TRANSFORMED - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
53400.9932Plasmid shuttle vector with two insertionally inactivable markers for coryneform bacteria. A new shuttle vector pCEM500 replicating in Escherichia coli and in Brevibacterium flavum was constructed. It carries two antibiotic resistance determinants (Kmr/Gmr from plasmid pSa of Gram-negative bacteria and Smr/Spr from plasmid pCG4 of Corynebacterium glutamicum) which are efficiently expressed in both hosts and can be inactivated by insertion of DNA fragments into the unique restriction endonuclease sites located within them. This vector was found to be stably maintained in B. flavum and can be used for transfer of the cloned genes into this amino-acid-producing coryneform bacterium.19902148164
33510.9930Construction and characterization of a replication-competent retroviral shuttle vector plasmid. We constructed two versions of an RCASBP-based retroviral shuttle vector, RSVP (RCASBP shuttle vector plasmid), containing either the zeocin or blasticidin resistance gene. In this vector, the drug resistance gene is expressed in avian cells from the long terminal repeat (LTR) promoter, whereas in bacteria the resistance gene is expressed from a bacterial promoter. The vector contains a bacterial origin of replication (ColE1) to allow circular viral DNA to replicate as a plasmid in bacteria. The vector also contains the lac operator sequence, which binds to the lac repressor protein, providing a simple and rapid way to purify the vector DNA. The RSVP plasmid contains the following sequence starting with the 5" end: LTR, gag, pol, env, drug resistance gene, lac operator, ColE1, LTR. After this plasmid was transfected into DF-1 cells, we were able to rescue the circularized unintegrated viral DNA from RSVP simply by transforming the Hirt DNA into Escherichia coli. Furthermore, we were able to rescue the integrated provirus. DNA from infected cells was digested with an appropriate restriction enzyme (ClaI) and the vector-containing segments were enriched using lac repressor protein and then self-ligated. These enriched fractions were used to transform E. coli. The transformation was successful and we did recover integration sites, but higher-efficiency rescue was obtained with electroporation. The vector is relatively stable upon passage in avian cells. Southern blot analyses of genomic DNAs derived from successive viral passages under nonselective conditions showed that the cassette (drug resistance gene-lac operator-ColE1) insert was present in the vector up to the third viral passage for both resistance genes, which suggests that the RSVP vectors are stable for approximately three viral passages. Together, these results showed that RSVP vectors are useful tools for cloning unintegrated or integrated viral DNAs.200211799171
53720.9929Omegon-Km: a transposable element designed for in vivo insertional mutagenesis and cloning of genes in gram-negative bacteria. To combine the features of the omega interposons with the advantages of in vivo transposition mutagenesis, we have constructed an artificial transposon, called Omegon-Km. The Omegon-Km transposon is carried on the plasmid pJFF350 which can be conjugally mobilized into a broad range of Gram-negative bacteria. Omegon-Km is flanked, in inverted orientation, by synthetic 28-bp repeats derived from the ends of IS1. In addition, each end of Omegon-Km has the very efficient transcription and translation terminators of the omega interposon. Internally, Omegon-Km carries the selectable kanamycin (Km)-neomycin resistance gene (alph A) which is expressed well in many Gram-negative bacteria. The IS1 transposition functions are located on the donor plasmid but external to Omegon-Km. Thus, insertions of Omegon-Km are very stable because they lack the capacity for further transposition. Omegon-Km mutagenesis is performed by conjugal transfer of pJFF350 from Escherichia coli into any Gram-negative recipient strain in which this plasmid is unable to replicate. Those cells which have had a transposition event are selected by their resistance to Km. Very high frequencies of Omegon-Km transposition were observed in Pseudomonas putida. Preliminary experiments with other Gram-negative soil and water bacteria (Rhizobium leguminosarum, Paracoccus denitrificans) yielded mutants at reasonable levels. The presence of an E. coli-specific origin of replication (ori) within Omegon-Km allows the rapid and easy cloning, in E. coli, of the nucleotide sequences flanking the site of the transposition event.19892546859
39130.9929New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in gram-negative bacteria. Three types of new variants of the broad-host-range transposon Tn5 are described. (i) Tn5-mob derivatives with the new selective resistance (R) markers GmR, SpR and TcR facilitate the efficient mobilization of replicons within a wide range of Gram-negative bacteria. (ii) Promoter probe transposons carry the promoterless reporter genes lacZ, nptII, or luc, and NmR, GmR or TcR as selective markers. These transposons can be used to generate transcriptional fusions upon insertion, thus facilitating accurate determinations of gene expression. (iii) Tn5-P-out derivatives carry the npt- or tac-promoter reading out from the transposon, and TcR, NmR or GmR genes. These variants allow the constitutive expression of downstream genes. The new Tn5 variants are available on mobilizable Escherichia coli vectors suitable as suicidal carriers for transposon mutagenesis of non-E. coli recipients and some on a phage lambda mutant to be used for transposon mutagenesis in E. coli.19892551782
53640.9927Thymidylate synthase gene from Lactococcus lactis as a genetic marker: an alternative to antibiotic resistance genes. The potential of the thymidylate synthase thyA gene cloned from Lactococcus lactis subsp. lactis as a possible alternative selectable marker gene to antibiotic resistance markers has been examined. The thyA mutation is a recessive lethal one; thyA mutants cannot survive in environments containing low amounts of thymidine or thymine (such as Luria-Bertani medium) unless complemented by the thyA gene. The cloned thyA gene was strongly expressed in L. lactis subsp. lactis, Escherichia coli, Rhizobium meliloti, and a fluorescent Pseudomonas strain. In addition, when fused to a promoterless enteric lac operon, the thyA gene drove expression of the lac genes in a number of gram-negative bacteria. In transformation experiments with thyA mutants of E. coli and conjugation experiments with thyA mutants of R. meliloti, the lactococcal thyA gene permitted selection of transformants and transconjugants with the same efficiency as did genes for resistance to ampicillin, chloramphenicol, or tetracycline. Starting from the broad-host-range plasmid pGD500, a plasmid, designated pPR602, was constructed which is completely free of antibiotic resistance genes and has the lactococcal thyA gene fused to a promoterless lac operon. This plasmid will permit growth of thyA mutant strains in the absence of thymidine or thymine and has a number of unique restriction sites which can be used for cloning.19902117883
37450.9927Simultaneous detection and removal of organomercurial compounds by using the genetic expression system of an organomercury lyase from the transposon Tn MERI1. Using a newly identified organomercury lyase gene (merB3) expression system from Tn MERI1, the mercury resistance transposon first found in Gram-positive bacteria, a dual-purpose system to detect and remove organomercurial contamination was developed. A plasmid was constructed by fusing the promoterless luxAB genes as bioluminescence reporter genes downstream of the merB3 gene and its operator/promoter region. Another plasmid, encoding mer operon genes from merR1 to merA, was also constructed to generate an expression regulatory protein, MerR1, and a mercury reductase enzyme, MerA. These two plasmids were transformed into Escherichia coli cells to produce a biological system that can detect and remove environmental organomercury contamination. Organomercurial compounds, such as neurotoxic methylmercury at nanomolar levels, were detected using the biomonitoring system within a few minutes and were removed during the next few hours.200212073137
34960.9927Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. A collection of Tn5-derived minitransposons has been constructed that simplifies substantially the generation of insertion mutants, in vivo fusions with reporter genes, and the introduction of foreign DNA fragments into the chromosome of a variety of gram-negative bacteria, including the enteric bacteria and typical soil bacteria like Pseudomonas species. The minitransposons consist of genes specifying resistance to kanamycin, chloramphenicol, streptomycin-spectinomycin, and tetracycline as selection markers and a unique NotI cloning site flanked by 19-base-pair terminal repeat sequences of Tn5. Further derivatives also contain lacZ, phoA, luxAB, or xylE genes devoid of their native promoters located next to the terminal repeats in an orientation that affords the generation of gene-operon fusions. The transposons are located on a R6K-based suicide delivery plasmid that provides the IS50R transposase tnp gene in cis but external to the mobile element and whose conjugal transfer to recipients is mediated by RP4 mobilization functions in the donor.19902172217
43770.9925Cloning of genes responsible for acetic acid resistance in Acetobacter aceti. Five acetic acid-sensitive mutants of Acetobacter aceti subsp. aceti no. 1023 were isolated by mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. Three recombinant plasmids that complemented the mutations were isolated from a gene bank of the chromosome DNA of the parental strain constructed in Escherichia coli by using cosmid vector pMVC1. One of these plasmids (pAR1611), carrying about a 30-kilobase-pair (kb) fragment that conferred acetic acid resistance to all five mutants, was further analyzed. Subcloning experiments indicated that a 8.3-kb fragment was sufficient to complement all five mutations. To identify the mutation loci and genes involved in acetic acid resistance, insertional inactivation was performed by insertion of the kanamycin resistance gene derived from E. coli plasmid pACYC177 into the cloned 8.3-kb fragment and successive integration into the chromosome of the parental strain. The results suggested that three genes, designated aarA, aarB, and aarC, were responsible for expression of acetic acid resistance. Gene products of these genes were detected by means of overproduction in E. coli by use of the lac promoter. The amino acid sequence of the aarA gene product deduced from the nucleotide sequence was significantly similar to those of the citrate synthases (CSs) of E. coli and other bacteria. The A. aceti mutants defective in the aarA gene were found to lack CS activity, which was restored by introduction of a plasmid containing the aarA gene. A mutation in the CS gene of E. coli was also complemented by the aarA gene. These results indicate that aarA is the CS gene.19902156811
39780.9925PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Streptomycetes are high G+C Gram-positive, antibiotic-producing, mycelial soil bacteria. The 8.7-Mb Streptomyces coelicolor genome was previously sequenced by using an ordered library of Supercos-1 clones. Here, we describe an efficient procedure for creating precise gene replacements in the cosmid clones by using PCR targeting and lambda-Red-mediated recombination. The cloned Streptomyces genes are replaced with a cassette containing a selectable antibiotic resistance and oriT(RK2) for efficient transfer to Streptomyces by RP4-mediated intergeneric conjugation. Supercos-1 does not replicate in Streptomyces, but the clones readily undergo double-crossover recombination, thus creating gene replacements. The antibiotic resistance cassettes are flanked by yeast FLP recombinase target sequences for removal of the antibiotic resistance and oriT(RK2) to generate unmarked, nonpolar mutations. The technique has been used successfully by >20 researchers to mutate around 100 Streptomyces genes. As an example, we describe its application to the discovery of a gene involved in the production of geosmin, the ubiquitous odor of soil. The gene, Sco6073 (cyc2), codes for a protein with two sesquiterpene synthase domains, only one of which is required for geosmin biosynthesis, probably via a germacra-1 (10) E,5E-dien-11-ol intermediate generated by the sesquiterpene synthase from farnesyl pyrophosphate.200312563033
53590.9924Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Improved broad-host-range plasmid vectors were constructed based on existing plasmids RSF1010 and RK404. The new plasmids pDSK509, pDSK519, and pRK415, have several additional cloning sites and improved antibiotic-resistance genes which facilitate subcloning and mobilization into various Gram-negative bacteria. Several new polylinker sites were added to the Escherichia coli plasmids pUC118 and pUC119, resulting in the new plasmids, pUC128 and pUC129. These plasmids facilitate the transfer of cloned DNA fragments to the broad-host-range vectors. Finally, the broad-host-range cosmid cloning vector pLAFR3 was improved by the addition of a double cos casette to generate the new plasmid, pLAFR5. This latter cosmid simplifies vector preparation and has permitted the rapid cloning of genomic DNA fragments generated with Sau3A. The resulting clones may be introduced into other Gram-negative bacteria by conjugation.19882853689
380100.9923Expression of a chloramphenicol-resistance determinant carried on hybrid plasmids in gram-positive and gram-negative bacteria. To analyse the control of chloramphenicol (Cm) resistance conferred by the Staphylococcus aureus plasmid pUB112, a detailed restriction map of this plasmid has been constructed, and the position and orientation of the cat gene have been determined. An MboI restriction fragment carrying the entire cat gene of pUB112 was then cloned in another S. aureus plasmid, the kanamycin (Km) resistance vector pUB110. Depending on the orientation of the incorporated cat fragment, the level of Cm resistance varied dramatically in Bacillus subtilis cells. This effect could not be eliminated by deleting parts of the vector DNA, and only the introduction of a transcription termination signal led to orientation-independent Cm resistance. One such construct was further developed to yield a shuttle vector, replicating both in Escherichia coli and B. subtilis. Using this vector the expression of incorporated genes can be determined in both Gram-positive and Gram-negative bacteria. By in vitro transcription experiments using pUB110 DNA linearized with various restriction endonucleases as template, two pUB110 promoters could be localized and their orientations determined: one promoter controls a gene whose function is unknown, the other regulates the transcription of the KmR gene.19846442250
371110.9921Single amino acid substitutions in the enzyme acetolactate synthase confer resistance to the herbicide sulfometuron methyl. Sulfometuron methyl, a sulfonylurea herbicide, blocks growth of bacteria, yeast, and higher plants by inhibition of acetolactate synthase (EC 4.1.3.18), the first common enzyme in the biosynthesis of branched-chain amino acids. Spontaneous mutations that confer increased resistance to the herbicide were obtained in cloned genes for acetolactate synthase from Escherichia coli and Saccharomyces cerevisiae. The DNA sequence of a bacterial mutant gene and a yeast mutant gene revealed single nucleotide differences from their respective wild-type genes. The mutations result in single amino acid substitutions in the structurally homologous aminoterminal regions of the two proteins, but at different positions. The bacterial mutation results in reduced levels of acetolactate synthase activity, reduced sensitivity to sulfometuron methyl, and unaltered resistance to feedback inhibition by valine. The yeast mutation results in unaltered levels of acetolactate synthase activity, greatly reduced sensitivity to sulfometuron methyl, and slightly reduced sensitivity to valine.198616593715
540120.9920Effect of ogt expression on mutation induction by methyl-, ethyl- and propylmethanesulphonate in Escherichia coli K12 strains. We have previously reported the isolation of an Escherichia coli K12 mutant that is extremely sensitive to mutagenesis by low doses of ethylating agents. We now show by Southern analysis that the mutation involves a gross deletion covering at least the ogt and fnr genes and that no O6-alkylguanine-DNA-alkyltransferase activity is present in cell-free extracts of an ada::Tn10 derivative of these bacteria. Confirmation that sensitisation to ethylation-induced mutagenesis was attributable to ogt and not to any other loci covered by the deletion was obtained by constructing derivatives. Thus an ogt::kanr disruption mutation was introduced into the parental ogt+ bacteria, and the ogt::kanr mutation was then eliminated by cotransduction of ogt+ with the closely linked Tetr marker (zcj::Tn10). The delta(ogt-fnr) deletion or ogt::kanr disruption mutants were highly sensitive to ethyl methanesulphonate-induced mutagenesis, as measured by the induction of forward mutations to L-arabinose resistance (Arar). Furthermore, the number of Arar mutants increased linearly with dose, unlike the case in ogt+ bacteria, which had a threshold dose below which no mutants accumulated. Differences in mutability were even greater with propyl methanesulphonate. Overproduction of the ogt alkyltransferase from a multicopy plasmid reduced ethylmethanesulphonate-induced mutagenesis in the ogt- mutant strains and also methylmethanesulphonate mutagenesis in ada- bacteria. A sample of AB1157 obtained from the E. coli K12 genetic stock centre also had a deletion covering the ogt and fnr genes. Since such deletions greatly influence the mutagenic responses to alkylating agents, a survey of the presence of the ogt gene in the E. coli K12 strain being used is advisable.19948152424
375130.9920A mariner transposon vector adapted for mutagenesis in oral streptococci. This article describes the construction and characterization of a mariner-based transposon vector designed for use in oral streptococci, but with a potential use in other Gram-positive bacteria. The new transposon vector, termed pMN100, contains the temperature-sensitive origin of replication repATs-pWV01, a selectable kanamycin resistance gene, a Himar1 transposase gene regulated by a xylose-inducible promoter, and an erythromycin resistance gene flanked by himar inverted repeats. The pMN100 plasmid was transformed into Streptococcus mutans UA159 and transposon mutagenesis was performed via a protocol established to perform high numbers of separate transpositions despite a low frequency of transposition. The distribution of transposon inserts in 30 randomly picked mutants suggested that mariner transposon mutagenesis is unbiased in S. mutans. A generated transposon mutant library containing 5000 mutants was used in a screen to identify genes involved in the production of sucrose-dependent extracellular matrix components. Mutants with transposon inserts in genes encoding glycosyltransferases and the competence-related secretory locus were predominantly found in this screen.201424753509
575140.9920Identification and characterization of uvrA, a DNA repair gene of Deinococcus radiodurans. Deinococcus radiodurans is extraordinarily resistant to DNA damage, because of its unusually efficient DNA repair processes. The mtcA+ and mtcB+ genes of D. radiodurans, both implicated in excision repair, have been cloned and sequenced, showing that they are a single gene, highly homologous to the uvrA+ genes of other bacteria. The Escherichia coli uvrA+ gene was expressed in mtcA and mtcB strains, and it produced a high degree of complementation of the repair defect in these strains, suggesting that the UvrA protein of D. radiodurans is necessary but not sufficient to produce extreme DNA damage resistance. Upstream of the uvrA+ gene are two large open reading frames, both of which are directionally divergent from the uvrA+ gene. Evidence is presented that the proximal of these open reading frames may be irrB+.19968955293
126150.9919Single-gene knockout of a novel regulatory element confers ethionine resistance and elevates methionine production in Corynebacterium glutamicum. Despite the availability of genome data and recent advances in methionine regulation in Corynebacterium glutamicum, sulfur metabolism and its underlying molecular mechanisms are still poorly characterized in this organism. Here, we describe the identification of an ORF coding for a putative regulatory protein that controls the expression of genes involved in sulfur reduction dependent on extracellular methionine levels. C. glutamicum was randomly mutagenized by transposon mutagenesis and 7,000 mutants were screened for rapid growth on agar plates containing the methionine antimetabolite D,L-ethionine. In all obtained mutants, the site of insertion was located in the ORF NCgl2640 of unknown function that has several homologues in other bacteria. All mutants exhibited similar ethionine resistance and this phenotype could be transferred to another strain by the defined deletion of the NCgl2640 gene. Moreover, inactivation of NCgl2640 resulted in significantly increased methionine production. Using promoter lacZ-fusions of genes involved in sulfur metabolism, we demonstrated the relief of L-methionine repression in the NCgl2640 mutant for cysteine synthase, o-acetylhomoserine sulfhydrolase (metY) and sulfite reductase. Complementation of the mutant strain with plasmid-borne NCgl2640 restored the wild-type phenotype for metY and sulfite reductase.200515668756
178160.9919Molecular basis of bacterial resistance to organomercurial and inorganic mercuric salts. Bacteria mediate resistance to organomercurial and inorganic mercuric salts by metabolic conversion to nontoxic elemental mercury, Hg(0). The genes responsible for mercury resistance are organized in the mer operon, and such operons are often found in plasmids that also bear drug resistance determinants. We have subcloned three of these mer genes, merR, merB, and merA, and have studied their protein products via protein overproduction and purification, and structural and functional characterization. MeR is a metalloregulatory DNA-binding protein that acts as a repressor of both its own and structural gene transcription in the absence of Hg(II); in addition it acts as a positive effector of structural gene transcription when Hg(II) is present. MerB, organomercury lyase, catalyzes the protonolytic fragmentation of organomercurials to the parent hydrocarbon and Hg(II) by an apparent SE2 mechanism. MerA, mercuric ion reductase, is an FAD-containing and redox-active disulfide-containing enzyme with homology to glutathione reductase. It has evolved the unique catalytic capacity to reduce Hg(II) to Hg(0) and thereby complete the detoxification scheme.19883277886
530170.9918Location of the genes for anthranilate synthase in Streptomyces venezuelae ISP5230: genetic mapping after integration of the cloned genes. The anthranilate synthase (trpEG) genes in Streptomyces venezuelae ISP5230 were located by allowing a segregationally unstable plasmid carrying cloned S. venezuelae trpEG DNA and a thiostrepton resistance (tsr) marker to integrate into the chromosome. The integrated tsr was mapped by conjugation and transduction to a location close to tyr-2, between arg-6 and trpA13. A genomic DNA fragment containing trpC from S. venezuelae ISP5230 was cloned by complementation of a trpC mutation in Streptomyces lividans. Evidence from restriction enzyme analysis of the cloned DNA fragments, from Southern hybridization using the cloned trp DNA as probes, and from cotransduction frequencies, placed trpEG at a distance of 12-45 kb from the trpCBA cluster. The overall arrangement of tryptophan biosynthesis genes in the S. venezuelae chromosome differs from that in other bacteria examined so far.19938515229
376180.9917Construction of a reporter plasmid for screening in vivo promoter activity in Francisella tularensis. Francisella tularensis is a facultative intracellular bacterium that survives and multiplies inside macrophages. Here we constructed a new promoter probe plasmid denoted pKK214 by introduction of a promoter-less chloramphenicol acetyltransferase (cat) gene into the shuttle vector pKK202. A promoter library was created in F. tularensis strain LVS by cloning random chromosomal DNA fragments into pKK214. Approximately 15% of the recombinant bacteria showed chloramphenicol resistance in vitro. The promoter library was also used to infect macrophages in the presence of chloramphenicol and after two cycles of infection the library contained essentially only chloramphenicol resistance clones which shows that pKK214 can be used to monitor F. tularensis genes that are expressed during infection.200111728719
369190.9917A gene fusion system using the aminoglycoside 3'-phosphotransferase gene of the kanamycin-resistance transposon Tn903: use in the yeast Kluyveromyces lactis and Saccharomyces cerevisiae. The aminoglycoside 3'-phosphotransferase type I (APHI)-coding gene of the bacterial transposon Tn903 confers resistance to kanamycin on bacteria and resistance to geneticin (G418) on many eukaryotes. We developed an APHI fusion system that can be used in the study of gene expression in these organisms, particularly in yeasts. The first 19 codons of the KmR (APHI) gene can be deleted, and replaced by other genes in a continuous reading frame, without loss of APH activity. Examples of vector constructions are given which are adapted to the yeast Kluyveromyces lactis transformation system. Their derivatives containing the 2 mu origin of replication can also be used in Saccharomyces cerevisiae.19882853096