate intracellular ARG. | 2016 | 27775322 |
| 7608 | 13 | 0.9977 | Evaluation of a constructed wetland for wastewater treatment: Addressing emerging organic contaminants and antibiotic resistant bacteria. The occurrence of emerging organic contaminants (EOCs) in wastewaters and the inability of the conventional wastewater treatments plants to deal with them have been pointed out several times over the last few years. As a result, remnants of those compounds released into the aquatic environment present a potential risk for public health. Constructed wetlands (CWs) have been proposed as environmentally friendly, low-cost alternative systems with satisfactory results for different types of contaminants. This study aimed to evaluate the efficiency of a CW system, planted with the halophyte Juncus acutus, to eliminate bisphenol A (BPA) and two antibiotics, namely ciprofloxacin (CIP) and sulfamethoxazole (SMX) under different operating conditions. The behavior of Escherichia coli and enterococcal populations in terms of changes in their resistance profile for the selected antibiotics and the abundance of two resistance genes (qnrA and sul1) were also examined. BPA and CIP were significantly removed by the CW, with an overall removal of 76.2% and 93.9% respectively and with the plants playing a vital role. In contrast, SMX was not significantly eliminated. Moreover, fluctuations in the antibiotic resistance profile of bacteria were observed. Treatment processes affected the response of the two selected bacterial indicators, depending on the conditions employed in each case. Furthermore, increased levels of resistance genes were monitored in the system effluent. This study indicates that CWs, as tertiary wastewater treatment systems, may demonstrate high removal rates for some but not all EOCs. This implies that each EOC identified in the feed stream should be tested assiduously by analyzing the final effluents before their reuse or discharge into water bodies. | 2019 | 31146037 |
| 7617 | 14 | 0.9977 | Ozone pretreatment of wastewater containing aromatics reduces antibiotic resistance genes in bioreactors: The example of p-aminophenol. Aromatic matters are widely present in wastewater, especially industrial wastewater, and may lead to a high abundance of antibiotic resistance genes (ARGs) in wastewater treatment bioreactors and stimulate horizontal transfers of ARGs. Here, we investigated a practical approach that applying ozone pretreatment to mitigate ARGs in bioreactors treating wastewater containing a typical aromatic pollutant, p-aminophenol (PAP). The results showed that ozone pretreatment could effectively reduce the aromaticity of wastewater, and the relative abundance of ARGs in the bioreactor fed with ozone treated wastewater decreased by over 70% compared to the control reactor. Multidrug, quinolone, mupirocin, polymyxin, aminoglycoside, glycopeptide, beta-lactam, and trimethoprim resistance genes were all reduced in the bioreactors receiving wastewater pretreated by ozone. Metagenomic analysis suggested that the reduction of ARGs could be attributed to the co-occurrence of ARGs and aromatic degradation genes in bacteria. Furthermore, we expanded our analysis to investigate 71 metagenomes from different environments, and the results indicated that the impact of aromatics on ARG abundance widely occurs in various ecosystems and confirmed that high levels of aromatics could lead to high abundance of ARGs. Taken together, our work confirmed that the aromatics played critical roles in selecting ARGs and proposed a feasible approach to reduce ARGs in wastewater treatment bioreactors. | 2020 | 32563772 |
| 6499 | 15 | 0.9976 | From Conventional Disinfection to Antibiotic Resistance Control-Status of the Use of Chlorine and UV Irradiation during Wastewater Treatment. Extensive use of antibiotics for humans and livestock has led to an enhanced level of antibiotic resistance in the environment. Municipal wastewater treatment plants are regarded as one of the main sources of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the aquatic environment. A significant amount of research has been carried out to understand the microbiological quality of wastewater with respect to its antibiotic resistance potential over the past several years. UV disinfection has primarily been used to achieve disinfection, including damaging DNA, but there has been an increasing use of chlorine and H(2)O(2)-based AOPs for targeting genes, including ARGs, considering the higher energy demands related to the greater UV fluences needed to achieve efficient DNA damage. This review focuses on some of the most investigated processes, including UV photolysis and chlorine in both individual and combined approaches and UV advanced oxidation processes (AOPs) using H(2)O(2). Since these approaches have practical disinfection and wastewater treatment applications globally, the processes are reviewed from the perspective of extending their scope to DNA damage/ARG inactivation in full-scale wastewater treatment. The fate of ARGs during existing wastewater treatment processes and how it changes with existing treatment processes is reviewed with a view to highlighting the research needs in relation to selected processes for addressing future disinfection challenges. | 2022 | 35162659 |
| 6493 | 16 | 0.9976 | Antibiotic microbial resistance (AMR) removal efficiencies by conventional and advanced wastewater treatment processes: A review. The World Health Organization (WHO) has identified the spread of antibiotic resistance as one of the major risks to global public health. An important transfer route into the aquatic environment is the urban water cycle. In this paper the occurrence and transport of antibiotic microbial resistance in the urban water cycle are critically reviewed. The presence of antibiotic resistance in low impacted surface water is being discussed to determine background antibiotic resistance levels, which might serve as a reference for treatment targets in the absence of health-based threshold levels. Different biological, physical and disinfection/oxidation processes employed in wastewater treatment and their efficacy regarding their removal of antibiotic resistant bacteria and antibiotic resistance geness (ARGs) were evaluated. A more efficient removal of antibiotic microbial resistance abundances from wastewater effluents can be achieved by advanced treatment processes, including membrane filtration, ozonation, UV-irradiation or chlorination, to levels typically observed in urban surface water or low impacted surface water. | 2019 | 31195321 |
| 7620 | 17 | 0.9976 | Higher chlorine dosage does not consistently enhance antibiotic resistance mitigation in the Cl(2)-UV process. Health problems arising from antibiotic resistance are a global concern. The Cl(2)-UV disinfection process has shown potential for controlling antibiotic resistance in water; however, the influence of disinfectant dosage on its effectiveness remains insufficiently understood. Can antibiotic resistance be controlled by simply increasing the disinfectant dosage? This study demonstrated that higher disinfectant levels improved antibiotic resistance gene (ARG) removal, with certain ARGs reaching 1.82 log removal under conventional conditions. Nevertheless, higher disinfectant dosages also led to an increase in the relative abundance of multidrug resistance genes (MRGs), aminoglycoside resistance genes (AmRGs), and fosmidomycin resistance genes (FRGs). Correlation analysis of ARGs with mobile genetic elements (MGEs) and ARG-host bacteria indicated that this enrichment was primarily driven by enhanced horizontal gene transfer (HGT). Notably, increases in UV fluence and chlorine dose had distinct impacts on the total relative abundance of ARGs: higher UV fluence reduced total relative abundance, whereas higher chlorine dose increased it. These contrasting trends are likely linked to differences in the dominant HGT pathways under each condition. Greater UV fluence tended to promote conjugative transfer among surviving bacteria, while higher chlorine dosages more effectively facilitated natural transformation. Considering both the absolute and relative abundances of ARGs, along with calculated health-risk indices for each treatment condition, the findings indicated that increasing UV fluence is more effective for controlling ARGs in water. These results provide valuable insights for optimizing the Cl(2)-UV disinfection process to better manage antibiotic resistance in aquatic environments. | 2025 | 40914041 |
| 7924 | 18 | 0.9976 | Electro-peroxone pretreatment for enhanced simulated hospital wastewater treatment and antibiotic resistance genes reduction. Hospital wastewater is one of the possible sources responsible for antibiotic resistant bacteria spread into the environment. This study proposed a promising strategy, electro-peroxone (E-peroxone) pretreatment followed by a sequencing batch reactor (SBR) for simulated hospital wastewater treatment, aiming to enhance the wastewater treatment performance and to reduce antibiotic resistance genes production simultaneously. The highest chemical oxygen demand (COD) and total organic carbon (TOC) removal efficiency of 94.3% and 92.8% were obtained using the E-peroxone-SBR process. The microbial community analysis through high-throughput sequencing showed that E-peroxone pretreatment could guarantee microbial richness and diversity in SBR, as well as reduce the microbial inhibitions caused by antibiotic and raise the amount of nitrification and denitrification genera. Specially, quantitative real-time PCRs revealed that E-peroxone pretreatment could largely reduce the numbers and contents of antibiotic resistance genes (ARGs) production in the following biological treatment unit. It was indicated that E-peroxone-SBR process may provide an effective way for hospital wastewater treatment and possible ARGs reduction. | 2018 | 29550711 |
| 7604 | 19 | 0.9976 | Combined applications of UV and chlorine on antibiotic resistance control: A critical review. Environmental health problems caused by antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) have become a global concern. ARB and ARGs have been continuously detected in various water environments, which pose a new challenge for water quality safety assurance. Disinfection is a key water treatment process to eliminate pathogenic microorganisms in water, and combined chlorine and UV processes (the UV/Cl(2) process, the UV-Cl(2) process, and the Cl(2)-UV process) are considered potential disinfection methods to control antibiotic resistance. This review documented the efficacy and mechanism of combined UV and chlorine processes for the control of antibiotic resistance, as well as the effects of chlorine dose, solution pH, UV wavelength, and water matrix on the effectiveness of the processes. There are knowledge gaps in research on the combined chlorine and UV processes for antibiotic resistance control, in particular the UV-Cl(2) process and the Cl(2)-UV process. In addition, changes in the structure of microbial communities and the distribution of ARGs, which are closely related to the spread of antibiotic resistance in the water, induced by combined processes were also addressed. Whether these changes could lead to the re-transmission of antibiotic resistance and harm human health may need to be further evaluated. | 2024 | 38072103 |