# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3627 | 0 | 0.9912 | Effect of in-feed paromomycin supplementation on antimicrobial resistance of enteric bacteria in turkeys. Histomoniasis in turkeys can be prevented by administering paromomycin sulfate, an aminoglycoside antimicrobial agent, in feed. The aim of this study was to evaluate the impact of in-feed paromomycin sulfate supplementation on the antimicrobial resistance of intestinal bacteria in turkeys. Twelve flocks of breeder turkeys were administered 100 ppm paromomycin sulfate from hatching to day 120; 12 flocks not supplemented with paromomycin were used as controls. Faecal samples were collected monthly from days 0 to 180. The resistance of Escherichia coli, Enterococcus faecium and Staphylococcus aureus to paramomycin and other antimicrobial agents was compared in paromomycin supplemented (PS) and unsupplemented (PNS) flocks. E. coli from PS birds had a significantly higher frequency of resistance to paromomycin, neomycin and kanamycin until 1 month after the end of supplementation compared to PNS birds. Resistance to amoxicillin or trimethoprim-sulfamethoxazole was also more frequent in PS turkeys. Resistance was mainly due to the presence of aph genes, which could be transmitted by conjugation, sometimes with streptomycin, tetracycline, amoxicillin, trimethoprim or sulfonamide resistance genes. Resistance to kanamycin and streptomycin in E. faecium was significantly different in PS and PNS breeders on days 60 and 90. Significantly higher frequencies of resistance to paromomycin, kanamycin, neomycin and tobramycin were observed in S. aureus isolates from PS birds. Paromomycin supplementation resulted in resistance to aminoglycosides in bacteria of PS turkeys. Co-selection for resistance to other antimicrobial agents was observed in E. coli isolates. | 2013 | 23800604 |
| 2871 | 1 | 0.9912 | Antimicrobial resistance in generic Escherichia coli isolates from wild small mammals living in swine farm, residential, landfill, and natural environments in southern Ontario, Canada. To assess the impacts of different types of human activity on the development of resistant bacteria in the feces of wild small mammals, we compared the prevalences and patterns of antimicrobial resistance and resistance genes in generic Escherichia coli and Salmonella enterica isolates from fecal samples collected from wild small mammals living in four environments: swine farms, residential areas, landfills, and natural habitats. Resistance to antimicrobials was observed in E. coli isolates from animals in all environments: 25/52 (48%) animals trapped at swine farms, 6/69 (9%) animals trapped in residential areas, 3/20 (15%) animals trapped at landfills, and 1/22 (5%) animals trapped in natural habitats. Animals trapped on farms were significantly more likely to carry E. coli isolates with resistance to tetracycline, ampicillin, sulfisoxazole, and streptomycin than animals trapped in residential areas. The resistance genes sul2, aadA, and tet(A) were significantly more likely to be detected in E. coli isolates from animals trapped on farms than from those trapped in residential areas. Three S. enterica serotypes (Give, Typhimurium, and Newport) were recovered from the feces of 4/302 (1%) wild small mammals. All Salmonella isolates were pansusceptible. Our results show that swine farm origin is significantly associated with the presence of resistant bacteria and resistance genes in wild small mammals in southern Ontario, Canada. However, resistant fecal bacteria were found in small mammals living in all environments studied, indicating that environmental exposure to antimicrobials, antimicrobial residues, resistant bacteria, or resistance genes is widespread. | 2011 | 21131524 |
| 2602 | 2 | 0.9910 | Human-wildlife ecological interactions shape Escherichia coli population and resistome in two sloth species from Costa Rica. Antimicrobial resistance (AMR) is a global health concern, with natural ecosystems acting as reservoirs for resistant bacteria. We assessed AMR in Escherichia coli isolated from two wild sloth species in Costa Rica. E. coli from two-toed sloths (Choloepus hoffmanni), a species with greater mobility and a broader diet, showed resistance to sulfamethoxazole (25%), tetracycline (9.4%), chloramphenicol (6.3%), ampicillin (6.3%), trimethoprim (3.1%), and ciprofloxacin (3.1%), which correlated with the presence of resistance genes (tet(A), tet(B), bla(TEM-1B), aph(3")-Id, aph(6)-Id, sul2, qnrS1, floR and dfrA8). E. coli from three-toed sloths (Bradypus variegatus) showed 40% resistance to sulfamethoxazole despite no detected resistance genes, suggesting a regional effect. A significant negative correlation was found between AMR and distance to human-populated areas, highlighting anthropogenic impact on AMR spread. Notably, E. coli isolates from remote areas with no human impact indicate that some ecosystems remain unaffected. Preserving these areas is essential to protect environmental and public health. | 2025 | 40610649 |
| 3633 | 3 | 0.9910 | Antimicrobial resistance of heterotrophic marine bacteria isolated from seawater and sands of recreational beaches with different organic pollution levels in southeastern Brazil: evidences of resistance dissemination. Antimicrobial resistance of marine heterotrophic bacteria to different antimicrobials agents were evaluated in seawater, dry and wet sands from three marine recreational beaches with different pollution levels. In all studied beaches, the greatest frequencies of resistance were found in relation to penicillin. On Gonzaguinha, the most polluted beach, 72.3% of all isolated strains showed simple resistance, whilst 8.33% had multiple resistance. The values found on Ilha Porchat beach, were 70.8% and 6.9% for simple and multiple resistances, respectively. On Guaraú, the less polluted beach, only 35.3% of isolated strains had simple resistance. Multiple resistance was not observed. While samples from Gonzaguinha and Ilha Porchat beach showed isolated strains resistant to seven and six different antimicrobial agents, respectively, samples from Guaraú beach were resistant only to penicillin and erytromicin. The positive correlations obtained between the degree of seawater contamination and frequency and variability of bacterial resistance indicate that polluted marine recreational waters and sands are sources of resistant bacteria contributing thus, to the dissemination of bacterial resistance. | 2010 | 19904625 |
| 3615 | 4 | 0.9910 | Insights to antimicrobial resistance: heavy metals can inhibit antibiotic resistance in bacteria isolated from wastewater. The alarming upsurge in the co-existence of heavy metal and antibiotic resistance may have a devastating impact on humans, animals, and the environment. Four metal-resistant bacteria were isolated from hospital effluents and industrial drain. Heavy metal resistance and antimicrobial resistance were examined in the isolates followed by identification through 16S rRNA gene sequencing. Delftia tsuruhatensis strain FK-01 and Carnobacterium inhibens strain FK-02 tolerated arsenic with maximal tolerated concentration (MTC) of 30 mM and 10 mM, respectively. Staphylococcus hominis strain FK-04 tolerated copper up to 4 mM and lead-resistant Raoultella ornithinolytica strain FK-05 exhibited tolerance to 1 mM lead. The growth kinetics of bacteria were monitored in the presence of metals and the following antibiotics, tetracycline, chloramphenicol, and kanamycin. The presence of arsenate significantly enhanced tetracycline resistance in C. inhibens. Heavy metal-induced antibiotic resistance was also observed in S. hominis and R. ornithinolytica, against chloramphenicol and tetracycline respectively. D. tsuruhatensis showed resistance to kanamycin but when grown in the presence of arsenic and kanamycin, bacteria lost resistance to the antibiotic. Therefore, it is suggested that the novel arsenate-resistant strain Delftia tsuruhatensis FK-01 has a unique ability to inhibit antimicrobial resistance that can be harnessed in bioremediation. | 2022 | 35254524 |
| 2995 | 5 | 0.9908 | Antibiotic resistance in bacteria from magpies (Pica pica) and rabbits (Oryctolagus cuniculus) from west Wales. The prevalence of antibiotic-resistant bacteria in wild animal and bird populations is largely unknown, with little consistency among the few published reports. We therefore examined intestinal bacteria from magpies (Pica pica) and rabbits (Oryctolagus cuniculus) collected in rural west Wales. Escherichia coli isolates resistant to multiple antibiotics were grown from eight of 20 magpies trapped in spring, 1999 and one of 17 in spring, 2000; the most prevalent resistance trait among these isolates was to tetracycline, but resistances to ampicillin, chloramphenicol, kanamycin, sulphonamide, tetracycline and trimethoprim were also found. Tetracycline-resistant Enterococcus spp. were found in one of 20 magpies in 1999 and three of 17 in 2000. Only one resistant E. coli isolate was detected among gut bacteria from 13 rabbits, and this strain was resistant only to tetracycline. Differences in the prevalence of resistance between bacteria from rabbits and magpies may reflect differences in diet: rabbits graze field edges, whereas magpies are omnivorous and opportunistic. The resistance genes found in E. coli isolates from magpies mostly corresponded to those common among human isolates, but those conferring tetracycline resistance were unique. | 2001 | 11722546 |
| 2809 | 6 | 0.9908 | Antibiotic resistance of native and faecal bacteria isolated from rivers, reservoirs and sewage treatment facilities in Victoria, south-eastern Australia. The incidence of resistance to ampicillin, chloramphenicol, kanamycin, nalidixic acid, neomycin and streptomycin was significantly greater (P < 0.001) in native heterotrophic bacteria than in Escherichia coli isolated from a range of sites along the Yarra River in south-eastern Australia. There was no significant difference in the incidence of resistance between native and faecal bacteria to tetracycline. Both groups were almost totally resistant to penicillin. Multivariate analyses indicated little clear spatial pattern in the incidence of resistance in native bacteria from upstream vs downstream sites along the Yarra River. In contrast, E. coli isolated from upstream (rural) sites tended to have a lower incidence of resistance than isolates from downstream (urban) sites. These findings have implications for the use of antibiotic resistance as a bacteriological water quality parameter. | 1999 | 10196762 |
| 3672 | 7 | 0.9908 | Multiple antibiotic resistance of heterotrophic bacteria in the littoral zone of Lake Shira as an indicator of human impact on the ecosystem. Resistance to Ampicillin and Kanamycin displayed by heterotrophic bacteria isolated in Summer and in Spring from the littoral and the central parts of Lake Shira (a therapeutic lake in the Khakasia Republic, Russia) has been investigated. It has been found that in Summer, human and animal microflora featuring multiple antibiotic resistance (to Ampicillin and Kanamycin) predominates in all the studied stations of the littoral zone of the lake. In Spring, concentrations of bacteria featuring multiple antibiotic resistance decrease significantly and bacteria sensitive to antibiotics predominate in the lake. Emergence of multiple antibiotic resistance in bacteria of Lake Shira is caused by the input of allochthonous bacteria into the lake; this feature of heterotrophic bacteria of Lake Shira can be used to monitor the impact on the ecosystem made by health resorts. | 2008 | 16762536 |
| 3640 | 8 | 0.9908 | Antibiotic resistant bacteria in fish from the Concepción Bay, Chile. Antibiotic resistant bacteria from commercial demersal and pelagic fish captured in the Concepción Bay, Chile were investigated. Viable counts of antibiotic resistant bacteria isolated from gill and intestinal content samples showed high frequencies of resistance to ampicillin, streptomycin and tetracycline, while the proportion of chloramphenicol resistance was rather low. A high incidence of resistance to ampicillin, streptomycin, tetracycline and nitrofurantoin, as well as almost an absence of resistance to gentamicin, amikacin and cotrimoxazole was found among selected isolates which represented the resistant bacterial population. These strains mainly belonged to Vibrionaceae and Enterobacteriaceae and were predominantly resistant to 3 and 4 antibacterials. Isolates from demersal fish exhibited resistance to as many as 8-10 compounds, whereas those from pelagic fish were resistant to seven or fewer antibiotics. These results suggest that Chilean commercial fishes residing in waters near the disposals of urban sewage might play a role as carriers of antibiotic resistant bacteria prompting a health risk to public health for fish consumers. | 2001 | 11763221 |
| 438 | 9 | 0.9907 | Characterisation of Campylobacter jejuni genes potentially involved in phosphonate degradation. Potential biological roles of the Campylobacter jejuni genes cj0641, cj0774c and cj1663 were investigated. The proteins encoded by these genes showed sequence similarities to the phosphonate utilisation PhnH, K and L gene products of Escherichia coli. The genes cj0641, cj0774c and cj1663 were amplified from the pathogenic C. jejuni strain 81116, sequenced, and cloned into pGEM-T Easy vectors. Recombinant plasmids were used to disrupt each one of the genes by inserting a kanamycin resistance (KmR) cassette employing site-directed mutagenesis or inverse PCR. Campylobacter jejuni 81116 isogenic mutants were generated by integration of the mutated genes into the genome of the wild-type strain. The C. jejuni mutants grew on primary isolation plates, but they could not be purified by subsequent passages owing to cell death. The mutant C. jejuni strains survived and proliferated in co-cultures with wild-type bacteria or in media in which wild-type C. jejuni had been previously grown. PCR analyses of mixed wild-type/mutant cultures served to verify the presence of the mutated gene in the genome of a fraction of the total bacterial population. The data suggested that each mutation inactivated a gene essential for survival. Rates of phosphonate catabolism in lysates of E. coli strain DH5 alpha were determined using proton nuclear magnetic resonance spectroscopy. Whole-cell lysates of the wild-type degraded phosphonoacetate, phenylphosphonate and aminomethylphosphonate. Significant differences in the rates of phosphonate degradation were observed between lysates of wild-type E. coli, and of bacteria transformed with each one of the vectors carrying one of the C. jejuni genes, suggesting that these genes were involved in phosphonate catabolism. | 2009 | 19555480 |
| 4915 | 10 | 0.9907 | Bacteria and antibiotic resistance detection in fractures of wild birds from wildlife rehabilitation centres in Spain. Anatomic adaptations make birds more prone to open fractures with exposed bone parts losing vascularization. As a result of this exposure, fractures are colonized by different microorganisms, including different types of bacteria, both aerobic and anaerobic, causing osteomyelitis in many cases. For this reason, antibiotic treatment is common. However, carrying out antibiotic treatment without carrying out a previous antibiogram may contribute to increased resistance against antibiotics, especially in migratory wild birds. In this paper, bacterial counts regarding fracture type, bacterial identification and antibiotic resistance have been analysed in wild birds from wildlife rehabilitation centres in Spain. The results obtained showed that open fractures had higher bacterial counts (CFU/mL) than closed ones. Bacteria in family Enterobacteriaceae, identified were Escherichia spp., Enterobacter spp., Shigella spp., Hafnia alvei, Proteus mirabilis, Leclercia adecarboxylata and Pantoea agglomerans. Other bacteria present in wild birds' fractures were Aeromonas spp., Enterococcus spp. Bacillus wiedmannii and Staphylococcus sciuri. All species found presented resistance to at least one of the antibiotics used. Wild birds can be implicated in the introduction, maintenance and global spreading of antibiotic resistant bacteria and represent an emerging public health concern. Results obtained in this paper support the idea that it is necessary to take this fact into account before antibiotic administration to wild animals, since it could increase the number of bacteria resistant to antibiotics. | 2021 | 33260016 |
| 3691 | 11 | 0.9907 | Antibiotic resistant bacteria in Windermere and two remote upland tarns in the English Lake District. The incidence of antibiotic resistance was determined in over 2000 bacteria which were divided into the following groups: faecal streptococci, coliforms (excluding Escherichia coli), E. coli, Pseudomonas spp. and aquatic bacteria (i.e. bacteria predominant in the lake water which were excluded from the previous four categories). The isolates were obtained from the water of Windermere (English Lake District) and from a sewage effluent which entered the lake. With the exception of the faecal streptococci, the incidence of antibiotic resistance was higher in the bacteria isolated from the lake water than in those from the effluent, and ranked according to groups Pseudomonas spp. greater than E. coli greater than aquatic bacteria greater than coliforms greater than faecal streptococci. The highest incidence of multiple resistance was found among the pseudomonads. When corrected for the relative size of each population the pool of antibiotic resistance in the aquatic bacteria was by far the largest. The incidence of antibiotic resistance in aquatic bacteria isolated from Windermere was, however, lower than in those isolated from two remote upland tarns. This finding may have been due to differences in the species composition of the three sites except that the same results were obtained when only fluorescent pseudomonads were tested. The upland tarns were not totally isolated from man and other animals but did not receive any sewage or other effluents and therefore the results were surprising. Possible explanations include a lack of susceptibility in aquatic bacteria and increased resistance associated with growth in nutrient poor environments. | 1986 | 3722030 |
| 3568 | 12 | 0.9907 | Occurrence of the new tetracycline resistance gene tet(W) in bacteria from the human gut. Members of our group recently identified a new tetracycline resistance gene, tet(W), in three genera of rumen obligate anaerobes. Here, we show that tet(W) is also present in bacteria isolated from human feces. The tet(W) genes found in human Fusobacterium prausnitzii and Bifidobacterium longum isolates were more than 99.9% identical to those from a rumen isolate of Butyrivibrio fibrisolvens. | 2000 | 10681357 |
| 3081 | 13 | 0.9907 | Relationship Between Heavy Metal Accumulation in Fish Muscle and Heavy Metal Resistance Genes in Bacteria Isolated from Fish. Cadmium, cobalt, copper, nickel, and zinc are the most common pollutant heavy metals that can be discharged into the marine environment with different sources. Whiting (Merlangius merlangus) and mullet (Mullus barbatus) were sampled in four seasons in a year to determine Cd, Co, Cu, Ni, and Zn levels in the muscle and to determine heavy metal resistance genes (MRGs) such as copA, czc, and ncc genes in coliform bacteria isolated from the fish. In both species, zinc was the most abundant metal, while Cd and the Co levels were scarce. Co level was significantly higher in summer in mullet than that of whiting (p < 0.001). The most prevalent MRGs was determined as copA (46.2%) followed by czc (35.8%) and ncc (17.9%). Increased Co and Ni level in the muscle significantly affected the presence of ncc gene in bacteria, while the presence of ncc and copA genes was affected by Ni and Cu levels found in the fish muscle. There was a significant positive correlation between Cd level in the muscle and presence of czc and ncc gene in the bacteria (p < 0.029). When the levels of Cu, Zn, and Cd increased in the muscle of the fish, occurrence of MRGs genes was increased significantly (p < 0.0001). A strong positive correlation was found between heavy metal resistance levels in fish and the prevalence of E. coli and coliforms that harbor heavy metal resistance genes which will be a problem in aquaculture, aquatic ecosystem, and public health. | 2021 | 32535748 |
| 3628 | 14 | 0.9907 | Antibiotic resistance patterns of gram-negative bacteria isolated from environmental sources. A total of 2,445 gram-negative bacteria belonging to fecal coliform, Pseudomonas, Moraxella, Acinetobacter, and Flavobacterium-Cytophaga groups were isolated from the rivers and bay of Tillamook, Oregon, and their resistances to chloramphenicol (25 microgram/ml), streptomycin (10 microgram/ml), ampicillin (10 microgram/ml), tetracycline (25 microgram/ml), chlortetracycline (25 microgram/ml), oxytetracycline (25 microgram/ml), neomycin (50 microgram/ml), nitrofurazone (12.5 microgram/ml), nalidixic acid (25 microgram/ml), kanamycin (25 microgram/ml), and penicillin G (10 IU/ml) were determined. Among fecal coliforms the bay isolates showed greater resistance to antibiotics than those from tributaries or surface runoff. No such well-defined difference was found among other bacterial groups. The antibiotic resistance patterns of gram-negative bacteria from different sources correlated well, perhaps indicating their common origin. The antibiotic resistance patterns of gram-negative bacteria of different general also correlated well, perhaps indicating that bacteria which share a common environment also share a common mode for developing antibiotic resistance. | 1978 | 727777 |
| 5592 | 15 | 0.9906 | Antibiotic Resistance Profile of Rarely Isolated Salmonella Serotypes from Poultry in Turkey. This study investigated five strains of each serotype of Salmonella Agona, Salmonella Heidelberg, Salmonella Hindmarsh, Salmonella Kouka, Salmonella Muenchen, Salmonella Ottmarchen, Salmonella Saintpaul and Salmonella II, isolated during the 2014-2017 period. Disc diffusion was used to identify the phenotypic profiles of antibiotic resistance to 12 antimicrobials while the presence of antibiotic resistance genes (ARGs) was detected by PCR. The most sensitive serotype was S. Kouka while the most resistant serotypes were S. Agona and S. Heidelberg. MDR was detected most frequently in S. Agona strains, followed by S. Saintpaul, S. Hindmarsch, and S. Ottmarchen. The samples were most susceptible to chloramphenicol and ceftazidime and most resistant to sulfonamide. The resistance genes were detected in phenotypically resistant strains. Among the tetracycline-resistant strains, tet (A) was the most prevalent gene. The results of this study highlight the importance of monitoring antibiotic resistance profiles and related genes, which can spread to form MDR bacteria. Salmonella spp., which significantly contribute to ARG dissemination, should be monitored constantly to protect the closely related health of humans, animals, and the environment. The level of antibiotic resistance observed in this study, even in rarely isolated Salmonella serotypes, also indicates the need for careful and selective use of antibiotics. | 2023 | 38756027 |
| 3645 | 16 | 0.9906 | Inter-species competition of surface bacterial flora of pomegranate and their role in spoilage. The surface of fruits is heterogenous in term of its microenvironment hence dictate the kind of microflora that develops during storage. A better understanding of spoilage organisms would lead to better preservation methods. The pomegranate was chosen, since its sturdy and spoils slow at room temperature and is ideal for studying fruit spoilage in-situ. In the current study we isolated organisms from fruit surface and study the spoilage and competition amongst microbial species. Total 17 unique bacterial isolates from pomegranate were identified. The 16S rRNA gene identification placed them in 8 major genera (Acinetobacter, Micrococcus, Pantoea, Microbacterium, Strenotrophomonas, Bacillus, Staphylococcus and Exiguobacterium). Competition assay among isolate suggested that Exiguobacterium is dominant species followed by Micrococcus, Pantoea and Bacillus. The consortium of 3 different combinations (5 bacteria each) of isolated bacteria showed the spoilage phenotype on pomegranate. Except for 3 bacterial isolates, the rest of the isolates produced any one or multiple enzymes associated with the food spoilage (cellulase, amylase, lactase, pectinase and protease). The isolates were checked for the presence of genes associated with antibiotic resistance and 78.9% of the tested micro-organisms were blaTEM positive. Aminoglycoside resistance genes were present in 10% of the tested microbes. This study demonstrated interspecies competition amongst spoilage organisms. This understanding of surface flora of fruit would give better insights to preserve fruits. | 2023 | 37495862 |
| 2806 | 17 | 0.9906 | Bacterial flora and antibiotic resistance from eggs of green turtles Chelonia mydas: an indication of polluted effluents. Sea turtles migrate to various habitats where they can be exposed to different pollutants. Bacteria were collected from turtle eggs and their resistance to antibiotics was used as pollutant bio-indicators of contaminated effluents. Eggs were collected randomly from turtles when they were laying their eggs. A total of 90 eggs were collected and placed into sterile plastic bags (3 eggs/turtle) during June-December of 2003. The bacteria located in the eggshell, albumen and yolk were examined, and 42% of the eggs were contaminated with 10 genera of bacteria. Pseudomonas spp. were the most frequent isolates. The albumen was found to be the part of the egg to be the least contaminated by bacterial infection. Bacterial isolates tested with 14 antibiotics showed variations in resistance. Resistance to ampicillin was the highest. The presence of antibiotic resistant bacteria in eggs indicates that the green turtle populations were subjected to polluted effluents during some of their migratory routes and feeding habitats. Scanning electron microscopy revealed that Salmonella typhimurium penetrated all eggshell layers. | 2009 | 19185323 |
| 3428 | 18 | 0.9906 | Effect of oxytetracycline-medicated feed on antibiotic resistance of gram-negative bacteria in catfish ponds. The effect of oxytetracycline-medicated feeds on antibiotic resistance in gram-negative bacteria from fish intestines and water in catfish ponds was investigated. In experiments in the fall and spring, using ponds with no previous history of antibiotic usage, percentages of tetracycline-resistant bacteria in catfish intestines obtained from medicated ponds increased significantly after 10 days of treatment. In the fall, resistance of the intestinal and aquatic bacteria returned to pretreatment levels within 21 days after treatment. In the spring, resistance declined after treatment but remained higher than pretreatment levels for at least 21 days in intestinal bacteria and for 5 months in aquatic bacteria. Plesiomonas shigelloides, Aeromonas hydrophila, and Citrobacter freundii were isolated frequently in both spring and fall; Escherichia coli, Klebsiella pneumoniae, Edwardsiella tarda, and Enterobacter spp. were isolated primarily in the spring. Oxytetracycline treatment did not affect the distribution of bacterial species in the fall but may have accelerated a shift toward greater prevalence of members of the family Enterobacteriaceae in the spring. Multiple antibiotic resistance did not appear to be elicited by oxytetracycline treatment. | 1995 | 7793953 |
| 3085 | 19 | 0.9906 | Urbanization led to the abundance of Gram-negative, chemo-organo-heterotrophs, and antibiotic resistance genes in the downstream regions of the Ganga River water of India. The present investigation assesses the bacterial microbiome and antibiotic resistance genes (ARGs) of the river Ganga from Uttarakhand (upstream region; US group) and Uttar Pradesh (downstream region; DS group) regions using a 16S rRNA amplicon-based metagenomic approach. Gram-negative, aerobic, and chemo-organotrophic bacteria made up the majority of the bacterial genera during the overall analysis. Physicochemical analysis revealed a higher concentration of nitrate and phosphate in the downstream sites of the Ganga River. The prevalence of Gemmatimonas, Flavobacterium, Arenimonas, and Verrucomicrobia in the water of the DS region indicates a high organic load. Pseudomonas and Flavobacterium emerged as the most prevalent genera among the 35 significantly different shared genera (p-value < 0.05) in the US and DS regions, respectively. Overall antibiotic resistance analysis of the samples showed the dominance of β-lactam resistance (33.92%) followed by CAMP (cationic antimicrobial peptide) resistance (27.75%), and multidrug resistance (19.17%), vancomycin resistance (17.84%), and tetracycline resistance (0.77%). While comparing, the DS group exhibited a higher abundance of ARGs over the US group, where the CAMP resistance and β-lactam ARGs were dominant in the respective regions. The correlation (p-value < 0.05) analysis showed that most bacteria exhibit a significant correlation with tetracycline resistance followed by the phenicol antibiotic. The present findings draw attention to the need for regulated disposal of multiform human-derived wastes into the Ganga River to reduce the irrepressible ARGs dissemination. | 2023 | 37217817 |