TRANSFERRING - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
200400.9956Deciphering the Structural Diversity and Classification of the Mobile Tigecycline Resistance Gene tet(X)-Bearing Plasmidome among Bacteria. The emergence of novel plasmid-mediated resistance genes constitutes a great public concern. Recently, mobile tet(X) variants were reported in diverse pathogens from different sources. However, the diversity of tet(X)-bearing plasmids remains largely unknown. In this study, the phenotypes and genotypes of all the tet(X)-positive tigecycline-resistant strains isolated from a slaughterhouse in China were characterized by antimicrobial susceptibility testing, conjugation, pulsed-field gel electrophoresis with S1 nuclease (S1-PFGE), and PCR. The diversity and polymorphism of tet(X)-harboring strains and plasmidomes were investigated by whole-genome sequencing (WGS) and single-plasmid-molecule analysis. Seventy-four tet(X4)-harboring Escherichia coli strains and one tet(X6)-bearing Providencia rettgeri strain were identified. The tet(X4)-bearing elements in 27 strains could be transferred to the recipient strain via plasmids. All tet(X4)-bearing plasmids isolated in this study and 15 tet(X4)-bearing plasmids reported online were analyzed. tet(X4)-bearing plasmids ranged from 9 to 294 kb and were categorized as ColE2-like, IncQ, IncX1, IncA/C2, IncFII, IncFIB, and hybrid plasmids with different replicons. The core tet(X4)-bearing genetic contexts were divided into four major groups: ISCR2-tet(X4)-abh, △ISCR2-abh-tet(X4)-ISCR2, ISCR2-abh-tet(X4)-ISCR2-virD2-floR, and abh-tet(X4)-ISCR2-yheS-cat-zitR-ISCR2-virD2-floR Tandem repeats of tet(X4) were universally mediated by ISCR2 Different tet(X)-bearing strains existed in the same microbiota. Reorganization of tet(X4)-bearing multidrug resistance plasmids was found to be mediated by IS26 and other homologous regions. Finally, single-plasmid-molecule analysis captured the heterogenous state of tet(X4)-bearing plasmids. These findings significantly expand our knowledge of the tet(X)-bearing plasmidome among microbiotas, which establishes a baseline for investigating the structure and diversity of human, animal, and environmental tigecycline resistomes. Characterization of tet(X) genes among different microbiotas should be performed systematically to understand the evolution and ecology.IMPORTANCE Tigecycline is an expanded-spectrum tetracycline used as a last-resort antimicrobial for treating infections caused by superbugs such as carbapenemase-producing or colistin-resistant pathogens. Emergence of the plasmid-mediated mobile tigecycline resistance gene tet(X4) created a great public health concern. However, the diversity of tet(X4)-bearing plasmids and bacteria remains largely uninvestigated. To cover this knowledge gap, we comprehensively identified and characterized the tet(X)-bearing plasmidome in different sources using advanced sequencing technologies for the first time. The huge diversity of tet(X4)-bearing mobile elements demonstrates the high level of transmissibility of the tet(X4) gene among bacteria. It is crucial to enhance stringent surveillance of tet(X) genes in animal and human pathogens globally.202032345737
547510.9956Genomic Insights of Enterococcus faecium UC7251, a Multi-Drug Resistant Strain From Ready-to-Eat Food, Highlight the Risk of Antimicrobial Resistance in the Food Chain. The presence of multi-drug resistant (MDR) bacteria in ready-to-eat foods comprises a threat for public health due to their ability to acquire and transfer antibiotic-resistant determinants that could settle in the microbiome of the human digestive tract. In this study, Enterococcus faecium UC7251 isolated from a fermented dry sausage was characterized phenotypically and genotypically to hold resistance to multiple antibiotics including aminoglycosides, macrolides, β-lactams, and tetracyclines. We further investigated this strain following a hybrid sequencing and assembly approach (short and long reads) and determined the presence of various mobile genetic elements (MGEs) responsible of horizontal gene transfer (HGT). On the chromosome of UC7251, we found one integrative and conjugative element (ICE) and a conjugative transposon Tn916-carrying tetracycline resistance. UC7251 carries two plasmids: one small plasmid harboring a rolling circle replication and one MDR megaplasmid. The latter was identified as mobilizable and containing a putative integrative and conjugative element-like region, prophage sequences, insertion sequences, heavy-metal resistance genes, and several antimicrobial resistance (AMR) genes, confirming the phenotypic resistance characteristics. The transmissibility potential of AMR markers was observed through mating experiments, where Tn916-carried tetracycline resistance was transferred at intra- and inter-species levels. This work highlights the significance of constant monitoring of products of animal origin, especially RTE foodstuffs, to stimulate the development of novel strategies in the race for constraining the spread of antibiotic resistance.202235814695
356420.9953Conjugation-Mediated Transfer of Antibiotic-Resistance Plasmids Between Enterobacteriaceae in the Digestive Tract of Blaberus craniifer (Blattodea: Blaberidae). Cockroaches, insects of the order Blattodea, seem to play a crucial role in the possible conjugation-mediated genetic exchanges that occur among bacteria that harbor in the cockroach intestinal tract. The gut of these insects can be thought of as an effective in vivo model for the natural transfer of antimicrobial resistance plasmids among bacteria. In our study, we evaluated the conjugation-mediated horizontal transfer of resistance genes between Escherichia coli and other microorganisms of the same Enterobacteriaceae family within the intestinal tract of Blaberus craniifer Burmeister, 1838 (Blattodea: Blaberidae). Different in vivo mating experiments were performed using E. coli RP4 harboring the RP4 plasmid carrying ampicillin, kanamycin, and tetracycline resistance genes as the donor and E. coli K12 resistant to nalidixic acid or Salmonella enterica serovar Enteritidis IMM39 resistant to streptomycin as the recipients. The RP4 plasmid was successfully transferred to both recipients, producing E. coli K12-RP4 and S. Enteritidis IMM39-RP4 transconjugants. Conjugation frequencies in vivo were similar to those previously observed in vitro. The transfer of the RP4 plasmid in all transconjugants was confirmed by small-scale plasmid isolation and agar gel electrophoresis, suggesting that the intestinal tract of cockroaches is an effective in vivo model for natural gene transfer. Our results confirm that cockroaches allow for the exchange of antimicrobial resistance plasmids among bacteria and may represent a potential reservoir for the dissemination of antibiotic-resistant bacteria in different environments. These findings are particularly significant to human health in the context of health care settings such as hospitals.201626875189
356330.9952Transferable antibiotic resistance plasmids from biogas plant digestates often belong to the IncP-1ε subgroup. Manure is known to contain residues of antibiotics administered to farm animals as well as bacteria carrying antibiotic resistance genes (ARGs). These genes are often located on mobile genetic elements. In biogas plants (BGPs), organic substrates such as manure and plant material are mixed and fermented in order to provide energy, and resulting digestates are used for soil fertilization. The fate of plasmid carrying bacteria from manure during the fermentation process is unknown. The present study focused on transferable antibiotic resistance plasmids from digestates of seven BGPs, using manure as a co-substrate, and their phenotypic and genotypic characterization. Plasmids conferring resistance to either tetracycline or sulfadiazine were captured by means of exogenous plasmid isolation from digestates into Pseudomonas putida KT2442 and Escherichia coli CV601 recipients, at transfer frequencies ranging from 10(-5) to 10(-7). Transconjugants (n = 101) were screened by PCR-Southern blot hybridization and real-time PCR for the presence of IncP-1, IncP-1ε, IncW, IncN, IncP-7, IncP-9, LowGC, and IncQ plasmids. While 61 plasmids remained unassigned, 40 plasmids belonged to the IncP-1ε subgroup. All these IncP-1ε plasmids were shown to harbor the genes tet(A), sul1, qacEΔ1, intI1, and integron gene cassette amplicons of different size. Further analysis of 16 representative IncP-1ε plasmids showed that they conferred six different multiple antibiotic resistance patterns and their diversity seemed to be driven by the gene cassette arrays. IncP-1ε plasmids displaying similar restriction and antibiotic resistance patterns were captured from different BGPs, suggesting that they may be typical of this environment. Our study showed that BGP digestates are a potential source of transferable antibiotic resistance plasmids, and in particular the broad host range IncP-1ε plasmids might contribute to the spread of ARGs when digestates are used as fertilizer.201425653641
995940.9952Cryptic environmental conjugative plasmid recruits a novel hybrid transposon resulting in a new plasmid with higher dispersion potential. Cryptic conjugative plasmids lack antibiotic-resistance genes (ARGs). These plasmids can capture ARGs from the vast pool of the environmental metagenome, but the mechanism to recruit ARGs remains to be elucidated. To investigate the recruitment of ARGs by a cryptic plasmid, we sequenced and conducted mating experiments with Escherichia coli SW4848 (collected from a lake) that has a cryptic IncX (IncX4) plasmid and an IncF (IncFII/IncFIIB) plasmid with five genes that confer resistance to aminoglycosides (strA and strB), sulfonamides (sul2), tetracycline [tet(A)], and trimethoprim (dfrA5). In a conjugation experiment, a novel hybrid Tn21/Tn1721 transposon of 22,570 bp (designated Tn7714) carrying the five ARG mobilized spontaneously from the IncF plasmid to the cryptic IncX plasmid. The IncF plasmid was found to be conjugative when it was electroporated into E. coli DH10B (without the IncX plasmid). Two parallel conjugations with the IncF and the new IncX (carrying the novel Tn7714 transposon) plasmids in two separate E. coli DH10B as donors and E. coli J53 as the recipient revealed that the conjugation rate of the new IncX plasmid (with the novel Tn7714 transposon and five ARGs) is more than two orders of magnitude larger than the IncF plasmid. For the first time, this study shows experimental evidence that cryptic environmental plasmids can capture and transfer transposons with ARGs to other bacteria, creating novel multidrug-resistant conjugative plasmids with higher dispersion potential. IMPORTANCE: Cryptic conjugative plasmids are extrachromosomal DNA molecules without antibiotic-resistance genes (ARGs). Environmental bacteria carrying cryptic plasmids with a high conjugation rate threaten public health because they can capture clinically relevant ARGs and rapidly spread them to pathogenic bacteria. However, the mechanism to recruit ARG by cryptic conjugative plasmids in environmental bacteria has not been observed experimentally. Here, we document the first translocation of a transposon with multiple clinically relevant ARGs to a cryptic environmental conjugative plasmid. The new multidrug-resistant conjugative plasmid has a conjugation rate that is two orders of magnitude higher than the original plasmid that carries the ARG (i.e., the new plasmid from the environment can spread ARG more than two orders of magnitude faster). Our work illustrates the importance of studying the mobilization of ARGs in environmental bacteria. It sheds light on how cryptic conjugative plasmids recruit ARGs, a phenomenon at the root of the antibiotic crisis.202438771049
500450.9952Dissemination and prevalence of plasmid-mediated high-level tigecycline resistance gene tet (X4). With the large-scale use of antibiotics, antibiotic resistant bacteria (ARB) continue to rise, and antibiotic resistance genes (ARGs) are regarded as emerging environmental pollutants. The new tetracycline-class antibiotic, tigecycline is the last resort for treating multidrug-resistant (MDR) bacteria. Plasmid-mediated horizontal transfer enables the sharing of genetic information among different bacteria. The tigecycline resistance gene tet(X) threatens the efficacy of tigecycline, and the adjacent ISCR2 or IS26 are often detected upstream and downstream of the tet(X) gene, which may play a crucial driving role in the transmission of the tet(X) gene. Since the first discovery of the plasmid-mediated high-level tigecycline resistance gene tet(X4) in China in 2019, the tet(X) genes, especially tet(X4), have been reported within various reservoirs worldwide, such as ducks, geese, migratory birds, chickens, pigs, cattle, aquatic animals, agricultural field, meat, and humans. Further, our current researches also mentioned viruses as novel environmental reservoirs of antibiotic resistance, which will probably become a focus of studying the transmission of ARGs. Overall, this article mainly aims to discuss the current status of plasmid-mediated transmission of different tet(X) genes, in particular tet(X4), as environmental pollutants, which will risk to public health for the "One Health" concept.202236246244
303460.9952The Integrative and Conjugative Element ICECspPOL2 Contributes to the Outbreak of Multi-Antibiotic-Resistant Bacteria for Chryseobacterium Spp. and Elizabethkingia Spp. Antibiotic resistance genes (ARGs) and horizontal transfer of ARGs among bacterial species in the environment can have serious clinical implications as such transfers can lead to disease outbreaks from multidrug-resistant (MDR) bacteria. Infections due to antibiotic-resistant Chryseobacterium and Elizabethkingia in intensive care units have been increasing in recent years. In this study, the multi-antibiotic-resistant strain Chryseobacterium sp. POL2 was isolated from the wastewater of a livestock farm. Whole-genome sequencing and annotation revealed that the POL2 genome encodes dozens of ARGs. The integrative and conjugative element (ICE) ICECspPOL2, which encodes ARGs associated with four types of antibiotics, including carbapenem, was identified in the POL2 genome, and phylogenetic affiliation analysis suggested that ICECspPOL2 evolved from related ICEEas of Elizabethkingia spp. Conjugation assays verified that ICECspPOL2 can horizontally transfer to Elizabethkingia species, suggesting that ICECspPOL2 contributes to the dissemination of multiple ARGs among Chryseobacterium spp. and Elizabethkingia spp. Because Elizabethkingia spp. is associated with clinically significant infections and high mortality, there would be challenges to clinical treatment if these bacteria acquire ICECspPOL2 with its multiple ARGs, especially the carbapenem resistance gene. Therefore, the results of this study support the need for monitoring the dissemination of this type of ICE in Chryseobacterium and Elizabethkingia strains to prevent further outbreaks of MDR bacteria. IMPORTANCE Infections with multiple antibiotic-resistant Chryseobacterium and Elizabethkingia in intensive care units have been increasing in recent years. In this study, the mobile integrative and conjugative element ICECspPOL2, which was associated with the transmission of a carbapenem resistance gene, was identified in the genome of the multi-antibiotic-resistant strain Chryseobacterium sp. POL2. ICECspPOL2 is closely related to the ICEEas from Elizabethkingia species, and ICECspPOL2 can horizontally transfer to Elizabethkingia species with the tRNA-Glu-TTC gene as the insertion site. Because Elizabethkingia species are associated with clinically significant infections and high mortality, the ability of ICECspPOL2 to transfer carbapenem resistance from environmental strains of Chryseobacterium to Elizabethkingia is of clinical concern.202134937181
332970.9952The transferable resistome of biosolids-plasmid sequencing reveals carriage of clinically relevant antibiotic resistance genes. Biosolids, widely used as organic fertilizers due to their high nutrient content, are significant reservoirs for antimicrobial-resistant bacteria (ARB) carrying transferable antimicrobial resistance genes (ARGs). This study investigated the transferability of ARG-containing plasmids of bacteria from biosolids originating from 12 German wastewater treatment plants (WWTPs) of varying sizes. Using exogenous plasmid captures with the recipient strain Escherichia coli CV601 gfp+, we collected 103 plasmids from 11 WWTPs. Characterization through DNA-based methods, including real-time PCR and Southern blot hybridization, revealed that the highest proportion of transconjugants harbored IncP (57%) and IncN (20%) plasmids. Complete sequencing of representative plasmids identified IncPβ, IncPε, IncQ2, IncN, and IncU plasmids carrying ARGs linked to mobile genetic elements (MGEs), including class 1 integrons, transposons, and IS elements (e.g., Tn402, IS26, and IS6100). These ARG-MGE complexes were integrated into specific plasmid regions, and similar plasmids were found across WWTPs and diverse geographic locations. The results underscore the role of WWTPs as hotspots for horizontal gene transfer, with biosolids serving as reservoirs for multi-resistant bacteria and resistance plasmids. This highlights the urgent need for improved biosolid management strategies to mitigate the release of ARGs and ARB into agricultural environments. IMPORTANCE: This study emphasizes the critical role of wastewater treatment plants (WWTPs) in facilitating the horizontal transfer of ARGs through biosolids. As biosolids are routinely applied to agricultural soils, their load of clinically relevant ARG content and transferability pose risks to animal and human health through plant-associated bacteria or surface water. By identifying conserved ARG-MGE associations across diverse plasmid types and WWTPs, this work highlights the global and persistent nature of resistance dissemination. These findings underscore the urgent need for sustainable management practices to limit the spread of antimicrobial-resistant bacteria (ARB) and associated ARGs in agricultural ecosystems. Ensuring safe biosolid use will contribute to combating antimicrobial resistance gene connectivity from environmental to human- or animal-associated bacteria globally.202541104936
994680.9952Genomic insights into plasmid-mediated antimicrobial resistance in the bacterium Bhargavaea beijingensis strain PS04. The dissemination of antimicrobial-resistant bacteria through environment is a major health concern for public health. Pathogenic bacteria in natural environment can mediate the transfer of antimicrobial-resistant genes via horizontal gene transfer to naturally occurring bacteria in the soil. Bhargavaea beijingensis is a Gram-negative bacterium that is commonly found in soil and water. In recent years, there has been an emergence of antibiotic-resistant strains of environmental bacteria, which pose a significant threat to human health. One mechanism of antibiotic resistance in bacteria is through the acquisition of plasmids, which can carry genes that confer resistance to various antibiotics. In this study, a novel plasmid of repUS12 replicon type was identified in the strain PS04 of B. beijingensis, which carried the ermT and tet(L) genes, encoding resistance to macrolides, lincosamides, and tetracycline. The plasmid was found to be the first of its kind in B. beijingensis and was thought to have been acquired through horizontal gene transfer. The emergence of plasmid-mediated resistance in B. beijingensis highlights the need for continued surveillance and monitoring of antibiotic resistance in environmental bacteria.202338133813
994790.9952A novel integrative conjugative element mediates transfer of multi-drug resistance between Streptococcus suis strains of different serotypes. Streptococcus suis represents a key antibiotic resistance gene reservoir and an important pathogen for humans and animals. Resistance can be spread through horizontal gene transfer of chromosome-borne mobile genetic elements; however, the exact mechanism by which this occurs remains poorly understood. In the present study, we identified and characterized a novel 82-kb integrative conjugative element (ICE) named ICESsuCZ130302 from the virulent S. suis strain CZ130302. It carries genes that provide resistance to multiple antibiotics, such as tetracycline, doxycycline, erythromycin, lincomycin, neomycin, and kanamycin. It also contains a nisin biosynthesis gene cluster, a toxin-antitoxin system, a type IV secretion system, and an integrase and excisase system. The mobile element can be excised from the chromosome, circulized, and transferred via conjugation from serotype Chz strain CZ130302 to serotype 2 strain P1/7, where it confers resistance to the aforementioned antimicrobial agents. The full length ICE, where multiple antimicrobial resistance genes accumulated, was further identified to be naturally transferred between different serotypes strains of S. suis. This finding illustrates how such elements represent a potential means by which antimicrobial resistance is introduced to a wide range of bacteria of veterinary and medical significance.201930642585
1775100.9952The IncC and IncX1 resistance plasmids present in multi-drug resistant Escherichia coli strains isolated from poultry manure in Poland. The study describes the whole-genome sequencing of two antibiotic-resistant representative Escherichia coli strains, isolated from poultry manure in 2020. The samples were obtained from a commercial chicken meat production facility in Poland. The antibiotic resistance profile was characterized by co-resistance to β-lactam antibiotics, aminoglycosides, and fluoroquinolones. The three identified resistance plasmids (R-plasmids), pECmdr13.2, pECmdr13.3, and pECmdr14.1, harbored various genes conferring resistance to tetracyclines (tetR[A]) for, aminoglycoside (aph, aac, and aad families), β-lactam (bla(CMY-2), bla(TEM-176)), sulfonamide (sul1, sul2), fluoroquinolone (qnrS1), and phenicol (floR). These plasmids, which have not been previously reported in Poland, were found to carry IS26 insertion elements, the intI1-integrase gene, and conjugal transfer genes, facilitating horizontal gene transfer. Plasmids pECmdr13.2 and pECmdr14.1 also possessed a mercury resistance gene operon related to transposon Tn6196; this promotes plasmid persistence even without antibiotic selection pressure due to co-selection mechanisms such as co-resistance. The chicken manure-derived plasmids belonged to the IncX1 (narrow host range) and IncC (broad host range) incompatibility groups. Similar plasmids have been identified in various environments, clinical isolates, and farm animals, including cattle, swine, and poultry. This study holds significant importance for the One Health approach, as it highlights the potential for antibiotic-resistant bacteria from livestock and food sources, particularly E. coli, to transfer through the food chain to humans and vice versa.202439007976
9960110.9952Integrons, transposons and IS elements promote diversification of multidrug resistance plasmids and adaptation of their hosts to antibiotic pollutants from pharmaceutical companies. Plasmids are important vehicles for the dissemination of antibiotic resistance genes (ARGs) among bacteria by conjugation. Here, we determined the complete nucleotide sequences of nine different plasmids previously obtained by exogenous plasmid isolation from river and creek sediments and wastewater from a pharmaceutical company. We identified six IncP/P-1ε plasmids and single members of IncL, IncN and IncFII-like plasmids. Genetic structures of the accessory regions of the IncP/P-1ε plasmids obtained implied that multiple insertions and deletions had occurred, mediated by different transposons and Class 1 integrons with various ARGs. Our study provides compelling evidence that Class 1 integrons, Tn402-like transposons, Tn3-like transposons and/or IS26 played important roles in the acquisition of ARGs across all investigated plasmids. Our plasmid sequencing data provide new insights into how these mobile genetic elements could mediate the acquisition and spread of ARGs in environmental bacteria.202337655671
9952120.9952Detection and Quantification of Conjugative Transfer of Mobile Genetic Elements Carrying Antibiotic Resistance Genes. Multidrug resistance, due to acquired antimicrobial resistance genes, is increasingly reported in the zoonotic pathogen Streptococcus suis. Most of these resistance genes are carried by chromosomal Mobile Genetic Elements (MGEs), in particular, Integrative and Conjugative Elements (ICEs) and Integrative and Mobilizable Elements (IMEs). ICEs and IMEs frequently form tandems or nested composite elements, which make their identification difficult. To evaluate their mobility, it is necessary to (i) select the suitable donor-recipient pairs for mating assays, (ii) do PCR excision tests to confirm that the genetic element is able to excise from the chromosome as a circular intermediate, and (iii) evaluate the transfer of the genetic element by conjugation by doing mating assays. In addition to a dissemination of resistance genes between S. suis strains, MGEs can lead to a spreading of resistance genes in the environment and toward pathogenic bacteria. This propagation had to be considered in a One Health perspective.202438884912
3445130.9952Horizontal plasmid transfer promotes antibiotic resistance in selected bacteria in Chinese frog farms. The emergence and dissemination of antibiotic resistance genes (ARGs) in the ecosystem are global public health concerns. One Health emphasizes the interconnectivity between different habitats and seeks to optimize animal, human, and environmental health. However, information on the dissemination of antibiotic resistance genes (ARGs) within complex microbiomes in natural habitats is scarce. We investigated the prevalence of antibiotic resistant bacteria (ARB) and the spread of ARGs in intensive bullfrog (Rana catesbeiana) farms in the Shantou area of China. Antibiotic susceptibilities of 361 strains, combined with microbiome analyses, revealed Escherichia coli, Edwardsiella tarda, Citrobacter and Klebsiella sp. as prevalent multidrug resistant bacteria on these farms. Whole genome sequencing of 95 ARB identified 250 large plasmids that harbored a wide range of ARGs. Plasmid sequences and sediment metagenomes revealed an abundance of tetA, sul1, and aph(3″)-Ib ARGs. Notably, antibiotic resistance (against 15 antibiotics) highly correlated with plasmid-borne rather than chromosome-borne ARGs. Based on sequence similarities, most plasmids (62%) fell into 32 distinct groups, indicating a potential for horizontal plasmid transfer (HPT) within the frog farm microbiome. HPT was confirmed in inter- and intra-species conjugation experiments. Furthermore, identical mobile ARGs, flanked by mobile genetic elements (MGEs), were found in different locations on the same plasmid, or on different plasmids residing in the same or different hosts. Our results suggest a synergy between MGEs and HPT to facilitate ARGs dissemination in frog farms. Mining public databases retrieved similar plasmids from different bacterial species found in other environmental niches globally. Our findings underscore the importance of HPT in mediating the spread of ARGs in frog farms and other microbiomes of the ecosystem.202439089095
4903140.9951Tetracycline resistance gene transfer from Escherichia coli donors to Salmonella Heidelberg in chickens is impacted by the genetic context of donors. Chicken ceca are a rich source of bacteria, including zoonotic pathogens such as Salmonella enterica. The microbiota includes strains/species carrying antimicrobial resistance genes and horizontal transfer of resistance determinants between species may increase the risk to public health and farming systems. Possible sources of these antimicrobial resistance donors - the eggshell carrying bacteria from the hen vertically transmitted to the offspring, or the barn environment where chicks are hatched and raised - has been little explored. In this study, we used Salmonella enterica serovar Heidelberg to evaluate if layer chicks raised in different environments (using combinations of sterilized or non-sterile eggs placed in sterilized isolation chambers or non-sterile rooms) acquired transferable tetracycline resistance genes from surrounding bacteria, especially Escherichia coli. Two-day old chicks were challenged with an antibiotic-susceptible S. Heidelberg strain SH2813(nal)(R) and Salmonella recovered from the cecum of birds at different timepoints to test the in vivo acquisition of tetracycline resistance. Tetracycline-resistant E. coli isolates recovered from birds from the in vivo experiment were used to test the in vitro transfer of tetracycline resistance genes from E. coli to Salmonella. Even though Salmonella SH2813(nal)(R) colonized the 2-day old chicks after oral challenge, tetracycline-resistant Salmonella transconjugants were not recovered, as previously observed. In vitro experiments provided similar results. We discuss several hypotheses that might explain the absence of transconjugants in vitro and in vivo, despite the presence of diverse plasmids in the recovered E. coli. The factors that can inhibit/promote antimicrobial resistance transfers to Salmonella for different plasmid types need further exploration.202439581077
3784150.9951Insight into the mobilome of Aeromonas strains. The mobilome is a pool of genes located within mobile genetic elements (MGE), such as plasmids, IS elements, transposons, genomic/pathogenicity islands, and integron-associated gene cassettes. These genes are often referred to as "flexible" and may encode virulence factors, toxic compounds as well as resistance to antibiotics. The phenomenon of MGE transfer between bacteria, known as horizontal gene transfer (HGT), is well documented. The genes present on MGE are subject to continuous processes of evolution and environmental changes, largely induced or significantly accelerated by man. For bacteria, the only chance of survival in an environment contaminated with toxic chemicals, heavy metals and antibiotics is the acquisition of genes providing the ability to survive in such conditions. The process of acquiring and spreading antibiotic resistance genes (ARG) is of particular significance, as it is important for the health of humans and animals. Therefore, it is important to thoroughly study the mobilome of Aeromonas spp. that is widely distributed in various environments, causing many diseases in fishes and humans. This review discusses the recently published information on MGE prevalent in Aeromonas spp. with special emphasis on plasmids belonging to different incompatibility groups, i.e., IncA/C, IncU, IncQ, IncF, IncI, and ColE-type. The vast majority of plasmids carry a number of different transposons (Tn3, Tn21, Tn1213, Tn1721, Tn4401), the 1st, 2nd, or 3rd class of integrons, IS elements (e.g., IS26, ISPa12, ISPa13, ISKpn8, ISKpn6) and encode determinants such as antibiotic and mercury resistance genes, as well as virulence factors. Although the actual role of Aeromonas spp. as a human pathogen remains controversial, species of this genus may pose a serious risk to human health. This is due to the considerable potential of their mobilome, particularly in terms of antibiotic resistance and the possibility of the horizontal transfer of resistance genes.201526074893
2003160.9951Characterization of an Escherichia coli Isolate Coharboring the Virulence Gene astA and Tigecycline Resistance Gene tet(X4) from a Dead Piglet. tet(X4) is the critical resistance gene for tigecycline degradation that has been continually reported in recent years. In particular, pathogenic bacteria carrying tet(X4) are a severe threat to human health. However, information describing Escherichia coli coharboring tet(X4) with virulence genes is limited. Here, we isolated an E. coli strain coharboring tet(X4) and the heat-stable toxin gene astA from a dead piglet. The strain named 812A1-131 belongs to ST10. The genome was sequenced using the Nanopore and Illumina platforms. The virulence genes astA and tet(X4) are located on the chromosome and in the IncHI1-type plasmid p812A1-tetX4-193K, respectively. The plasmid could be conjugatively transferred to recipient E. coli J53 with high frequency. In vivo experiments showed that strain 812A1-131 is pathogenic to Galleria mellonella and could colonize the intestines of mice. In summary, pathogenic E. coli could receive a plasmid harboring the tet(X4) gene, which can increase the difficulty of treatment. The prevalence and transmission mechanisms of pathogenic bacteria coharboring the tet(X4) gene need more attention.202337513750
9962170.9951Metadata Analysis of mcr-1-Bearing Plasmids Inspired by the Sequencing Evidence for Horizontal Transfer of Antibiotic Resistance Genes Between Polluted River and Wild Birds. We sequenced the whole genomes of three mcr-1-positive multidrug-resistant E. coli strains, which were previously isolated from the environment of egret habitat (polluted river) and egret feces. The results exhibit high correlation between antibiotic-resistant phenotype and genotype among the three strains. Most of the mobilized antibiotic resistance genes (ARGs) are distributed on plasmids in the forms of transposons or integrons. Multidrug-resistant (MDR) regions of high homology are detected on plasmids of different E. coli isolates. Therefore, horizontal transfer of resistance genes has facilitated the transmission of antibiotic resistance between the environmental and avian bacteria, and the transfer of ARGs have involved multiple embedded genetic levels (transposons, integrons, plasmids, and bacterial lineages). Inspired by this, systematic metadata analysis was performed for the available sequences of mcr-1-bearing plasmids. Among these plasmids, IncHI2 plasmids carry the most additional ARGs. The composition of these additional ARGs varies according to their geographical distribution. The phylogenetic reconstruction of IncI2 and IncX4 plasmids provides the evidence for their multiregional evolution. Phylogenetic analysis at the level of mobile genetic element (plasmid) provides important epidemiological information for the global dissemination of mcr-1 gene. Highly homologous mcr-1-bearing IncI2 plasmids have been isolated from different regions along the East Asian-Australasian Flyway, suggesting that migratory birds may mediate the intercontinental transportation of ARGs.202032210943
1879180.9951Multidrug resistance in Salmonella isolates of swine origin: mobile genetic elements and plasmids associated with cephalosporin resistance with potential transmission to humans. The emergence of foodborne Salmonella strains carrying antimicrobial resistance (AMR) in mobile genetic elements (MGE) is a significant public health threat in a One Health context requiring continuous surveillance. Resistance to ciprofloxacin and cephalosporins is of particular concern. Since pigs are a relevant source of foodborne Salmonella for human beings, we studied transmissible AMR genes and MGE in a collection of 83 strains showing 9 different serovars and 15 patterns of multidrug resistant (MDR) previously isolated from pigs raised in the conventional breeding system of Northern Spain. All isolates were susceptible to ciprofloxacin and three isolates carried bla(CMY-2) or bla(CTX-M-9) genes responsible for cefotaxime resistance. Filter mating experiments showed that the two plasmids carrying bla(CTX-M-9) were conjugative while that carrying bla(CMY-2) was self-transmissible by transformation. Whole-genome sequencing and comparative analyses were performed on the isolates and plasmids. The IncC plasmid pSB109, carrying bla(CMY-2), was similar to one found in S. Reading from cattle, indicating potential horizontal transfer between serovars and animal sources. The IncHI2 plasmids pSH102 in S. Heidelberg and pSTM45 in S. Typhimurium ST34, carrying bla(CTX-M-9), shared similar backbones and two novel "complex class 1 integrons" containing different AMR and heavy metal genes. Our findings emphasize the importance of sequencing techniques to identify emerging AMR regions in conjugative and stable plasmids from livestock production. The presence of MGE carrying clinically relevant AMR genes raises public health concerns, requiring monitoring to mitigate the emergence of bacteria carrying AMR genes and subsequent spread through animals and food.IMPORTANCEThe emergence of foodborne Salmonella strains carrying antimicrobial resistance (AMR) in mobile genetic elements (MGE) is a significant public health threat in a One Health context. Since pigs are a relevant source of foodborne Salmonella for humans, in this study, we investigate different aspects of AMR in a collection of 83 Salmonella showing nine different serovars and 15 patterns of multidrug resistant (MDR) isolated from pigs raised in the conventional breeding system. Our findings emphasize the importance of sequencing techniques to identify emerging AMR regions in conjugative and stable plasmids from livestock production. The presence of MGE carrying clinically relevant AMR genes raises public health concerns, requiring monitoring to mitigate the emergence of bacteria carrying AMR genes and subsequent spread through animals and food.202438695519
3448190.9950Antimicrobial resistance genes and associated mobile genetic elements in Lactobacillales from various sources. Lactobacillales are commonly used in food products and as probiotics in animal and human medicine. Despite being generally recognized as safe, lactic acid bacteria may harbor a variety of antimicrobial resistance genes (ARGs), which may be transferable to human or veterinary pathogens, thus, may pose veterinary and public health concerns. This study investigates the resistome of Lactobacillales. A total of 4,286 whole-genome sequences were retrieved from NCBI RefSeq database. We screened ARGs in whole genome sequences and assessed if they are transmissible by plasmid transfer or by linkage to integrative mobile genetic elements. In the database, 335 strains were found to carry at least one ARG, and 194 strains carried at least one potentially transferable ARG. The most prevalent transferable ARG were tetM and tetW conferring antibiotic resistance to tetracycline. This study highlights the importance of the One Health concept by demonstrating the potential for Lactobacillales, commonly used in food products, to serve as reservoirs and vectors for ARGs.202338045025